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ON THE SOBOLEV ORTHOGONALITY OF
CLASSICAL ORTHOGONAL POLYNOMIALS

FOR NON STANDARD PARAMETERS

J.F. SÁNCHEZ-LARA

ABSTRACT. The discrete part of the discrete-continuous
orthogonality

B(f, g) = Bd(f, g) + Bc(f
(N), g(N)),

is studied for families of classical orthogonal polynomials
such that the associated three-term recurrence relation

xpn = pn+1 + βnpn + γnpn−1,

presents one vanishing coefficient γn, as in the case of

Laguerre polynomials L
(−N)
n , Jacobi polynomials P

(−N,β)
n

and Gegenbauer polynomials C
(−N+1/2)
n with N ∈ N. It

is shown that the discrete bilinear functional Bd can be
replaced by a linear functional, L , or by another bilinear
functional related with L , which allows us to reformulate
the orthogonality in a much simpler way in the case of
Laguerre polynomials and in a totally explicit form in the
case of Jacobi and Gegenbauer polynomials.

1. Introduction. Classical orthogonal polynomials play a distin-
guished role in many branches of applied mathematics. Probably the
main reason for this use is that they are polynomial solutions of the
second order differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0,

with σ and τ polynomials of degree at most 2 and 1, respectively, and
λn ∈ R. One of the main tools in dealing with classical orthogonal
polynomials, pn, is precisely its orthogonality, which can be written as

(1.1) ⟨L , pnpm⟩ = knδn,m, for all n,m ≥ 0,
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for some linear functionals L and kn > 0. However, it is known that
the existence of such a L does not hold for all classical orthogonal
polynomials. In fact, it only occurs for Hermite polynomials Hn,

Laguerre polynomials L
(α)
n with α > −1 and Jacobi polynomials

(Gegenbauer polynomials included) P
(α,β)
n with α, β ∈ (−1,+∞).

Hence, a natural problem is whether the orthogonality holds for the
other choices of the parameters, the so-called non standard parameters.
For almost all the rest of the parameters in C, it is possible to find a
linear functional L such that equation (1.1) holds but with kn ̸= 0 (the
path of integration which is used as a contour in the complex plane,
see for instance, [9, 15]), so that it is a non Hermitian orthogonality.

There are only a few cases in which it is not possible to find an
orthogonality of type (1.1) which correspond with the existence of a
vanishing coefficient γN in the three-term recurrence relation

(1.2) xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x).

Due to the Favard theorem, see [6, Theorem 4.4], a functional L
satisfying

⟨L , pnpm⟩ = 0, for all n,m ≥ 0, n ̸= m,

is uniquely defined, but the condition ⟨L , p2n⟩ ̸= 0 does not hold for all
n ∈ N. Indeed, γn ̸= 0 for n < N if and only if ⟨L , p2n⟩ ̸= 0 for n < N .
Thus, a different type of orthogonality is needed. The fact that, for the
given L , the condition (1.1) cannot be satisfied, also follows from the
study of its sequence of moments

µn = ⟨L , xn⟩.

The moments are known for classical orthogonal polynomials (a nor-
malization is needed in some cases) and, for some families with non
standard parameters, there exist some determinants of the Hankel ma-
trices

∆N =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µN

µ1 µ2 c . . . µN+1

...
...

. . .
...

µN µN+1 · · · µ2N

∣∣∣∣∣∣∣∣∣ ,
which vanish; hence, a sequence of polynomials {pn}n≥0 satisfying
equation (1.1) cannot exist, see for instance [6, Theorem 3.1]. Indeed,
∆n ̸= 0 for n < N if and only if ⟨L , p2n⟩ ̸= 0 for n < N . The problem
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arises because the family {pn}n≥0 is not uniquely determined by L .
Some properties of general polynomials {pn} satisfying

⟨L , pnx
m⟩ = 0, for m = 0, 1, . . . , n− 1,

for a fixed general sequence of moments {µn}n≥0 such that ∆n = 0 can
be seen in [10, Section 1].

The families of classical orthogonal polynomials satisfying equa-
tion (1.1), for which the existence of a linear functional L is not pos-

sible, are the Laguerre L
(−N)
n , Jacobi P

(−N,β)
n or P

(α,−N)
n and Gegen-

bauer polynomials C
(−N+1/2)
n with N ∈ N in all cases. These are the

families which we study in this work (the orthogonality (1.1) also fails

for P
(−N,−M)
n and C

(−N)
n , but these polynomials are not well defined

for all degrees in the sense of deg pn = n). These polynomials can be
defined for all n ∈ N0 taking an adequate normalization (for instance,
by considering monic polynomials) and all the main properties which
appear in the literature (differential, three term recurrence relations,
hypergeometric representation, etc.) remain true, but the orthogonal-
ity (see, for instance, [4, 14, 24] for properties of these polynomials
with any parameters). These polynomials have been endowed with an
orthogonality through a bilinear functional B, see [2, 3, 16], with the
property

(1.3) B(pn, pm) = knδn,m,

with kn > 0 so that the family {pn : n ∈ N0} is characterized by
equation (1.3), i.e., {pn : n ∈ N0} is an orthogonal polynomial sequence
with respect to B.

