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ALMOST MULTIPLICATIVE LINEAR FUNCTIONALS
AND ENTIRE FUNCTIONS

EHSAN ANJIDANI

ABSTRACT. Let T be a unital, continuous linear func-
tional defined on complex Banach algebra A. First, we prove
an approximate version of the Gleason-Kahane-Żelazko theo-
rem: given ϵ > 0, there exists an M > 0 such that, if

T (expx) ̸= 0, x ∈ A, ∥x∥ ≤ M,

then T is ϵ-almost multiplicative. Then, we show that this
result remains true if the exponential function is replaced by
a nonsurjective entire function F with F ′(0) ̸= 0.

1. Introduction and preliminaries. Let A be a complex unital
Banach algebra with unit e. The Gleason-Kahane-Żelazko (G-K-Z)
theorem states that, if T is a unital linear functional on A such that

T (x) ̸= 0, for all x ∈ InvA,

then T is multiplicative. By taking a close look at the standard proofs
of the G-K-Z theorem, one can deduce the next, stronger result.

Theorem 1.1. If T is a unital, linear functional on A such that

T (expx) ̸= 0, for all x ∈ A,

then T is multiplicative.

There are several extensions of the G-K-Z theorem, see [6, 9, 12].
In 1987, in the direction of the extension of the G-K-Z theorem,
Arens [3] conjectured that, if F is a nonconstant entire function, then
the condition

T ◦ F (x) ̸= 0, x ∈ A,
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implies the multiplicativity of T . In 1997, Jarosz [7] proved the Arens
conjecture as follows:

Theorem 1.2. Let F be a nonconstant, entire function, let T be a
linear functional on A, and let T ◦ F : A → C be a nonsurjective
function. Then,

(i) if T (e) ̸= 0, then T/T (e) is multiplicative;
(ii) if T (e) = 0, then T = 0.

In this paper, we prove the results which can be considered as
approximate versions of Theorems 1.1 and 1.2.

A linear functional T on A is said to be ϵ-almost multiplicative if
mult(T ) ≤ ϵ, where

mult(T ) = sup{∥T (xy)− T (x)T (y)∥ : x, y ∈ A, ∥x∥ = ∥y∥ = 1}.

Such functionals have been extensively studied, see [5, 8, 10] for more
details and examples. Johnson [10] proved that a continuous linear
functional ϕ on A is almost multiplicative if

d(ϕ (a), σ(a)) < ϵ, a ∈ A, ∥a∥ = 1,

where σ(a) is the spectrum of a. This and similar results can be
considered as approximate versions of the G-K-Z theorem, see, for
example, [1, Theorem 4.2] and [11, Theorem 5]. They are concerned
with identifying the almost-multiplicative linear functionals among all
linear functionals on Banach algebra A in terms of spectra.

In Section 2, we prove the result from which all such approximate
versions of the G-K-Z theorem can be derived. This result is an
analogue of Theorem 1.1: let T be a continuous unital linear functional
on A. Given ϵ > 0, there exists an M > 0 such that, if

T (expx) ̸= 0, x ∈ A, ∥x∥ ≤M,

then T is ϵ-almost multiplicative.

In Section 3, we show that this result remains true if the exponential
function is replaced by a nonsurjective entire function F with F ′(0) ̸= 0.

Throughout this paper, let A be a complex unital Banach algebra
with unit e, and let A[r] be the closed ball in A with center 0 and radius



ALMOST MULTIPLICATIVE LINEAR FUNCTIONALS 29

r > 0. The open unit disc is denoted by D. We denote the open disc
of radius r > 0 around the origin in C by D(0, r).

2. Approximate version of the G-K-Z theorem. Our main
result in this section is given by Corollary 2.2 and may be considered
an approximate version of Theorem 1.1. First, we prove the next
theorem by a similar method to the proof of [2, Theorem 3.2] or [11,
Theorem 5].

Theorem 2.1. Let ϕ be a unital, continuous linear functional on A.
Suppose that there is an M > 0 such that M ≥ ln ∥ϕ∥ and

(2.1) ϕ (expx) ̸= 0, x ∈ A[M ].

