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A CERTAIN CLASS OF APPROXIMATIONS
FOR THE q-DIGAMMA FUNCTION

AHMED SALEM

ABSTRACT. In this paper, we derive a class of approxi-
mations of the q-digamma function ψq(x). The infinite fam-
ily

Ia(x; q) = log[x+ a]q +
qx log q

1− qx
−

(
1

2
− a

)
H(q − 1) log q,

a ∈ [0, 1]; q > 0, can be used as approximating functions
for ψq(x), where [x]q = (1 − qx)/(1 − q) and H(·) is the
Heaviside step function. We show that, for all a ∈ [0, 1], Ia
is asymptotically equivalent to ψq(x) for q > 0 and is a good
pointwise approximation.

1. Introduction. The q-analogue of the digamma function ψq(x)
appeared in the work of Krattenthaler and Srivastava [2] where they
studied the summations for basic hypergeometric series. Some of its
properties were presented and proved in their work. In [2], they proved
that ψq(x) tends to the digamma function ψ(x) when letting q → 1.
Also, Salem [6] derived some properties and expansions associated with
the q-digamma function. Some inequalities involving the q-digamma
function have been introduced in [1, 3, 7, 8, 9, 10]. The q-digamma
function ψq(x) is defined as the logarithmic derivative of the q-gamma
function,

(1.1) ψq(x) =
d

dx
(log Γq(x)) =

Γ′
q(x)

Γq(x)
,

where Γq(x) is the q-gamma function defined as

(1.2) Γq(x) = (1− q)1−x
∞∏

n=0

1− qn+1

1− qn+x
, 0 < q < 1,
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and

(1.3) Γq(x) = (q − 1)1−xqx(x−1)/2
∞∏

n=0

1− q−(n+1)

1− q−(n+x)
, q > 1.

From (1.2), for 0 < q < 1 and for all real variables x > 0, we obtain

(1.4) ψq(x) = − log(1− q) + log q
∞∑
k=0

qxk

1− qk
,

and, from equation (1.3), for q > 1 and x > 0, we also get

(1.5) ψq(x) = − log(q − 1) + log q

[
x− 1

2
−

∞∑
k=0

q−xk

1− q−k

]
.

From the previous definitions, for a positive x and q ≥ 1, we obtain

Γq(x) = q[(x−1)(x−2)]/2Γq−1(x),(1.6)

ψq(x) =
2x− 3

2
log q + ψq−1(x).(1.7)

Muqattash and Yahdi [5] derived an infinite family of approxima-
tions for ψ(x) on R+, denoted as {Ia, a ∈ [0, 1]}, where

(1.8) Ia(x) = log(x+ a)− 1

x
.

They proved that the functions Ia are shown to approximate locally
and asymptotically independently of a ∈ [0, 1] with a perfect match
ψ(x) = Ia(x) for a certain a whenever x is fixed. Also, they found local
and global bounding error functions and introduced new inequalities
for the digamma function.

For any real numbers a ∈ [0, 1] and q > 0, suppose that Ia(x; q) is
the function defined for all real positive x by

(1.9) Ia(x; q) = log[x+ a]q +
qx log q

1− qx
+

(
1

2
− a

)
H(q − 1) log q,

where [x]q = (1− qx)/(1− q) is the so-called basic number and H(·) is
the Heaviside step function.

The main goal of this paper is to derive a class of approximations
of the q-digamma function and, as a consequence, new inequalities for
the q-digamma function. The infinite family Ia(x; q) : a ∈ [0, 1] can
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be used as approximating functions for ψq(x). We show that, for all
a ∈ [0, 1], Ia is asymptotically equivalent to ψq(x) for q > 0 and is a
good pointwise approximation.

2. Useful lemmas. We devote this section to establishing some
preliminary facts and results needed in the proofs of the main results.

Lemma 2.1. For all x, q ∈ R+, we have

(2.1)
log[x]q +

1

2
H(q − 1) log q ≤ ψq(x+ 1)

≤ log[x+ 1]q −
1

2
H(q − 1) log q.

Proof. Suppose that the function

(2.2) fα(x; q) = ψq(x+ 1)− log[x+ α]q, 0 < q < 1, α = 0, 1.

