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WEIGHTED BERGMAN KERNEL FUNCTIONS
ASSOCIATED TO MEROMORPHIC FUNCTIONS

ROBERT JACOBSON

ABSTRACT. We present a technique for computing ex-
plicit, concrete formulas for the weighted Bergman kernel on
a planar domain with modulus squared weight of a mero-
morphic function in the case that the meromorphic function
has a finite number of zeros on the domain and a concrete
formula for the unweighted kernel is known. We apply this
theory to the study of the Lu Qi-keng problem.

1. Introduction. The Bergman kernel function has been called a
cornerstone of geometric function theory [10] and is the object of con-
siderable study in complex analysis. The problems of computing ex-
plicit formulas for this function and determining its zero set are clas-
sical in complex analysis. Domains for which the associated Bergman
kernel is zero-free are called Lu Qi-keng domains, and the problem of
determining which domains are Lu Qi-keng is known as the Lu Qi-
keng problem. This problem is of interest in the study of Bergman
representative coordinates which require the kernel to be zero-free (see,
[7, 8]). The Lu Qi-keng problem for smooth planar domains has been
solved [14], but a solution for higher dimensions is not yet known [2].
The property of having a zero-free kernel is also a biholomorphic invari-
ant and hence may be used to distinguish biholomorphic equivalence
classes.

The main result of this paper is Theorem 3.1, which allows writing
certain weighted Bergman kernels on the plane in terms of other
weighted Bergman kernels with simpler weights. One consequence
of this theorem is that, if one has an explicit, concrete formula for
an unweighted kernel, then one can compute an explicit, concrete
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formula for the weighted kernel whenever the weight is the modulus
squared of a meromorphic function with finitely many zeros on the
associated domain. By the well-known technique of Theorem 2.1,
weighted kernels for domains on the plane are related to unweighted
kernels for domains in C2. Thus, the results presented here that are
specific to complex dimension 1 have relevance to the classical problems
of the first paragraph, in particular the Lu Qi-keng problem, in complex
dimension 2. With the two-dimensional Lu Qi-keng problem in mind
we study the zero sets of weighted kernels in Section 4.

The Bergman kernel for a domain Ω ⊂ C is the unique skew-
symmetric sesqui-holomorphic1 function KΩ : Ω × Ω → C with the
reproducing property

(1.1)

f(z) = ⟨f,KΩ(·, z)⟩

=

∫
Ω

f(w)KΩ(z, w) dVw for all f ∈ A2(Ω),

where dVw is the real 2n-dimensional Lebesgue volume (or area) mea-
sure, and A2(Ω) is the Hilbert space of square-integrable holomorphic
functions on Ω, called the Bergman space. (When the domain is clear,
we will omit it from the superscript of K.) Equivalently, if {ϕj}∞j=0 is

an orthonormal Hilbert space basis for A2(Ω), then the Bergman kernel
function KΩ(z, w) is given by

(1.2) KΩ(z, w) :=
∞∑
j=0

ϕj(z)ϕj(w).

Also of present interest is the weighted Bergman kernel with respect
to a weight φ, which we denote KΩ

φ (z, w). Here a weight φ is a
measurable real-valued function φ : Ω → [0,∞]. (Further assumptions
on φ will be specified as needed.) Replacing the inner product in
equation (1.1) with the weighted inner product

⟨f, g⟩φ :=

∫
Ω

f(w)g(w)φ(w) dVw,

KΩ
φ (z, w) is the unique reproducing kernel for the weighted Bergman

space
A2
φ(Ω) = {f | ⟨f, f⟩φ <∞ and f holomorphic}.
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The details of this classical theory may be found in many texts on
complex analysis, for example, in [1, 9].

2. Preliminary theory. To study the Lu Qi-keng problem in
higher dimensions, we would like concrete examples of kernels on do-
mains in n-dimensional complex space, but, obtaining a closed-form
formula for the kernel from (1.2) is possible only for domains with a
high degree of symmetry. There are, however, several techniques for
relating the kernel of one domain to the kernel of another domain of
different complex dimension (see [3]). We shall make crucial use of the
following known result.

Theorem 2.1. Let D be a bounded domain in C, let ψ be a weight
function on D, and let Ω be defined by

Ω := {(z, w) ∈ C2 | z ∈ D, |w| < ψ(z)} ⊂ C2.