Then,

jmult(ϕ) ≤ 1

M

(
6

ln 2
+

1

M

)
,

where

jmult(ϕ) = sup{∥ϕ (a2)− ϕ (a)2∥ : a ∈ A, ∥a∥ = 1}.

Proof. Let a ∈ A with ∥a∥ = 1. Since ϕ is continuous and linear,
the function f : C → C defined by

f(z) := ϕ (exp za) =

∞∑
n=0

ϕ (an)

n!
zn,

is entire such that, for all z ∈ C, we have

(2.2) |f(z)| ≤ ∥ϕ∥∥ exp za∥ ≤ ∥ϕ∥e|z|.

Therefore, f has growth order ≤ 1. Suppose that α1, α2, . . ., are the
zeros of f indexed with

|α1| ≤ |α2| ≤ · · · .

Using Hadamard’s factorization theorem [13], and, by the same method
as in the proof of [11, Theorem 5], we obtain

ϕ (a2)− ϕ (a)2 = −
∑
j

1

α2
j

.
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Now, let αj be a zero of f . Since f is an entire function and f(0) = 1,
by Jensen’s formula [13], we have

(2.3)
N∑

k=1

ln
2|αj |
|zk|

=
1

2π

∫ 2π

0

ln |f(2|αj |eiθ)| dθ,

where z1, . . . , zN , denote the zeros of f in the open disc of radius 2|αj |
centered at the origin. Since |αi| ≤ |αj | for every 1 ≤ i ≤ j, we obtain

(2.4) j ln 2 ≤
j∑

i=1

ln
2|αj |
|αi|

≤
N∑

k=1

ln
2|αj |
|zk|

.

Also, by equation (2.2), we have
(2.5)
1

2π

∫ 2π

0

ln |f(2|αj |eiθ)| dθ ≤
1

2π

∫ 2π

0

ln(∥ϕ∥e2|αj |) dθ = ln ∥ϕ∥+ 2|αj |.

Thus, by equations (2.3), (2.4) and (2.5), we obtain j ln 2 ≤ ln ∥ϕ∥ +
2|αj |. On the other hand, by equation (2.1), we have |αj | > M ≥ ln ∥ϕ∥.
Therefore, we obtain

j
ln 2

3
≤ |αj |, for all j.

Let k be the greatest integer less than or equal to (3/ln 2)M . Now, we
find a bound for ∣∣∣∣∑

j

1

α2
j

∣∣∣∣,
using |αj | ≥M for 1 ≤ j ≤ k, and |αj | ≥ (ln 2/3)j for j > k. Then, we
have ∣∣∣∣∑

j

1

α2
j

∣∣∣∣ ≤ k∑
j=1

1

|αj |2
+

∞∑
j=k+1

1

|αj |2

≤
k∑

j=1

1

M2
+

∞∑
j=k+1

(
3

ln 2

)2
1

j2

≤ k

M2
+

(
3

ln 2

)2(
1

(k + 1)2
+

1

k + 1

)
≤ 1

M

(
6

ln 2
+

1

M

)
.



ALMOST MULTIPLICATIVE LINEAR FUNCTIONALS 31

Thus,

|ϕ (a2)− ϕ (a)2| ≤ 1

M

(
6

ln 2
+

1

M

)
,

for all a ∈ A with ∥a∥ = 1. Therefore, we obtain

jmult(ϕ) ≤ 1

M

(
6

ln 2
+

1

M

)
. �

Corollary 2.2. For each ϵ, k > 0, there exists an M > 0 such that, if
T is a unital, continuous linear functional on A with ∥T∥ < k and

T (expx) ̸= 0, x ∈ A[M ],

then T is ϵ-multiplicative.

Proof. Let ϵ > 0 and k > 0. By [1, Corollary 3.6], there is a δ > 0
such that, if ϕ is a linear functional on A with jmult(ϕ) < δ, then
mult(ϕ) < ϵ. Choose M > 0 with M > ln k and

1

M

(
6

ln 2
+

1

M

)
< δ.