This and related problems have been studied from several points of
view in the last two decades, see [1, 2, 3, 5, 7, 8, 12, 16, 18, 19, 20,
21, 23]. We comment briefly on the state of the art.

The first results in this direction were given in 1995 by Kwon and
Littlejohn [16], who established the Sobolev orthogonality for Laguerre

polynomials L
(−N)
n with N ∈ N (so γN = 0, or equivalently, ∆N = 0)
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through the positive-definite inner product

(1.4)

B(f, g) =
N−1∑
k=0

k∑
j=0

Bk,j(N)(f (k)(0)g(j)(0) + f (j)(0)g(k)(0))

+

∫ +∞

0

f (N)(x)g(N)(x)e−xdx,

where f (j) stands for the jth derivative, and

Bk,j(N) =



j∑
p=0

(−1)k+j

(
N − 1− p

k − p

)(
N − 1− p

j − p

)
for 0 ≤ j < k ≤ N − 1

1

2

k∑
p=0

(
N − 1− p

k − p

)2

for 0 ≤ j = k ≤ N − 1.

The main idea of the previously obtained result [16] is to use the
fact that the derivatives of classical orthogonal polynomials are also
classical and, taking a derivative of adequate order, the parameters
become standard. Then, the bilinear functional B is expressed as the
sum of two bilinear forms: a discrete Bd (the fist term on the right hand
side of equation (1.4)) and a continuous Bc evaluated at the derivatives
of order N (the second term on the right hand side of equation (1.4),
with the properties:

Bd(pn, pm) = knδn,m, for n,m ∈ {0, 1, . . . , N − 1},(1.5)

Bd(pn, pm) = 0, for n ≥ N or m ≥ N,(1.6)

Bc(p
(N)
n , p(N)

m ) = knδn,m, for n,m ≥ N,

and kn > 0. Thus, the role of B in dealing with the family {pn}n≥0 is
to decompose it into two parts: for polynomials with degree < N , B
acts only through Bd; while, for polynomials of degree ≥ N , B acts
only through the part with Bc. This idea was developed in 1998 by
Álvarez de Morales, Pérez and Piñar [3], who found a general approach
which establishes the orthogonality for classical orthogonal polynomials
when the parameters are such that the three-term recurrence relation
(1.2) presents some γN = 0, or equivalently, ∆N = 0. The bilinear
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functional in [3] is defined by

(1.7) B(f, g) = Bd(f, g) +

∫
f (N)(x)g(N)(x) dν(x),

where ν is the orthogonality measure associated with the Nth deriva-
tive of the corresponding classical orthogonal polynomial, always with
classical parameters, and Bd satisfies properties (1.5)–(1.6). It is easy
to check that, with these assumptions, {pn}n∈N0 is a sequence of orthog-
onal polynomials with respect to equation (1.7), so the main problem
consists of finding a Bd satisfying equations (1.5)–(1.6).

The orthogonality of Gegenbauer polynomials C
(−N+1/2)
n for N ∈ N

(thus, γ2N = 0, or equivalently, ∆2N = 0) was established in [3]

B(f, g) = FAGt +

∫ 1

−1

f (2N)(x)g(2N)(1− x2)Ndx,

where

F = (f(1), f ′(1), . . . , f (N−1)(1), f(−1), f ′(−1), . . . , f (N−1)(−1)),

and G is defined analogously. Since C
(−N+1/2)
2N = const (x2 − 1)N ,

property (1.6) is guaranteed and A is a symmetric positive definite
matrix such that equation (1.5) holds. In the same way, the orthog-

onality of Jacobi polynomials P
(−N,β)
n with β a non-negative integer

(thus, γN = 0 and ∆N = 0) [2] is

B(f, g) = FAGt +

∫ 1

−1

f (N)(x)g(N)(x)(1 + x)β+Ndx,

with
F = (f(1), f ′(1), . . . , f (N−1)(1)),

since P
(−N,β)
N = const (x− 1)N .