Then KD
πψ2(z, w) ≡ KΩ((z, 0), (w, 0)).

The idea behind Theorem 2.1 appears in the literature in various
forms. It is essentially [11, Corollary 2.1], in which Ligocka, gener-
alizing an idea found in a proof due to Forelli and Rudin [5], calls
the Forelli-Rudin construction. The term Forelli-Rudin construction
appears elsewhere in subsequent literature in reference to similar tech-
niques. Such techniques are surveyed in [3].

Our primary goal is to express a weighted kernel in terms of another
weighted kernel that is in some sense simpler than the first. The next
theorem is the simplest case of such a theorem and is fundamental to
the rest of the theory.

Theorem 2.2. Let Ω ⊂ Cn, let Kφ(z, w) be the weighted Bergman ker-
nel on Ω with respect to a weight function φ, and let g be holomorphic on
Ω. Suppose that, after possibly removing singularities, Kφ(z, w)/g(z)
is holomorphic in z. Then

Kφ·|g|2(z, w) =
Kφ(z, w)

g(z)g(w)
.
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Proof. The weight φ plays no role in the following argument, so, for
simplicity of notation, we suppress the subscript φ in the calculation.
We have that∫

Ω

∣∣∣∣K(z, w)

g(z)

∣∣∣∣2|g(z)|2 dVz = ∥K(·, w)∥2 <∞,

so

(2.1)
K(z, w)

g(z)
∈ A2

|g|2(Ω) (as a function of z).

Also, ∫
Ω

|K|g|2(z, w)|2|g(z)|2 dVz =
∥∥K|g|2(·, w)

∥∥2
|g|2 <∞.

so

(2.2) K|g|2(z, w)g(z) ∈ A2(Ω) (as a function of z).

By equation (2.1) and the reproducing property of K|g|2(z, w), we have

K(z, w)

g(z)
=

∫
Ω

K(ζ, w)

g(ζ)
K|g|2(z, ζ)|g(ζ)|2 dVζ

=

∫
Ω

K(ζ, w)K|g|2(z, ζ)g(ζ) dVζ

=

∫
Ω

K(w, ζ)K|g|2(ζ, z)g(ζ) dVζ .

By equation (2.2) and the reproducing property of the kernel K(z, w),
this last expression is

K|g|2(w, z)g(w) = g(w)K|g|2(z, w).

We have shown that

K(z, w)

g(z)
= g(w)K|g|2(z, w),

from which the theorem follows. �

Theorem 2.2 and the ancillary Theorem 4.9 are the only multidi-
mensional theorems in this paper. The other results are specific to
domains of dimension 1. As described above, the one-dimensional re-
sults, together with Theorem 2.1, can be used to study domains in
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higher dimensions. Indeed, Theorem 2.2 provides a recipe, illustrated
by Example 2.3, for constructing non Lu Qi-keng domains in C2. The
technique of this example, though elementary, appears to be absent
from the literature.

Example 2.3. Let c be a point in the open unit disk D, and define
ψ(z) := (

√
π|z − c|)−1 and

Ω :=
{
(z, w) ∈ C2 | z ∈ D, |w| < ψ(z)

}
⊂ C2.

Applying Theorem 2.1 to this Ω, we have

KD
|z−c|−2(z, w) = KΩ((z, 0), (w, 0)).

On the other hand, applying Theorem 2.2 to Ω′ := D, φ(z) := |z− c|−2

and g(z) = z − c gives

KD
|z−c|−2(z, w) = (z − c)KD(z, w)(w − c).

Of course, all of the hypotheses of Theorem 2.2 need to be satisfied.
The claim is that KD

|z−c|−2(z, w) must have a zero at z = c. Indeed,

since
∥KD

|z−c|−2(·, w)∥φ <∞,

the function (z − c)−1KD
|z−c|−2(z, w) has a removable singularity at

z = c, cf., Theorem 3.3 and Remark 3.5. Since (z − c)KD(z, w)(w − c)
clearly has zeros whenever z = c or w = c, Ω is not Lu Qi-keng.

The domain in Example 2.3 is an unbounded domain, but a bounded
non Lu Qi-keng domain can be obtained via Ramanadov’s theorem
together with Hurwitz’s theorem.

