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ON SEMINORMAL SUBGROUPS OF FINITE GROUPS

A. BALLESTER-BOLINCHES, J.C. BEIDLEMAN,

V. PÉREZ-CALABUIG AND M.F. RAGLAND

ABSTRACT. All groups considered in this paper are
finite. A subgroup H of a group G is said to seminormal
in G if H is normalized by all subgroups K of G such
that gcd(|H|, |K|) = 1. We call a group G an MSN-group if
the maximal subgroups of all the Sylow subgroups of G are
seminormal in G. In this paper, we classify all MSN-groups.

1. Introduction. In the following, G always denotes a finite group.
Recall that a subgroup H of a group G is said to permute with a
subgroup K of G if HK is a subgroup of G. The subgroup H is said
to be permutable in G if H permutes with all subgroups of G.

There are many articles in the literature (for instance, [6, 11, 13], to
name just three) where global information about a group G is obtained
by assuming that all p-subgroups H, p a prime, of a given order, satisfy
a sufficiently strong embedding property extending permutability. In
many cases, the subgroups H are the maximal subgroups of the Sylow
p-subgroups of G, and the embedding assumption is that they are S-
semipermutable in G.

Following [7], we say that a subgroup X of a group G is said to be
S-semipermutable in G provided that it permutes with every Sylow q-
subgroup of G for all primes q not dividing |H|. We define the class of
MS-groups to be the class of groups G in which the maximal subgroups
of all the Sylow subgroups of G are S-semipermutable in G. This class
was studied in [1, 5, 10].
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Suppose that X is a subnormal S-semipermutable subgroup of a
group G. If P is a subgroup, respectively, Sylow subgroup, of G with
gcd(|X|, |P |) = 1, then X is a subnormal Hall subgroup of XP , and so
X is normalized by P . This observation motivates the following.

Definition 1.1 ([4]). A subgroup X of a group G is said to be
seminormal, respectively, S-seminormal1, in G if it is normalized
by every subgroup, respectively, Sylow subgroup, K of G such that
gcd(|X|, |K|) = 1.

By [4, Theorem 1.2], a subgroup of a group is seminormal if and
only if it is S-seminormal. Furthermore, a Sylow 2-subgroup of the
symmetric group of degree 3 is an example of an S-semipermutable
subgroup which is not seminormal.

We say that a group G is an MSN-group if the maximal subgroups
of all the Sylow subgroups of G are seminormal in G. It is clear that
the class of all MSN-groups is a subclass of the class of all MS-groups.
To show that this inclusion is proper is the aim of the next example.

Example 1.2. Let A = ⟨y⟩×⟨z⟩ be a cyclic group of order 18 with y an
element of order 9 and z an element of order 2. Let V be an irreducible
A-module over the field of 19 elements such that CA(V ) = ⟨z⟩. Then
V is a cyclic group of order 19. The maximal subgroups of the Sylow
subgroups are either trivial or cyclic of order 3. Since V and ⟨z⟩ are
normal Sylow subgroups of G, it follows that the maximal subgroups
of the Sylow 3-subgroups are S-permutable. Hence, G is an MS-group.
However, the cyclic subgroups of order 3 are not normalized by V and
so G is not an MSN-group.

The main purpose of this paper is to characterize the class of all
MSN-groups.

2. Preliminary results. In this section, we collect the definitions
and results which are used to prove our theorems.

The book [2] will be the main reference for terminology and results
on permutability.



ON SEMINORMAL SUBGROUPS OF FINITE GROUPS 421

S-semipermutability and seminormality are closely related to the
following subgroup embedding property introduced by Kegel [8].

Definition 2.1. A subgroup H of G is said to be S-permutable in G
if H permutes with every Sylow p-subgroup of G for every prime p.

The following classes of groups have been extensively studied in
recent years. They play an important role in the structural study of
groups.

Definition 2.2.

(1) A group G is a T-group if normality is a transitive relation in G,
that is, if every subnormal subgroup of G is normal in G.

(2) A group G is a PT-group if permutability is a transitive relation
in G, that is, if H is permutable in K and K is permutable in G,
then H is permutable in G.

(3) A group G is a PST-group if S-permutability is a transitive relation
in G, that is, if H is S-permutable in K and K is S-permutable in
G, then H is S-permutable in G.

A classical result of Kegel shows that every S-permutable subgroup
must be subnormal ([2, Theorem 1.2.14(3)]). Therefore, a group G is
a PST-group (respectively a PT-group) if and only if every subnormal
subgroup is S-permutable (respectively permutable) in G.

Note that a T-group is a PT-group and a PT-group is a PST-group.
On the other hand, a PT-group is not necessarily a T-group (non-
Dedekind modular p-groups) and a PST-group is not necessarily a PT-
group (non-modular p-groups).