In [2, 3], matrix A is proven to exist, and it can be constructed
using the arguments of the proofs therein. We show a slightly different
construction of A, or equivalently, of Bd, for the case of γN = ∆N = 0
by using some ideas from [17]. This is valid for general orthogonal
(not necessarily classical) polynomials, too. The first step is to define
Bd via equation (1.5) in PN−1, the space of polynomials of degree
less than or equal to N − 1, with arbitrary positive constants kn.
This can be done because the polynomials {p0, p1, . . . , pN−1} form a
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basis of PN−1, and then, the Gram matrix of Bd in this basis is a
diagonal matrix K with entries k0, . . . , kN−1. The second step is, see
[17], to consider the basis of PN−1 composed of the basic Lagrange
interpolation polynomials associated with the roots of pN , taking into
account their multiplicities. Thus, Bd in PN−1 can be written as

(1.8) Bd(f, g) = FQKQtGt,

where Q is a nonsingular matrix and F and G denote the vectors
whose entries are the evaluations of f and g as well as possibly its
derivatives at the roots of pN according to their multiplicities (and,
hence, A = QKQt). The entries of the matrixQ−1 are the polynomials
p0, . . . , pN−1 and possibly their derivatives evaluated at the roots of
pN , which are known. Thus, Q is computed as the inverse of a known
matrix. Finally, Bd is considered as the extension of Bd to P, the
space of all polynomials (and even to the space of functions with
bounded derivatives at the roots of pN ), via the representation (1.8).
With this definition, Bd satisfies the conditions (1.5) by construction.
Condition (1.6) holds since γN = 0 implies that pN is a common factor
of any pn with n ≥ N (this fact could be obtained from the sequence
of moments as well, see [10]). The approach described here has also
been used for little q-Laguerre polynomials [18], big and little q-Jacobi
polynomials [19] and continuous q-Jacobi polynomials [21].

This orthogonality was one of the reasons (among others as in [13])
that motivated the study of orthogonal polynomials with respect to a
so called discrete-continuous Sobolev inner product, see [2]:

B(f, g) = FAGt +

∫
f (k)(x)g(k)(x) dν(x),

with A any symmetric positive definite matrix, F and G row vectors
whose entries consist of f and g, respectively, and possibly its deriva-
tives evaluated at some nodes and ν a nontrivial probability measure
(a nonatomic Borel positive measure) supported on the real line.

A different method for the discrete portion of orthogonality consists
of the use of a linear functional L , satisfying

⟨L , pnpm⟩ = δn,m, for n,m ∈ {0, 1, . . . , N − 1},(1.9)

⟨L , pnpm⟩ = 0, for n ≥ N or m ≥ N,(1.10)
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instead of the bilinear functional Bd. This method has been applied to
Racah, Hahn, dual Hahn and Krawtchouk polynomials [7], where the
functional L was previously known from the literature, and to Askey-
Wilson, big q-Jacobi, dual q-Hahn, big q-Laguerre, q-Meixner and little
q-Jacobi [8], where L was also obtained from the literature and the
relations between these families and their finite analogues (q-Racah,
q-Hahn, continuous dual q-Hahn, affine q-Krawtchouk, quantum q-
Krawtchouk and q-Krawtchouk, respectively). In all of these cases L
was defined through a discrete measure supported on a finite amount
of nodes and properties (1.9)–(1.10) were clearly satisfied.

Let us comment in regards to the manner of construction of L .
Functional L is a moment functional. The relations among a given
sequence of moments, orthogonal polynomials with respect to the asso-
ciated moment functional and the search of the largest space containing
P in which the linear functional given by the moments can be defined,
have been classically studied. In particular, moment functionals associ-
ated with classical orthogonal polynomials were studied in [22], where
they are expressed as

L =
∞∑

n=0

(−1)nµn

n!
δ(n),

and, as usual,
⟨δ(n), f⟩ = (−1)nf (n)(0),

which gives a representation of L using the moments as initial data
for its construction.

Normalization of the moments would be necessary in our cases. For

instance, for Laguerre polynomials, L
(α)
n , the moments are usually

considered to be µα
n = Γ(α + n + 1), and hence, µ−N

n is not defined
for n ∈ {0, . . . , N − 1}, but normalizing

µ̂α
n =

Γ(α+ n+ 1)

Γ(α+ 1)
= (α+ 1)n,

the moments µ̂−N
n are well defined for n ∈ N0.