Our goal is now to obtain a formula for a weighted kernel explicitly
in terms of the unweighted kernel when the weight is the modulus
squared of a meromorphic function. Theorem 2.2 allows us to handle
the poles: the poles appear as zeros of the same order in the formula
for the weighted kernel given by Theorem 2.2. On the other hand,
any zeros of the meromorphic function associated to the weight clearly
cannot appear as poles in the formula for the weighted kernel since the
kernel is holomorphic.
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3. Decomposition theorems. Theorem 2.2 needs modification in
the case where the meromorphic function in the weight vanishes. The
goal of this section is to show how to accomplish this modification in
dimension 1. For a general planar domain Ω and holomorphic function
f , we are able to express KΩ

|f |2(z, w) in terms of the kernel associated to

a “simpler” weight function and the basis functions for the orthogonal
complement of A2

|f |2(Ω) in a larger space of functions; when φ is both

bounded and bounded away from zero near c, the normalized function

KΩ
φ (z, c)

(z − c)
√
KΩ
φ (c, c)

turns out to span the orthogonal complement of

A2
|z−c|2φ(z)(Ω)

in
A2

|z−c|2φ(z)(Ω \ {c}).

Theorem 3.1. Let Ω ⊂ C be a domain, c ∈ Ω, and let φ be a weight
on Ω which is bounded in a neighborhood of c. Then

(3.1) KΩ
|z−c|2φ(z, w) =

KΩ
φ (z, w)

(z − c)(w − c)
−

KΩ
φ (z, c)K

Ω
φ (c, w)

(z − c)(w − c)KΩ
φ (c, c)

.

Remark 3.2. The requirement that φ be bounded in a neighborhood
of c excludes degenerate cases such as φ(z) = |z|−2 with c = 0; indeed,
this requirement makes the hypotheses of Theorem 3.1 mutually exclu-
sive of the hypotheses of Theorem 2.2 as explained in the discussion
after the proof. Apparently, the right hand side of equation (3.1) has
singularities at z = c and w = c but these are removable.

Proof. Let

ψ(z) :=
KΩ
φ (z, c)

z − c
.

Clearly,
ψ ∈ A2

|z−c|2φ(Ω \ {c}).

Our strategy is as follows:
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(1) KΩ
φ (z, w)/[(z − c)(w − c)] reproduces elements of A2

|z−c|2φ(Ω)

in A2
|z−c|2φ(Ω \ {c}).

(2) ψ(z) is orthogonal to A2
|z−c|2φ(Ω) in A2

|z−c|2φ(Ω \ {c}); as a
consequence,

(3) ψ(z) is orthogonal to KΩ
|z−c|2φ(z, w) in A

2
|z−c|2φ(Ω \ {c}).

(4) From equations (1) and (2),

Q(z, w) :=
KΩ
φ (z, w)

(z − c)(w − c)
− c0(w)ψ(z)

also reproduces elements of A2
|z−c|2φ(Ω) in A2

|z−c|2φ(Ω \ {c}),
where c0(w) is arbitrary.

(5) Setting

c0(w) := ψ(w)/KΩ
φ (c, c),

we have Q ∈ A2
|z−c|2φ(Ω); it follows from equation (4) and the

uniqueness of the Bergman kernel thatQ(z, w) ≡ KΩ
|z−c|2φ(z, w).

Once equations (1) and (2) are proven, equations (3) and (4) are
obvious.

Proof of equation (1). Let f ∈ A2
|z−c|2φ(Ω). We have

∫
Ω\{c}

f(w)
KΩ
φ (z, w)

(z − c)(w − c)
|w − c|2φ(w) dVw

=
1

z − c

∫
Ω

KΩ
φ (z, w)f(w)(w − c)φ(w) dVw

=
1

z − c
f(z)(z − c) (since f(z)(z − c) ∈ A2

φ(Ω))

= f(z).

This proves equation (1). �
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Proof of equation (2). Let f ∈ A2
|z−c|2φ(Ω). We have∫

Ω\{c}
f(w)ψ(w)|w − c|2φ(w) dVw

=

∫
Ω\{c}

f(w)
KΩ
φ (w, c)

w − c
|w − c|2φ(w) dVw

=

∫
Ω

f(w)(w − c)KΩ
φ (c, w)φ(w) dVw

= 0 (since f(z)(z − c) ∈ A2
φ(Ω)).