Another interesting class of groups in this context is the class of
T0-groups studied in [3, 9, 12].

Definition 2.3. A group G is called a T0-group if the Frattini factor
group G/Φ(G) is a T-group.

The next example shows that the class of all T0-groups properly
contains the class of all T-groups.
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Example 2.4. Let E = ⟨x, y⟩ be an extraspecial group of order 27
and exponent 3. Let a be an automorphism of order 2 of G given
by xa = x−1, ya = y−1. Let G = E o ⟨a⟩ be the corresponding
semidirect product. Clearly, G is a T0-group. The subgroup H = ⟨x⟩
is a subnormal subgroup of G which does not permute with the Sylow
2-subgroup ⟨ay⟩. Therefore, H is not S-permutable. Hence, G is not a
PST-group and so is not a T-group either.

The next theorem shows that soluble T0-groups are closely related
to PST-groups.

Theorem 2.5 ([9, Theorems 5, 7 and Corollary 3]). Let G be a soluble
T0-group with nilpotent residual L = γ∞(G). Then:

(i) G is supersoluble.
(ii) L is a nilpotent Hall subgroup of G.
(iii) If L is abelian, then G is a PST-group.

Here the nilpotent residual γ∞(G) of a group G is the smallest
normal subgroupN ofG such thatG/N is nilpotent, that is, the limit of
the lower central series ofG defined by γ1(G) = G, γi+1(G) = [γi(G), G]
for i ≥ 1.

Let G be a group whose nilpotent residual L = γ∞(G) is a Hall
subgroup of G. Let π = π(L) and let θ = π′ be the complement of π
in the set of all prime numbers. Let θN denote the set of all primes p
in θ such that, if P is a Sylow p-subgroup of G, then P has at least
two maximal subgroups. Further, let θC denote the set of all primes q
in θ such that, if Q is a Sylow q-subgroup of G, then Q has only one
maximal subgroup, or equivalently, Q is cyclic.

Throughout this paper we will use the notation presented above
concerning π, θ = π′, θN and θC .

We bring the section to a close with a characterization theorem
proved in [1, Theorem A].

Theorem 2.6. Let G be a group with nilpotent residual L = γ∞(G).
Then G is an MS-group if and only if G satisfies the following :

(i) G is a T0-group.
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(ii) L is a nilpotent Hall subgroup of G.
(iii) If p ∈ π and P ∈ Sylp(G), then a maximal subgroup of P is

normal in G.
(iv) Let p and q be distinct primes with p ∈ θN and q ∈ θ. If

P ∈ Sylp(G) and Q ∈ Sylq(G), then [P,Q] = 1.
(v) Let p and q be distinct primes with p ∈ θC and q ∈ θ. If

P ∈ Sylp(G) and Q ∈ Sylq(G) and M is the maximal subgroup of
P , then QM = MQ is a nilpotent subgroup of G.

3. Main results. Our first theorem gives precise conditions for an
MS-group to be an MSN-group. It is, therefore, a characterization
theorem.

Theorem A. A group G is an MSN-group if and only if G satisfies
the following conditions:

(i) G is an MS-group.
(ii) Let p and q be distinct primes with p ∈ π and q ∈ θN . If

P ∈ Sylp(G) and Q ∈ Sylq(G), then [P,Q] = 1.
(iii) Let p and q be distinct primes with p ∈ π and q ∈ θC . If

P ∈ Sylp(G), Q ∈ Sylq(G) and T is a maximal subgroup of Q,
then [P, T ] = 1.

Proof. Let G be an MSN-group. Then G is an MS-group.

Let p ∈ π and q ∈ θN . In addition, let P ∈ Sylp(G) and Q ∈ Sylq(G).
Further, let T1 and T2 be maximal subgroups of Q. Now P is the
Sylow p-subgroup of L and P is normal in G since L is a nilpotent
Hall π-subgroup of G by Theorem 2.6 (ii). Since G is an MSN-group,
P normalizes T1 and T2. Hence, P normalizes Q = ⟨T1, T2⟩, and so,
[P,Q] = 1. Thus, statement (ii) is true.

Assume now that p and q are distinct primes with p ∈ π and q ∈ θC .
Let P ∈ Sylp(G), Q ∈ Sylq(G) and T a maximal subgroup of Q. Since
P is a normal subgroup of G normalizing T , it follows that [P, T ] = 1.
Therefore, statement (iii) holds.

Conversely, assume that G is an MS-group satisfying assertions (ii)
and (iii). We shall show that G is an MSN-group. By Theorem 2.6, G
is a soluble T0-group and the nilpotent residual L of G is a nilpotent
Hall π-subgroup of G. Let p ∈ π, and let P ∈ Sylp(G). Then P is a
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Sylow p-subgroup of L, and it is normal in G. Let M be a maximal
subgroup of P . By Theorem 2.6 (iii), M is normal in G and so it is
seminormal in G. Moreover, by assertions (ii) and (iii), P normalizes
every maximal subgroup of every Sylow r-subgroup of G for all r ∈ θ.