Now, we shall see a different manner of illustrating the nature of L
when γN vanishes. Since we have the complete sequence of polynomials
{pn}n≥0 with deg(pn) = n, functional L can be defined in P via the
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necessary condition

(1.11) ⟨L , pn⟩ = δn,0,

and Favard’s theorem [6, Theorem 4.4] guarantees the property

⟨L , pnpm⟩ = 0, for all n,m ∈ N0 and n ̸= m,

but ⟨L , p2N ⟩ = 0 (and this is exactly the reason why L is not sub-
stantial for an orthogonality which covers all the degrees; L cannot
characterize the entire sequence of polynomials {pn}n∈N0). Further-
more, since γN = 0, using the three-term recurrence relation (1.2), it
is easy to check that pN is a factor of every pn for n ≥ N and if, in
addition, γn ̸= 0 for n < N , then L can be represented as

(1.12) ⟨L , p⟩ = C

∫
Γ

p(z) dz

pN (z)pN−1(z)
, for all p ∈ P,

where Γ is a Jordan curve such that the roots of pN lie inside Γ, the
roots of pN−1 lie outside of Γ and C ̸= 0 is a constant such that
L (1) = 1. The proof of equation (1.12) can easily be obtained using
residues and setting

pn = PpN +QpN−1 for n < N

with polynomials P,Q such that deg(Q) = N − n − 1 and deg(P ) =
N − n− 2 using (1.2), and writing pn = PpN for n ≥ N .

Formula (1.12) shows that L is essentially an interpolatory quadra-
ture formula associated with pN : let z1, . . . , zr be the roots of pN and
λ1, . . . , λr their multiplicities

(1.13) ⟨L , p⟩ =
r∑

j=1

λj−1∑
k=0

Aj,kp
(k)(zj),

with Aj,k computed using equation (1.12). Indeed, this is a type of
generalized Gaussian quadrature (it is a classical Gaussian quadrature
when all the roots of pN are simple and real and the Cotes numbers
are Aj,0 > 0). Hence, we have stated assertion (i) of the next lemma
which is a key to the forthcoming results.

Lemma 1.1. The following statements hold.
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(i) Let a family of polynomials {pn}n∈N0 with deg(pn) = n satisfy
recurrence relation (1.2) with γn ̸= 0 for 1 ≤ n ≤ N − 1 and
γN = 0. Then L defined as (1.11) can be represented as the
quadrature formula (1.13) associated to the orthogonal polynomial
pN .

(ii) Let a sequence {µn}n≥0 of real numbers be such that ∆n ̸= 0 for
0 ≤ n ≤ N − 1, ∆N = 0. Consider L the associated moment
functional. If there exists a family of polynomials {pn}n∈N0 with
deg pn = n such that

⟨L , pnpm⟩ = 0, for all n,m ∈ N0, n ̸= m,

then L can be represented as the quadrature formula (1.13) asso-
ciated to the orthogonal polynomial pN .

In particular, L can be defined in any space of functions with
bounded derivatives at the roots of pN .

Assertion (ii) can be easily proved by taking into account that a
recurrence relation (1.2) also holds for n < N and that pN is a factor
for all pn with n ≥ N as well (expand the remainder of pn divided by
pN in the basis {p0, . . . , pN−1} and prove that all the coefficients vanish
due to ⟨L , pNp⟩ = 0 for any polynomial p and ⟨L , p2n⟩ ̸= 0 for n < N).
Then (ii) follows using the same arguments as those for (i).

Let us compare both methods:

• The use of Bd allows us to take the discrete part of the orthog-
onality positive semidefinite, since this property is controlled with the
positivity of the coefficients kn. However, L is positive semidefinite if
and only if γn > 0 for n = 1, . . . , N − 1.

• The bilinear functional Bd is not of Hankel type (i.e., Bd(xf, g) ̸=
Bd(f, xg) so the matrix of moments is not Hankel) unless the coeffi-
cients kn are chosen such that kn = kn−1γn. This means, for instance,
that, with a different choice of the coefficients kn, the bilinear func-
tional does not directly reveal the structure given by the three-term
recurrence relation. But, if some γn with n ≤ N − 1 is not positive,
then the semidefinite positivity is incompatible with the Hankel prop-
erty. Furthermore, Bd is chosen to be of Hankel type; therefore, it can
be represented as

Bd(·, ·) = const ⟨L , · × ·⟩.
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• Since the matrix Q in equation (1.8) is computed as an inverse
matrix, Bd is not totally explicit. The only exception is when all the
roots of pN are simple, which implies that, with suitable normalization,
Q can be chosen as an orthogonal matrix. However, usually L is totally
explicit.

• The method with Bd can be used even when some γn = 0 for
n < N . However, the method with L is applicable when N = min{n :
γn = 0} although an alternative using more than two linear functionals
is common [8] when {n : γn = 0} has more than one element.

Thus, if γn > 0 for n = 1, . . . , N − 1 or we are interested in the Hankel
property for the discrete part, the method with the linear functional
is adequate. However, if γn for n < N is not positive, and we are
interested in inner products, the method with the bilinear functional
should be chosen although the matrix Q is not explicit.