This proves equation (2). �
To finish the proof, observe that, for c0(w) := ψ(w)/KΩ

φ (c, c), we
have that

Q(z, w) ≡
KΩ
φ (z, w)

(z − c)(w − c)
−

KΩ
φ (z, c)K

Ω
φ (c, w)

(z − c)(w − c)KΩ
φ (c, c)

,

which has a removable singularity at z = c and w = c. Thus,
equation (5) holds, and the theorem is proven. �

One might reasonably wonder whether the hypotheses of Theorems
2.2 and 3.1 can be simultaneously satisfied, for, if so, the formally
different conclusions would need to be reconciled. Consider the case
when the domain Ω ⊂ C1, c ∈ Ω, and φ is a weight on Ω that is
bounded in a neighborhood of c. If KΩ

φ (z, w)/(z − c) is holomorphic
in z ∈ Ω, i.e. the singularity is removable, then it would appear that
we have two formally different expressions for KΩ

|z−c|2φ(z, w). Observe

that, if KΩ
φ (z, w)/(z − c) is holomorphic, then KΩ

φ (c, w) = 0 for all
w ∈ Ω; in fact, a routine calculation shows that, in this case, f(c) = 0
for all f ∈ A2

φ(Ω). Theorem 3.3 shows that this cannot happen if φ is
bounded in a neighborhood of c, and hence, the hypotheses of Theorems
2.2 and 3.1 cannot be simultaneously satisfied.

Theorem 3.3. Suppose A2
φ(Ω) is a nontrivial weighted Bergman space

for weight φ and domain Ω ⊂ C1. If, for some c ∈ Ω, f(c) = 0 for all
f ∈ A2

φ(Ω), then φ is not bounded in any neighborhood of c.

Proof. Suppose the weight φ is bounded in a neighborhood of c. The
goal is to construct a function in the weighted Bergman space that takes
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a nonzero value at c. By hypothesis, there is some nontrivial function f
in the weighted Bergman space. Since f is not identically equal to zero,
there is a least positive integer k such that the kth derivative of f at c
is nonzero.

Let g(z) denote f(z)/(z − c)k. After the removable singularity is
removed, the function g is holomorphic and has a nonzero value at c.
The claim is that g lies in the weighted Bergman space.

Observe that g is weighted square-integrable in a small neighborhood
of c, because the weight is bounded near c by hypothesis, and the
holomorphic function g is locally bounded on its domain. On the other
hand, outside a neighborhood of c, the factor (z− c)k is bounded away
from zero, so 1/(z − c)k is bounded above, whence the weighted norm
of g is bounded above by a constant times the weighted norm of f ,
which is finite by hypothesis. �

Theorem 3.1 combined with Theorem 2.2 allows one to produce an
explicit formula for KΩ

|f |2(z, w) in terms of KΩ(z, w) in the case that

f is a polynomial with zeros in Ω by just iterating the formula of
equation (3.1). In fact, Theorem 3.1 is a special case of the following
more general theorem.

Theorem 3.4. Let Ω be a planar domain, {cj}mj=1 a sequence of m
distinct points in Ω, {αj}mj=1 a sequence of positive integers and φ a
weight such that, for all j, φ is both bounded and bounded away from
zero in a neighborhood of cj. Define the following polynomials:

p(z) := (z − c1)
α1(z − c2)

α2 · · · (z − cm)αm ;

pj,k(z) := (z − c1)
α1(z − c2)

α2 · · · (z − cj−1)
αj−1(z − cj)

k,

(1 ≤ j ≤ m, 1 ≤ k ≤ αj);

qj,k(z) := p(z)/pj,k(z)

= (z − cj)
αj−k(z − cj+1)

αj+1(z − cj+2)
αj+2 · · · (z − cm)αm .

Then

KΩ
|p(z)|2φ(z, w) =

KΩ
φ (z, w)

p(z)p(w)
−

m∑
j=1

αj∑
k=1

KΩ
|qj,k|2φ(z, cj)K

Ω
|qj,k|2φ(cj , w)

pj,k(z)pj,k(w)KΩ
|qj,k|2φ(cj , cj)

.
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Remark 3.5. By the L2-version of the Riemann removable singularity
theorem [13, E.3.2], when a weight ψ is both bounded and bounded
away from zero in a neighborhood of c, then

K
Ω\{c}
ψ (z, w) ≡ KΩ

ψ (z, w).