Now, if T is a unital, continuous linear functional on A with ∥T∥ < k
and T (expx) ̸= 0 for all x ∈ A[M ], then, by Theorem 2.1, jmult(T ) < δ.
Thus, mult(T ) < ϵ. �

3. Almost multiplicative functionals and entire functions.
In this section, we show that Corollary 2.2 remains true if the expo-
nential function is replaced by a nonsurjective entire function F with
F ′(0) ̸= 0. First, we give a sufficient condition for a linear functional
to be continuous, compare with [7, Lemma 6].

Theorem 3.1. Let F be a nonconstant entire function, and let T be
a linear functional on A. Suppose that there is an r > 0 such that the
function T ◦ F : A[r] → C is nonsurjective. Then, T is continuous.

Proof. Let 0 < r′ < r. Since F is a nonconstant entire function,
there is a z0 ∈ C with |z0| < r′ such that F ′(z0) ̸= 0. Let G be a
function defined by

G(z) = F (z + z0)− F (z0), z ∈ C.
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For every x ∈ A with ∥x∥ ≤ r − r′, we have ∥x+ z0e∥ < r and

T ◦G(x) = T ◦ F (x+ z0e)− T ◦ F (z0e).

Thus, T ◦ G : A[r−r′] → C is nonsurjective since T ◦ F : A[r] → C is
nonsurjective. Hence, without loss of generality, we may assume that
F (0) = 0 and F ′(0) ̸= 0. Since F ′(0) ̸= 0, there are neighborhoods U
and V of 0 such that F is a homeomorphism of U onto V . The function
(F |U )−1 is holomorphic on V . Hence, there are ϵ > 0 and a complex
sequence {βn} such that

(F |U )−1(ω) =
∞∑

n=0

βnω
n,

for all ω ∈ D(0, ϵ). Suppose that F has the power series expansion

∞∑
n=0

αnz
n.

For every ω ∈ D(0, ϵ), we have

ω = F ((F |U )−1(ω)) =
∞∑

n=0

αn((F |U )−1(ω))n

=

∞∑
n=0

αn

( ∞∑
k=0

βkω
k

)n

= α1β1ω + · · · .

Hence, α1β1 = 1 and, for every n > 1, the coefficient of ωn is 0.
Therefore, F ((F |U )−1(x)) = x for all x ∈ A with ∥x∥ < ϵ. Since
(F |U )−1 : A[ϵ] → A is continuous at 0, there is a 0 < δ < ϵ such that

∥(F |U )−1(x)∥ < r for all x ∈ A with ∥x∥ ≤ δ. Thus, we have

T (A[δ]) = T ◦ F ((F |U )−1(A[δ])) ⊆ T ◦ F (A[r]) $ C,

and T is nonsurjective on A[δ]; hence, T is continuous. �

The main result of this section follows.

Theorem 3.2. Let F be an entire function such that F ′(0) ̸= 0, and
let there be a z0 ∈ C such that F (z) ̸= z0 for every z ∈ C. Then, for
each ϵ, k > 0, there is an M > 0 such that, if T is a unital, continuous
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linear functional on A with ∥T∥ < k and T ◦F (x) ̸= z0 for all x ∈ A[M ],
then T is ϵ-multiplicative.

In order to prove this result, we first prove the next theorem.

Theorem 3.3. Let g be an entire function with g′(0) ̸= 0, and let T be
a unital, continuous linear functional on A. Suppose that there is an
M > 0 with

M >
144

|g′(0)|
ln(2∥T∥), such that (T ◦ exp g)(x) ̸= 0,

for all x ∈ A[M ]. Then, jmult(T ) < ϵ, where

ϵ =
576

M |g′(0)|

(
6

ln 2
+

144

M |g′(0)|

)
.