In this paper, we obtain for the Laguerre L
(−N)
n an explicit expres-

sion for the linear functional L (Section 2), Jacobi P
(−N,β)
n (Section 3)

and Gegenbauer polynomials C
(−N+1/2)
n (Section 4) based on equa-

tion (1.12). Also, we consider an alternative form for the bilinear func-
tional

Bd(f, g) =
N−1∑
n=0

kn⟨L , pnf⟩⟨L , png⟩,

which provides new expressions for orthogonalities of the polynomials
under consideration. These expressions are simpler than those existent
in the literature for the case of Laguerre polynomials, and they are
totally explicit in the case of Jacobi and Gegenbauer polynomials.

2. Orthogonality for Laguerre L
(−N)
n . The Laguerre polynomi-

als L
(−N)
n can be defined as

L(−N)
n (x) =

(−N + 1)n
n!

1F1

(
−n

−N + 1

∣∣∣∣ x

)
,

for all n ∈ N. Those which are monic,

L̂(−N)
n (x) = n!(−1)nL(−N)

n (x),

satisfy the recurrence relation

xL̂(−N)
n (x) = L̂

(−N)
n+1 (x) + (2n−N + 1)L̂(−N)

n (x) + n(n−N)L̂−N
n−1(x),
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so {n : γn = 0} = {N} and the functional L is defined in P as the

quadrature rule associated with L̂
(−N)
N (x) = xN , i.e.,

⟨L , f⟩ =
N−1∑
j=0

Ajf
(j)(0),

for coefficients Aj . The following lemma shows that the orthogonality
conditions of the family

{L(−N)
n : n = 0, . . . , N − 1}

reside in the series coefficients of L
(−N)
n e−z at z = 0, which is the

essence of all the possible representations of L .

Lemma 2.1.

L(−N)
n (z) z−Ne−z =

N∑
j=n+1

(−1)N−j(−j + 1)n
n!(N − j)!

1

zj
+ an entire function.

Proof. Multiplying the hypergeometric representation for L
(−N)
n and

the Laurent series for z−Ne−z at z = 0, one obtains

L(−N)
n (z) z−Ne−z =

N∑
j=1

Bn,j
1

zj
+ entire function,

with

Bn,j =
1

n!

min{N−j,n}∑
k=0

(−n)k(−N + 1 + k)n−k

k!

(−1)N−k−j

(N − k − j)!
.

Standard computations yield

Bn,j =
(−1)N−j

n!

(−N + 1)n
(N − j)!

2F1

(
−n, −N + j

−N + 1

∣∣∣∣ 1

)
=

(−1)N−j

n!

(−j + 1)n
(N − j)!

.

Finally, the lemma is proved taking into account that Bn,j = 0 for
j = 1, . . . , n. �
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The first consequence of Lemma 2.1 are the representations for the
linear functional L .

Corollary 2.2. The following representations for L hold :

⟨L , f⟩ = (−1)N−1(N − 1)!

2πi

∫
Γ

f(z) z−Ne−zdz

= (−1)N−1 dN−1

dzN−1

∣∣∣∣
z=0

(f(z)e−z)

=
N−1∑
j=0

(−1)j
(
N − 1

j

)
f (j)(0),

where Γ is any (simple and closed) Jordan curve surrounding the origin,
in particular, the unit circle.

The main result of this section is the next theorem.

Theorem 2.3. Laguerre polynomials L
(−N)
n for all degrees n ∈ N0 are

orthogonal with respect to:

(i) The bilinear functional

B(f, g) =

N−1∑
j=0

(−1)j
(
N − 1

j

)
(fg)(j)(0) +

∫ +∞

0

f (N)(x)g(N)(x)e−x dx.

(ii) The inner product

B(f, g) = FBKBtGt +

∫ +∞

0

f (N)(x)g(N)(x)e−xdx,

where F = (f(0), f ′(0), . . . , f (N−1)(0)) and analogously for G, K
is an arbitrary diagonal positive definite matrix and

B = (bj,n)
N−1
j,n=0, bj,n = (−1)j

(
N − 1

j

)
(−j)n
n!

.

In particular, if K = I, then

BKBt = (ai,j)
N−1
i,j=0, ai,j = (−1)i+j

(
N − 1

i

)(
N − 1

j

)(
i+ j

i

)
,
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Proof. The orthogonality given in (i) is a direct consequence of
Corollary 2.2 and the results in Section 1.

Now consider the inner product given by
(2.1)

B(f, g) =
N−1∑
n=0

knL (fL(−N)
n )L (gL(−N)

n ) +

∫ +∞

0

f (N)(x)g(N)(x)e−xdx,

with kn > 0. Using, for instance, the integral representation for L and
Lemma 2.1, it is not difficult to obtain

⟨L , L(−N)
n f⟩ =

N−1∑
j=n

(−1)j
(
N − 1

j

)
(−j)n
n!

f (j)(0).