Proof. We wish to show that the functions

ψj,k(z) :=
KΩ

|qj,k|2φ(z, cj)

pj,k(z)

form a basis for the orthogonal complement of A2
|p|2φ(Ω) in A

2
|p|2φ(Ω \

{cj}mj=1). We only prove that the ψj,k are mutually orthogonal, the
rest of the proof being an easy exercise.

For ψj0,k0 and ψj1,k1 distinct, we may assume j0 > j1 or else j0 = j1
and k0 > k1. Then

pj0,j1(z) = pj1,k1(z)(z − cj1)
αj1−k1(z − cj1+1)

αj1+1 · · · (z − cj0)
k0 ,

and

⟨ψj0,k0(z), ψj1,k1(z)⟩|p|2φ

=

∫
Ω\{cj}m

j=1

KΩ
|qj0,k0

|2φ(z, cj0)

pj0,k0(z)

KΩ
|qj1,k1

|2φ(cj1 , z)

pj1,k1(z)
|p(z)|2φ(z) dVz

=

∫
Ω

KΩ
|qj0,k0

|2φ(z, cj0)

×KΩ
|qj1,k1

|2φ(cj1 , z)(z−cj1)αj1−k1(z−cj1+1)
αj1+1 · · · (z−cj0)k0

× |qj0,k0(z)|2φ(z) dVz
= 0. �

The proof does not depend on m being finite; we can still construct
an orthonormal basis for the orthogonal complement of A2

|p|2φ(Ω) in

A2
|p|2φ(Ω \ {cj}mj=1). However, this is of limited practical value since,

in that case, Theorem 3.4 failed to give a closed form expression
for the original weighted kernel. Moreover, in practice, the simpler
Theorem 3.1 is sufficient.
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4. Zeros of weighted kernels. We now study the relationship the
zeros of these weighted kernels have to the zeros of the simpler kernels.

Theorem 4.1. Let Ω be a domain in C, let c, z0, w0 ∈ Ω, and let
φ be a weight on Ω that is bounded and bounded away from zero
in a neighborhood of c. Suppose that K|z−c|2φ(z0, w0) = 0. Then
Kφ(z0, w0) = 0 if and only if either Kφ(z0, c) = 0 or Kφ(c, w0) = 0.

Proof. By the hypothesis and Theorem 3.1,

0 =
Kφ(z0, w0)

(z0 − c)(w0 − c)
− Kφ(z0, c)Kφ(c, w0)

(z0 − c)(w0 − c)Kφ(c, c)
,

from which the theorem is evident. �

Requiring that φ be bounded and bounded away from zero in a
neighborhood of c determines the order of the zero of the weight |z −
c|2φ(c) to be 2, a fact to which there are two significant consequences.
First, as a consequence of the L2-version of the Riemann removable
singularity theorem,

KΩ
φ (z, w) ≡ KΩ\{c}

φ (z, w) on (Ω \ {c})× (Ω \ {c}).

We employ this fact in the several next theorems without comment.
Second, for zeros of higher orders in the weight, we would need to
use Theorem 3.4 rather than Theorem 3.1, which would not give the
conclusion of Theorem 4.1.

Theorem 4.1 says the value of KΩ
φ (z, w) at c affects the zero set of

KΩ
|z−c|2φ(z, w). Compare this to the case where c /∈ Ω, in which case

Theorem 2.2 says that the zero sets of both kernels coincide.

Theorem 4.1 assumes KΩ
|z−c|2φ(z, w) has a zero and then states when

KΩ
φ (z, w) has a zero. The next theorem assumes Kφ(z, w) has a zero

and then states when KΩ
|z−c|2φ(z, w) has a zero.

Theorem 4.2. Let Ω be a domain in C, let z0, c ∈ Ω with z0 ̸= c, and
let φ be a weight on Ω that is bounded and bounded away from zero in
a neighborhood of c. Suppose Kφ(z0, c) = 0. Then K|z−c|2φ(z0, w) has
a zero of order m − 1 at w = c if and only if Kφ(z0, w) has a zero of
order m at w = c.
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Proof. By Theorem 3.1,

K|z−c|2φ(z0, w) =
Kφ(z0, w)

(z0 − c)(w − c)
− Kφ(z0, c)Kφ(c, w)

(z0 − c)(w − c)Kφ(c, c)

=
1

z0 − c
· Kφ(z0, w)

w − c
.