Let q and r be distinct primes from θ, and let Q ∈ Sylq(G) and
R ∈ Sylr(G). Consider a maximal subgroup M of R. If r ∈ θN , then
by Theorem 2.6 (iv), [R,Q] = 1 and so Q normalizesM . Hence, assume
r ∈ θC . Then, by Theorem 2.6 (v), MQ is a nilpotent subgroup of G
and Q normalizes M .

Therefore, every maximal subgroup of every Sylow subgroup of G is
seminormal in G. This means G is an MSN-group. �

The second main result tells us how an MSN-group looks.

Theorem B. Let G be an MSN-group. Then G is a split extension of
a nilpotent Hall subgroup by a cyclic group.

Proof. Let G be an MSN-group with nilpotent residual L. By
Theorem 2.6 (ii), the nilpotent residual L of G is a nilpotent Hall
π-subgroup of G. Let X be a Hall θ-subgroup of G, and note that
G = L oX, the semidirect product of L by X. Since X is nilpotent,
it follows that X = Y × T , where Y is the Hall θN -subgroup of X and
T is the Hall θC-subgroup of X. Note that T is cyclic. By Theorem
A (ii), L centralizes Y and so Y is a normal nilpotent Hall subgroup
of G. Therefore, G = (L × Y ) o T is the semidirect product of the
nilpotent Hall subgroup L× Y by the cyclic group T . This completes
the proof. �

Applying Theorems 2.5 and 2.6, if the nilpotent residual of an MSN-
group G is abelian, then G is a PST-group. We should mention,
however, that not every soluble PST-group is an MSN-group (see [1,
Example 9]); those that can be MSN-groups are characterized in the
next theorem.

Theorem C. Let G be a soluble PST-group. Then G is an MSN-group
if and only if G satisfies Theorem 2.6 (iv) and (v) and Theorem A (ii)
and (iii).
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Proof. LetG be a soluble PST-group. By [1, Theorem B],G satisfies
Theorem 2.6 (iv) and (v). Moreover, by Theorem A, properties (ii) and
(iii) are satisfied by G.

Conversely, assume that Theorem 2.6 (iv), (v) and Theorem A (ii),
(iii) are satisfied byG. By [1, Theorem B],G is an MS-group. Applying
Theorem A, G is an MSN-group. �

Soluble PST-groups which are also MSN-groups are analyzed in our
next result. It shows that they have a very restricted structure.

Theorem D. Let G be a soluble PST-group, and let L be the nilpotent
residual of G. Assume that G is an MSN-group. Then the following
statements hold :

(i) every Hall θN -subgroup of G is contained in the hypercenter of G.
(ii) G = (L×X)o Y , where Y is a cyclic Hall θC-subgroup of G.
(iii) If G is non-nilpotent, then Y is of square-free order.

Proof. Applying a theorem of Agarwal ([2, Theorem 2.1.8]), L is an
abelian Hall subgroup ofG on whichG acts by conjugation as a group of
power automorphisms. By Theorem B, G is a semidirect product of the
nilpotent Hall (π ∪ θN )-subgroup by a cyclic Hall θC-subgroup. Note
that a Hall θN -subgroup E of G is a normal subgroup of G. Moreover,
E normalizes every Sylow r-subgroup of G for all primes r ∈ π ∪ θC .
This means that E is contained in the intersection of the normalizers
of all Sylow subgroups of G, that is, E is contained in the hypercenter
of G. Therefore, assertions (i) and (ii) hold.

Suppose that G is non-nilpotent. Then L ̸= 1 and Z(G) = 1. Let
r ∈ θC and R ∈ Sylr(G). If M is a maximal subgroup of R, then, by
Theorem A, [M,L] = 1. Since M is central in a Hall θ-subgroup of G,
it follows that M ̸= Z(G) = 1. Therefore, R is cyclic of order r. Hence,
Y is cyclic of square-free order and assertion (iii) holds. �

Example 3.1. Let L be a cyclic group of order 19, let E be an
extraspecial 3-group of order 27 and exponent 3, and let C = ⟨c⟩ be a
cyclic group of order 2. Put X = E×C, and let X act on L as follows:
E centralizes L and, if l ∈ L, then lc = l−1. Let G = L o X be the
semidirect product of L by X. Then, G is a PST-group with nilpotent
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residual L. Note that G is an MSN-group with π = {19}, θN = {3}
and θC = {2}. We also note that G = (L× E)o C.

ENDNOTES

1. Note that the term seminormal has different meanings in the
literature.
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