Hence, FBKBtGt is the matrix representation of the first term on
the right hand side of equation (2.1) with K the diagonal matrix with
entries k0, . . . , kN−1.

If the coefficients kn are chosen such that kn = 1, then

ai,j =
N−1∑
n=0

bi,nbj,n = (−1)i+j

(
N − 1

i

)(
N − 1

j

)(
i+ j

i

)
. �

3. Orthogonality for Jacobi P
(−N,β)
n . In this section, we consider

the Jacobi polynomials P
(−N,β)
n with β /∈ Z− (this condition ensures

that deg(pn) = n and that these polynomials are not Gegenbauer
polynomials). These polynomials can be defined for all degrees through
the hypergeometric representation

P (−N,β)
n (x) =

(−N + 1)n
n!

2F1

(
−n, n−N + β + 1

−N + 1

∣∣∣∣ 1− x

2

)
,

and the monic P̂
(−N,β)
n to satisfy the recurrence relation

xP̂ (−N,β)
n = P̂

(−N,β)
n+1 +

β2 −N2

(2n−N + β)(2n−N + β + 2)
P̂ (−N,β)
n

+
4n(n−N)(n+ β)(n−N + β)

(2n−N+β−1)(2n−N+β)2(2n−N+β+1)
P̂

(−N,β)
n−1 ;
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thus, γN is the unique vanishing coefficient γn, and L is defined in P
as

⟨L , p⟩ =
N−1∑
j=0

Ajp
(j)(1),

for some Aj , since P̂
(−N,β)
N (x) = (x− 1)N .

Lemma 3.1.

P (−N,β)
n (1−z)−N (1+z)β =

N∑
j=n+1

2β(−1)j(−j+1)n(−β−n)N−j

2N−jn!(N−j)!

1

(z−1)j

+ an analytic function at 1.

Proof. Multiplying the hypergeometric representation for P
(−N,β)
n

and the Laurent series for (1− z)−N (1 + z)β at z = 1, one obtains

P (−N,β)
n (z)(1−z)−N (1+z)β=

N∑
j=1

Bn,j
1

(z−1)j
+ analytic function at 1,

with

Bn,j =

min{N−j,n}∑
k=0

(−N + 1)n
n!

(−n)k(n−N + β + 1)k(−1)k

(−N + 1)kk!2k

× 2β(−1)N (−1)N−j−k(−β)N−j−k

(N − j − k)!2N−j−k
.

Standard computations yield, see, for instance, [11, page 66] for the
summation of the 3F2 series,

Bn,j =
(−1)j2β(−N + 1)n(−β)N−j

2N−jn!(N − j)!

× 3F2

(
−n, n−N + β + 1, −N + j

−N + 1, β −N + j + 1

∣∣∣∣ 1

)
=

2β(−1)j(−j + 1)n(−β − n)N−j

2N−jn!(N − j)!
,

and Bn,j vanishes for j ≤ n. �
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Corollary 3.2. The following representations for L hold :

⟨L , f⟩ = −2N−1−β(N − 1)!

(−β)N−12πi

∫
Γ

f(z)(1 + z)β

(1− z)N
dz

=
(−1)N−12N−1−β

(−β)N−1

dN−1

dzN−1

∣∣∣∣
z=1

f(z)(1 + z)β

=
N−1∑
j=0

(
N − 1

j

)
2j

(β −N + 2)j
f (j)(1),

where Γ is any Jordan curve in C\(−∞,−1] surrounding 1 (for instance
a circle around 1 with radius lower than 2).

Theorem 3.3. Jacobi polynomials P
(−N,β)
n with β /∈ Z− are orthogonal

with respect to:

(i) the bilinear functional

B(f, g) =
N−1∑
j=0

(
N − 1

j

)
2j

(β −N + 2)j
(fg)(j)(1)

+

∫ 1

−1

f (N)(x)g(N)(x)(1 + x)β+Ndx.

(ii) The inner product

B(f, g) = FBKBtGt +

∫ 1

−1

f (N)(x)g(N)(x)(1 + x)β+Ndx,

with F = (f(1), f ′(1), . . . , f (N−1)(1)) and analogously for G, K
is an arbitrary diagonal positive definite matrix and

B = (bj,n)
N−1
j,n=0, bj,n =

(
N − 1

j

)
(−2)j(−j)n(−β − n)N−1−j

(−β)N−1n!
.