If m is the order of the zero of Kφ(z0, w) at w = c, then this last
expression has a zero of order m− 1 at w = c. �

Theorem 4.3. Let Ω be a domain in C, let c0, c1, c2 ∈ Ω be dis-
tinct, and let φ be a weight on Ω that in some neighborhood of c0 is
bounded and bounded away from zero. Suppose either Kφ(c0, c1) = 0 or
Kφ(c0, c2) = 0. Then K|z−c0|2φ(c1, c2) = 0 if and only if Kφ(c1, c2) =
0.

Proof. By Theorem 3.1,

K|z−c0|2φ(c1, c2) =
Kφ(c1, c2)

(c1 − c0)(c2 − c0)
− Kφ(c1, c0)Kφ(c0, c2)

(c1 − c0)(c2 − c0)Kφ(c0, c0)

=
1

(c1 − c0)(c2 − c0)
·Kφ(c1, c2),

from which the theorem is evident. �

Theorem 4.4. Let Ω be a domain in C, and let φ be a weight on
Ω. Suppose that, for some c0 ∈ ∂Ω and some sequence {cj}∞j=1 in Ω
converging to c0, we have

Kφ(z, cj)

Kφ(cj , cj)
−→ 0 as j → ∞

for all fixed z ∈ Ω. Suppose also that there exist z0, w0 ∈ Ω such
that Kφ(z0, w0) = 0 and that Kφ(z, cj) is bounded away from 0 when
j is large enough and z is in a compact subset of Ω. Then, for
sufficiently large j, i.e., for cj sufficiently close to c0 ∈ ∂Ω, there exists
a z1 = z1(cj) ∈ Ω near z0 such that K|z−cj |2φ(z1, w0) = 0.

Proof. Define the following for all ζ, ω, z ∈ Ω and ε > 0:

gζ,ω(z) :=
Kφ(z, ω)

Kφ(z, ζ)
; α(ζ) := |gζ,w0(ζ)| =

∣∣∣∣Kφ(ζ, w0)

Kφ(ζ, ζ)

∣∣∣∣;
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and

B(z, ε) := {w ∈ Ω | |z − w| < ε} (the usual open ε-ball about z).

Observe that, by hypothesis, α(cj) → 0 as j → ∞. Let d :=
1
2 dist(z0, ∂Ω). Choose a j0 ∈ N so that the following hold:

(6) 1/j0 < d, and
(7) |cj − c0| < 1/j0 for all j > j0.

By (6) and the definition of d,

(8) the closed ball B (z0, 1/j0) is contained in Ω.

By hypothesis, for j large enough, Kφ(z, cj) is bounded away from zero

for z ∈ B (z0, 1/j0). Thus, for j large enough,

gcj ,w0(z) :=
Kφ(z, w0)

Kφ(z, cj)

and Kφ(z, w0) have the same zeroes on B (z0, 1/j0). So, by possibly
increasing j0, we can choose j0 large enough so that we also have

(9) B (z0, 1/j0) contains a single zero of gcj ,w0(z) when j > j0,
namely z0.

Now, choose j1 ≥ j0 such that

(10) α(cj) < 1/j0 for all j ≥ j1, and
(11)

α(cj) < inf

{
|gcj1 ,w0

(z)| | z ∈ ∂B

(
z0,

1

j0

)}
for all j ≥ j1.

Now, we argue that C0 := gcj1 ,w0(∂B (z0, 1/j0)) is a closed curve

about the origin and the point gcj1 ,w0(cj1). Since z0 is a zero of the
holomorphic function gcj1 ,w0(z) and ∂B (z0, 1/j0) is a closed curve
about z0, it follows from the argument principle of the elementary
theory of holomorphic functions that C0 is a closed curve about the
origin. Moreover,

α(cj1) < inf

{
|gcj1 ,w0(z)| | z ∈ ∂B

(
z0,

1

j0

)}
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by equation (6), and so, C0 also encloses a region containing gcj1 ,w0(cj1),
that is,

|gcj1 ,w0(cj1)| < |gcj1 ,w0(z)|

on ∂B (z0, 1/j0). By Rouché’s theorem [4, page 110], it follows that
the function gcj1 ,w0(z)− gcj1 ,w0(cj1) has a zero in B (z0, 1/j0). Hence,
for some z1 ∈ B (z0, 1/j0), we have gcj1 ,w0(z1) = gcj1 ,w0(cj1), which is
equivalent to

Kφ(z1, w0)

Kφ(z1, cj1)
=
Kφ(cj1 , w0)

Kφ(cj1 , cj1)
.