Proof. By a similar method to [7, Proof of Theorem 3], we first prove
the result on the disc algebra A(D). Let ϕ be a unital, continuous
linear functional on A(D), and suppose that there is an R > 0 with
R > (72/|g′(0)|) ln ∥ϕ∥ such that (ϕ ◦ exp g)(x) ̸= 0 for all x ∈ A(D)[R].
The function

G(z) =
g(Rz)− g(0)

Rg′(0)

is entire, satisfying G(0) = 0 and G′(0) = 1. By Bloch’s theorem [4],
there is a disc S ⊆ D such that G is one-to-one on S and G(S) contains
a disc of radius 1/72. Hence, RS ⊆ D(0, R), g is one-to-one on RS and
g(RS) contains a disc of radius R|g′(0)|/72 and center at some point
ω0. Let a ∈ A(D) with ∥a∥ = 1, and let λ ∈ C with |λ| < R|g′(0)|/72.
Define the function

ψ : D −→ C

by
ψ(z) = (g|RS − ω0)

−1(λa(z)).

It is clear that ψ ∈ A(D). Since

D
(
0,
R|g′(0)|

72

)
⊆ (g − ω0)(RS),

we have
ψ(z) ∈ RS ⊆ D(0, R),
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for all z ∈ D. Hence, ∥ψ∥ ≤ R, and so (ϕ ◦ exp g)(ψ) ̸= 0. On the other
hand, we have

g ◦ ψ(z) = g((g|RS − ω0)
−1(λa(z))) = λa(z) + ω0,

for all z ∈ D. Hence, g ◦ ψ = λa+ ω0. Thus,

ϕ (expλa) = ϕ (exp(g ◦ ψ − ω0)) = e−ω0ϕ (exp g(ψ))

= e−ω◦(ϕ ◦ exp g)(ψ) ̸= 0.

Now, by Theorem 2.1, we have

(3.1) jmult(ϕ) ≤ 72

R|g′(0)|

(
6

ln 2
+

72

R|g′(0)|

)
.

Now, fix x ∈ A with ∥x∥ = 1. For every

a(z) =
∞∑

n=0

γnz
n ∈ A(D),

define

a(x) :=
∞∑

n=0

γn

(
x

2

)n

.

It is clear that a(x) is an element of A, and the function a 7→ a(x),
an algebraic homomorphism, maps from A(D) into A. We define the
linear functional

T̃ : A(D) −→ C

by

(3.2) T̃ (a) = T (a(x)).

It is easy to see that

(3.3) T̃ (exp g(a)) = T ◦ exp g(a(x)),

for all a ∈ A(D). Let a ∈ A(D) with ∥a∥ ≤M/2. If

∞∑
n=0

γnz
n
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is the power series expansion of the analytic function a, then, by the
Cauchy estimate, we have |γn| ≤M/2 for all n ∈ N ∪ {0}. Thus,

∥a(x)∥ ≤
∞∑

n=0

|γn|
2n

≤ M

2

∞∑
n=0

2−n =M.

Hence, by equation (3.3) and our assumption, for any a ∈ A(D) with
∥a∥ ≤M/2, we have

T̃ ◦ exp g(a) ̸= 0.

Also, for every a ∈ A(D) with ∥a∥ ≤ 1, we have

|T̃ (a)| = |T (a(x))| ≤ ∥T∥∥a(x)∥ ≤ 2∥T∥,

and so T̃ is continuous, ∥T̃∥ ≤ 2∥T∥. Since

M >
144

|g′(0)|
ln

2∥T∥
|T (e)|

,

we obtain
72

|g′(0)|
ln ∥T̃∥ ≤ 72

|g′(0)|
ln(2∥T∥) < M

2
.

Therefore, setting R =M/2 and ϕ = T̃ , from equation (3.1), we obtain

(3.4) jmult(T̃ ) ≤ 144

M |g′(0)|

(
6

ln 2
+

144

M |g′(0)|

)
.

The identity function on C is denoted by Z. By equation (3.2), we have

T (x) = 2T̃ (Z), T (x2) = 4T̃ (Z2).