In particular, if K = I then BKBt = (ai,j)
N−1
i,j=0, with

ai,j =
2i+j

(β −N + 2)i(β −N + 2)j

(
N − 1

i

)(
N − 1

j

)
× 4F3

(
−i, −j, β + 1, β + 1

1, β −N + 2 + i, β −N + 2 + j

∣∣∣∣ 1

)
.
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Proof. We focus our attention only on (ii). Consider the inner
product

(3.1)

B(f, g) =

N−1∑
n=0

kn⟨L , fP (−N,β)
n ⟩⟨L , gP (−N,β)

n ⟩

+

∫ 1

−1

f (N)(x)g(N)(x)(1 + x)β+Ndx,

with kn > 0. Using Lemma 3.1,

⟨L , P (−N,β)
n f⟩

=
1

(−β)N−1n!

N−1∑
j=n

(
N − 1

j

)
(−2)j(−j)n(−β − n)N−1−jf

(j)(1).

Hence, FBKBtGt is the matrix representation for the first term of
the right hand side of equation (3.1) with K the diagonal matrix with
entries k0, k1, . . . , kN−1. Finally, the expression for coefficients ai,j is
obtained using

ai,j =
N−1∑
n=0

bi,nbj,n,

and standard computation. �

4. Orthogonality for Gegenbauer C
(−N+1/2)
n . The Gegenbauer

polynomials C
(−N+1/2)
n are defined for all n ∈ N as

C(−N+1/2)
n (x) =

(−2N + 1)n
n!

2F1

(
−n, n− 2N + 1

−N + 1

∣∣∣∣ 1− x

2

)
,

since the numerators n − 2N + 1 and (−2N + 1)n compensate the
denominator −N + 1 for N ≤ n ≤ 2N − 1 and n ≥ 2N , respectively.
Those which are monic satisfy the three-term recurrence relation

xĈ(−N+1/2)
n (x) = Ĉ

(−N+1/2)
n+1 (x)

+
n(n− 2N)

(2n− 2N − 1)(2n− 2N + 1)
Ĉ

(−N+1/2)
n−1 (x).

Thus, γ2N is the unique coefficient γn which vanishes. Taking into

account the symmetry and the relation Ĉ
(−N+1/2)
2N = (x2−1)N , L can
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be defined in P as

⟨L , f⟩ =
N−1∑
j=0

Aj(f
(j)(1) + (−1)jf (j)(−1)),

with some coefficients Aj .

Lemma 4.1. For n ∈ {0, 1, . . . , 2N − 1},

C(−N+1/2)
n (z)(1− z2)−N

=

N∑
j=m+1

(−2N + 1)m(N)N−j(−j + 1)m
(−2)2N−jm!(N − j)!(−2N + 1 + j)m

(
χn

(z − 1)j
+
(−1)m+j

(z + 1)j

)
+ an entire function,

where m = min{n, 2N − 1− n} and

χn =

{
1 for 0 ≤ n ≤ N − 1

−1 for N ≤ n ≤ 2N − 1.

Proof. Multiplying the hypergeometric representation for C
(−N+1/2)
n

and the Laurent series of (1− z2)−N at z = 1, one obtains

C(−N+1/2)
n (z)(1− z2)−N =

N∑
j=1

Bn,j
1

(z − 1)j
+ analytic function at 1,

with

Bn,j =

min{N−j,n}∑
k=0

(−2N + 1)n
n!

(−n)k(n− 2N + 1)k(−1)k

(−N + 1)kk!2k

× (N)N−j−k

(−2)N (N − j − k)!(−2)N−j−k
.

By using standard computations, we can give Bn,j as the Saalschützian
hypergeometric series (see, for instance, [11, page 66])

Bn,j =
(−2N + 1)n(N)N−j

n!(−2)2N−j(N − j)!
3F2

(
−n, −N + j, n− 2N + 1
−N + 1, −2N + j + 1

∣∣∣∣ 1

)
,
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which is expressed for n < N as

Bn,j =
(−2N + 1)n(N)N−j(−j + 1)n

(−2)2N−jn!(N − j)!(−2N + 1 + j)n
,

and, for N ≤ n ≤ 2N − 1, as

Bn,j =
−(−2N + 1)2N−1−n(N)N−j(−j + 1)2N−1−n

(−2)2N−j(2N − 1− n)!(N − j)!(−2N + 1 + j)2N−1−n
.