Since both |z0 − z1| < d and |c0 − cj1 | < d, it must be that z1 ̸= cj1 .
Therefore, K|z−cj1 |2φ(z1, w0) = 0. �

When c /∈ Ω, then

K|z−c|2φ(z, w) =
Kφ(z, w)

(z − c)(w − c)

by Theorem 2.2, so the zero set of K|z−c|2φ(z, w) corresponds to the
zero set of Kφ(z, w) in that case. An interpretation of Theorem 4.4
is that, for c ∈ Ω as c approaches the boundary of Ω, the zero set of
K|z−c|2φ(z, w) approaches the zero set of Kφ(z, w). The next corollary
to Theorem 4.2 does not assume that c is near the boundary of Ω,
although unlike in Theorem 4.4, we assume c is adapted to a zero of
the kernel.

Corollary 4.5 (Corollary to Theorem 4.2). Let Ω be a domain in
C, and let φ be a weight on Ω. Suppose c, w0 ∈ Ω is such that
Kφ(z, w0) has a zero of order m > 1 at z = c. Then, there exist
z1, z2, . . . , zm−1, w1 ∈ Ω with the zj near z0 and w1 near w0 such that
K|z−c|2φ(zj , w1) = 0 for j = 1, . . . ,m− 1.

Proof. Apply Hurwitz’s theorem to the conclusion of Theorem 4.2.
�
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Theorem 4.6.

(A) Suppose Ω ⊂ C is a domain, φ a weight, and {cj}∞j=1 is a
sequence in Ω converging to a point c0 ∈ ∂Ω such that, for
fixed z,

Kφ(z, cj)√
Kφ(cj , cj)

−→ 0 as j → ∞.

Suppose also that K|z−c|2φ(z0, w0) = 0 for all c ∈ Ω. Then,
either
(a) both Kφ(z0, w) ≡ 0 and K|z−c|2φ(z0, w) ≡ 0 as functions

of w for all c; or
(b) both Kφ(z, w0) ≡ 0 and K|z−c|2φ(z, w0) ≡ 0 as functions

of z for all c.
(B) For any domain Ω and weight φ, if Kφ(z, w0) ≡ 0 as a function

of z, then for all c ∈ C, K|z−c|2φ(z, w0) ≡ 0 as well.

Remark 4.7. Part (B) is similar to Theorem 4.1 and follows from
Theorem 4.1, the hypothesis that Kφ(z, w0) ≡ 0, and continuity.

Proof. We prove part (A) first. The proof of part (B) will be obvious
from the proof of part (A) and is omitted.

Let c ∈ Ω. Assume first that z0 ̸= c and w0 ̸= c. Then, by
Theorem 3.1, we must have

(4.1) Kφ(z0, w0) =
Kφ(z0, c)Kφ(c, w0)

Kφ(c, c)
.

The right hand side of equation (4.1), vanishes when we replace c
with cj and let j → ∞. Hence Kφ(z0, w0) = 0, and therefore either

Kφ(z0, c) = 0

or
Kφ(c, w0) = 0.

One of these two conditions must hold for a set of values of c having an
accumulation point, hence for all c. Assume, without loss of generality,
that Kφ(c, w0) = 0 for all c. Thus, Kφ(z, w0) ≡ 0 as a function of z.
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But, then

Kφ(z, w0) =
Kφ(z, c)Kφ(c, w0)

Kφ(c, c)
= 0 for all z,

and hence, (by Theorem 3.1) K|z−c|2φ(z, w0) ≡ 0 as a function of z. �

Since Theorems 4.4 and 4.6 have a hypothesis requiring or implied
by the condition

Kφ(z, c)√
Kφ(c, c)

−→ 0 as c→ c0 ∈ ∂Ω,

we state sufficient conditions on a domain for this limit condition to
be satisfied. Below is [6, Lemma 4.1 (2)] which is “implicit in work of
Pflug (see [8, subsection 7.6]) and Ohsawa [12] on the completeness of
the Bergman metric” according to Fu and Straube [6].