Hence, by equation (3.4), we obtain

|T (x2)− T (x)2| = |4T̃ (Z2)− 4T̃ (Z)2|

≤ 576

M |g′(0)|

(
6

ln 2
+

144

M |g′(0)|

)
:= ϵ.

Thus, we have jmult(T ) < ϵ. �

Remark 3.4. According to Theorem 3.3, if A is a commutative Banach
algebra, then it follows from [11, Lemma 4] that T is a 2ϵ-multiplicative
linear functional.
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Proof of Theorem 3.2. By the Weierstrass factorization theorem [4],
there is an entire function g such that F − z0 = exp g. Since F ′(0) ̸= 0,
we have g′(0) ̸= 0. Now, by the same reasoning as in the proof of Corol-
lary 2.2, it is sufficient to considerM > 0 withM > (144/|g′(0)|) ln(2k)
and

576

M |g′(0)|

(
6

ln 2
+

144

M |g′(0)|

)
< δ,

and to use Theorem 3.3. �

Finally, consider the linear functional T with T (e) = 0; suppose that
T ◦ F is nonsurjective on A[M ]. In this case, we show that T is close
to 0.

Theorem 3.5. Let F be an entire function with F ′(0) ̸= 0. Let T be a
linear functional on A with T (e) = 0. Suppose that there is an M > 0
such that T ◦ F is nonsurjective on A[M ]. Then,

∥T∥ ≤ 288r

M |F ′(0)|
,

where
r = inf{|α| : α /∈ T ◦ F (A[M ])}.

Proof. Since T (e) = 0 and F (ze) = F (z)e for every z ∈ C, we have
T ◦F (ze) = 0 for all z ∈ C. Let α ∈ C \{0} be such that T ◦F (x) ̸= α,
for all x ∈ A[M ].

First, we prove that, if ϕ is a linear functional on A(D) with ϕ (e) = 0
and ϕ ◦ F (x) ̸= α for all x ∈ A(D)[M ], then ϕ is continuous and
∥ϕ∥ ≤ 72|α|/M |F ′(0)|. By Bloch’s theorem, there is a disc S ⊆ D
such that F is one-to-one on MS and F (MS) contains a disc of radius
M |F ′(0)|/72 and center at some point ω0. Let a ∈ A(D) with ∥a∥ = 1,
and let λ ∈ C with

|λ| < M |F ′(0)|
72

.

As in the proof of Theorem 3.3, we define the function ψ : D → C by

ψ(z) = (F |MS − ω0)
−1(λa(z)).
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We see that ψ ∈ A(D)[M ], and so ϕ ◦ F (ψ) ̸= α. Since F (ψ) = F ◦ψ =
λa+ ω0, we have

ϕ ◦ F (ψ) = λϕ (a) + ω0ϕ (e) = λϕ (a).

Hence, λϕ (a) ̸= α, for all λ ∈ C with |λ| < M |F ′(0)|/72. Thus,

|ϕ (a)| ≤ 72|α|
M |F ′(0)|

,

for all a ∈ A(D) with ∥a∥ = 1. Hence, ϕ is continuous and ∥ϕ∥ ≤
72|α|/M |F ′(0)|.

Now, let x ∈ A with ∥x∥ = 1. Define the linear functional T̃ on
A(D) similarly to that given in the proof of Theorem 3.3, that is,

T̃ (a) = T (a(x)) for every a ∈ A(D). We have

T̃ ◦ F (a) = T ◦ F (a(x)).

Hence, by the same reasoning as in the proof of Theorem 3.3, we have

T̃ ◦ F (a) ̸= α, for all a ∈ A(D) with ∥a∥ ≤ M/2 and T̃ (e) = T (e) = 0.

Thus, T̃ is continuous and

∥T̃∥ ≤ 144|α|
M |F ′(0)|

.

Hence, we have

|T (x)| = 2|T̃ (Z)| ≤ 288|α|
M |F ′(0)|

,

for all x ∈ A with ∥x∥ = 1; thus,

∥T∥ ≤ 288|α|
M |F ′(0)|

. �
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