Note that Bn,j vanishes for j ≤ min{n, 2N−1−n}. Finally, Lemma 4.1
is proved by considering the singular part at z = −1 using the
symmetry. �

Corollary 4.2. The following representations hold for L :

⟨L , f⟩ = (N − 1)!(−2)2N−1

(N)N−14πi

∫
Γ

f(z)(1− z2)−Ndz

=
(−2)2N−1

(N)N−12

(
(−1)N

dN−1

dzN−1

∣∣∣∣
z=1

f(z)(1 + z)−N

− dN−1

dzN−1

∣∣∣∣
z=−1

f(z)(1− z)−N

)

=
N−1∑
j=0

(
N − 1

j

)
2j−1

(−2N + 2)j
(f (j)(1) + (−1)jf (j)(−1)),

where Γ is a contour composed by two circles of radius lower than 2,
one of which surrounds z = 1 in the counterclockwise direction and the
other z = −1 in the clockwise direction.

Theorem 4.3. The Gegenbauer polynomials C
(−N+1/2)
n are orthogonal

with respect to:

(i) The bilinear functional

B(f, g) =

N−1∑
j=0

(
N − 1

j

)
2j−1

(−2N + 2)j
((fg)(j)(1) + (−1)j(fg)(j)(−1))

(4.1)

+

∫ 1

−1

f (2N)(x)g(2N)(x)(1− x2)Ndx.
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(ii) The inner product

(4.2) B(f, g) = FBKBtGt +

∫ 1

−1

f (2N)(x)g(2N)(x)(1− x2)Ndx,

with F = (f(1), f ′(1), . . . , f (N−1)(1), f(−1), f ′(−1), . . . , f (N−1)

(−1)) and analogously for G, K is an arbitrary diagonal positive

definite matrix and B = (bj,n)
2N−1
j,n=0 ,

bj,n =


(
N−1
j

) 2j−1(−j)n(−2N+1)n
n!(−2N+2)j(−2N+2+j)n

if 0≤j≤N − 1, 0≤n≤N−1,

−bj,2N−1−n if 0≤j≤N−1, N≤n≤2N−1,

bj−N,n(−1)n+j if N≤j≤2N−1.

In particular, if K = I, then BKBt = (ai,j)
2N−1
i,j=0 with

ai,j =

(
N − 1

i

)(
N − 1

j

)
2i+j−1

(−2N + 2)i(−2N + 2)j

× 4F3

(
−i,−j,−2N + 1,−2N + 1
1,−2N + 2 + i,−2N + 2 + j

∣∣∣∣ 1

)
,

for i, j ∈ {0, 1, . . . , N − 1} and

ai,j =



0 if i ∈ {N,N + 1, . . . , 2N − 1},
j ∈ {0, 1, . . . , N − 1},

0 if i ∈ {0, 1, . . . , N − 1},
j ∈ {N,N + 1, . . . , 2N − 1}

(−1)i+jai−N,j−N if i, j ∈ {N,N + 1, . . . , 2N − 1}.

Proof. We focus our attention only on (ii). Consider the inner
product

(4.3)

B(f, g) =

N−1∑
n=0

kn⟨L , fC(−N+1/2)
n ⟩⟨L , gC(−N+1/2)

n ⟩

+

∫ 1

−1

f (2N)(x)g(2N)(x)(1− x2)Ndx,
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with kn > 0. Using Lemma 4.1,

⟨L , C(−N+1/2)
n f⟩

=
N−1∑
j=m

(
N − 1

j

)
2j−1(−j)m(−2N + 1)m

m!(−2N + 2)j(−2N + 2 + j)m

(χnf
(j)(1) + (−1)m+jf (j)(−1)).

Hence, FBKBtGt is the matrix representation for the first term of
the right hand side of equation (4.3) with K the diagonal matrix
with entries k0, k1, . . . , kN−1. Finally, the expression for coefficient ai,j
follows from

ai,j =
2N−1∑
n=0

bi,nbj,n

and standard computations. �

Remark 4.4. The continuous part of the inner product in equa-
tion (4.2) can be replaced by

BM
c (f (M), g(M)) =

∫ 1

−1

f (M)(x)g(M)(x)(1− x2)−N+Mdx,

with M any integer in {N, . . . , 2N} since the Mth derivative of

C
(−N+1/2)
n is a Gegenbauer polynomial with standard parameter, and,

with such a replacement, equation (1.3) is satisfied:

• if n < M , then B(pn, pm) = Bd(pn, pm) = knδn,m.
• If n ∈ {M, . . . , 2N − 1} and m ̸= n, then

B(pn, pm) = Bd(pn, pm) + BM
c (p(M)

n , p(M)
m ) = 0,

but

B(pn, pn) = Bd(pn, pn) + BM
c (p(M)

n , p(M)
n ) > 0.

• If n ≥ 2N , then

B(pn, pm) = BM
c (p(M)

n , p(M)
m ) = knδn,m.

Note that a replacement cannot be made in equation (4.1) since the
property B(pn, pn) ̸= 0 was not guaranteed for n ∈ {M, . . . , 2N − 1}.
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