Theorem 4.8. Let Ω ⊂ Cn be a bounded pseudoconvex domain.
Suppose p0 is a point in the boundary of Ω satisfying the following
outer cone condition:

there exist r ∈ (0, 1], a ≥ 1 and a sequence {wℓ}∞ℓ=1

of points wℓ /∈ Ω with limℓ→∞ wℓ = p0 and Ω ∩
B(wℓ, r ∥wℓ − p0∥a) = ∅.

Then, for any sequence {pj}∞j=1 ⊂ Ω converging to p0,

lim
j→∞

KΩ(z, pj)√
KΩ(pj , pj)

= 0.

The outer cone condition of Theorem 4.8 is satisfied when Ω has a C1

boundary, for example. Pseudoconvexity is a central notion in several
complex variables which reduces to a triviality for domains of a single
complex dimension: every domain in the plane is pseudoconvex [9].
Because we also wish to have the conclusion of the above theorem for
certain weighted kernels, we show that the property addressed by the
theorem is preserved when the weight of a kernel is multiplied by the
modulus squared of a linear factor.
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Theorem 4.9. Suppose Ω ⊂ C is a domain, p0 ∈ ∂Ω, and {pj}∞j=1 ⊂ Ω
is a sequence with pj → p0 as j → ∞ such that

Kφ(z, pj)√
Kφ(pj , pj)

−→ 0 as j → ∞

locally uniformly. Then, for any c ∈ Ω with Kφ(c, c) ̸= 0,

K|z−c|2φ(z, pj)√
K|z−c|2φ(pj , pj)

−→ 0 as j → ∞

locally uniformly.

Proof. From Theorem 3.1, we obtain

K|z−c|2φ(z, pj)√
K|z−c|2φ(pj , pj)

=

Kφ(z, pj)Kφ(c, c)−Kφ(z, c)Kφ(c, pj)
(z−c)(pj−c)Kφ(c, c)(

Kφ(pj , pj)Kφ(c, c)−|Kφ(pj , c)|2
|pj−c|2Kφ(c, c)

)1/2

=
|pj − c|2Kφ(c, c)

1/2

(z − c)(pj − c)Kφ(c, c)
· Kφ(z, pj)Kφ(c, c)−Kφ(z, c)Kφ(c, pj)

(Kφ(pj , pj)Kφ(c, c)− |Kφ(pj , c)|2)1/2

=
(pj − c)

(z − c)Kφ(c, c)1/2
·
Kφ(z, pj)Kφ(c, c)

Kφ(pj , pj)1/2
− Kφ(z, c)Kφ(c, pj)

Kφ(pj , pj)1/2(
Kφ(c, c)− |Kφ(pj , c)|2

Kφ(pj , pj)

)1/2
.

The first factor approaches a constant as j → ∞. In the second factor,
every fraction in the numerator and the denominator approaches zero as
j → ∞ locally uniformly by hypothesis, so the second factor approaches
zero as j → ∞ locally uniformly. This proves the theorem. �

5. Further questions. Consider the (unweighted) kernel K(z, w)
for the unit disk D. By summing an appropriate orthonormal basis in
equation (2), it can be shown that, for any real α greater than −2,

K|z|α(z, w) = K(z, w) +
α

2π(1− zw)

=

(
1 +

α

2
− α

2
zw

)
K(z, w).

(The reader might verify that this formula agrees with Theorem 3.1
when α = 2p, p ∈ N.) Now let c ∈ D and p ∈ N. Using this
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formula, the classical change of variables theorem for Bergman kernels
and Theorem 2.2, one obtains

K|z−c|2p(z, w) =
K|µc|2p(z, w)

(1− cz)p(1− cw)p

= ((p+ 1)− pµc(z)µc(w))
K(z, w)

(1− cz)p(1− cw)p
.

What is the formula if p is allowed to be real, that is, what is the
formula for K|z−c|α(z, w), α ∈ R? In particular, what is the formula
when α = 1?

Generalizing the previous question, is there a technique for comput-
ing KΩ

φ (z, w) explicitly in terms of KΩ(z, w) in the case where φ is
the modulus of a meromorphic function rather than the square of the
modulus a meromorphic function? Is there such a technique when φ is
harmonic?

Acknowledgments. I thank H.P. Boas for suggesting the proof of
Theorem 3.3.

ENDNOTES

1. Sesqui-holomorphic means holomorphic in the first variable and
conjugate holomorphic in the second variable.
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