From equation (1.4) and the Taylor series of logarithm functions, the
function fα(x; q) can be rewritten as

fα(x; q) =

∞∑
k=1

qxk

k(1− qk)
gα(y), y = qk,

where gα(y) = y log y + yα(1− y) can be represented as

g0(y) = y
∞∑

n=2

logn(1/y)

n!
> 0

g1(y) = −y2
∞∑

n=2

logn(1/y)

n!
(n− 1) < 0.

Thus, the functions f0(x; q) > 0 and f1(x; q) < 0 for all x > 0.
Therefore,

(2.3) log[x]q ≤ ψq(x+ 1) ≤ log[x+ 1]q, 0 < q < 1.

Now, let q ≥ 1. Then equation (1.7) and the identity [x]q−1 = qx−1[x]q
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can be exploited to obtain

(2.4)

fα(x; q) = ψq−1(x+ 1) +
2x− 1

2
log q

− log[x+ α]q − (x+ α− 1) log q

= fα(x; q
−1) +

(
1

2
− α

)
log q, q ≥ 1.

In view of equations (2.2), (2.3) and (2.4), we obtain the desired
result. �

Lemma 2.2. For every x, q ∈ R+, the q-digamma function ψq(x) is
strictly increasing on (0,∞), and there exists a unique real number
x∗ ∈ (1, 2) such that ψq(x

∗) = 0.

Proof. For q > 0, Alzer and Grinshpan [1] stated that ψ′
q(x) is

strictly completely monotonic on (0,∞). This means that ψ′
q(x) > 0,

which reveals that ψq(x) is strictly increasing on (0,∞).

When 0 < q < 1, (1.4) and the Taylor expansion of log(1− q) gives

ψq(1) = − log(1− q) + log q

∞∑
k=1

qk

1− qk
=

∞∑
k=1

qk(1− qk + k log q)

k(1− qk)
.

It is easy to show that

1− qk + k log q = −qk
∞∑

n=2

logn(q−k)

n(n− 2)!
< 0, k ∈ N,

which leads to the conclusion that ψq(1) < 0 for 0 < q < 1. When
q > 1, equation (1.7) gives ψq(1) = −(1/2) log q + ψq−1(1) < 0. This
leads to the conclusion that ψq(1) < 0 for all q > 0.

Similarly, we can deduce that ψq(2) > 0 for all q > 0. In light of this
proof we conclude that there exists a unique real number x∗ ∈ (1, 2)
such that ψq(x

∗) = 0 for all q > 0. �

Lemma 2.3. For each real number x, q ∈ R+. Then, for any fixed
a ∈ [0, 1], the function x 7→ Ia(x; q) is positive and strictly increasing
on [2,∞), and, whenever x is fixed in [2,∞), the function a 7→ Ia(x; q)
is positive and strictly increasing on [0, 1].



APPROXIMATIONS FOR THE q-DIGAMMA FUNCTION 1669

Proof. Differentiating equation (1.9) with respect to x yields

∂

∂x
Ia(x; q) =

−qx+a log q

1− qx+a
+

qx log2 q

(1− qx)2
> 0, q > 0,

which yields that the function x 7→ Ia(x; q) is strictly increasing on
[2,∞).

Differentiating equation (1.9) with respect to a yields

∂

∂a
Ia(x; q) =

−qx+a log q

1− qx+a
> 0, 0 < q < 1,

and

∂

∂a
Ia(x; q) =

−qx+a log q

1− qx+a
− log q =

− log q

1− qx+a
> 0, q ≥ 1,

which yield that the function a 7→ Ia(x; q) is strictly increasing on
[0, 1]. Therefore, the minimum value of Ia(x; q) can be computed for
0 < q < 1 as

I0(2; q) = log(1− q2)− log(1− q) +
q2 log q

1− q2

=

∞∑
k=1

qk(1− qk + kqk log q)

k
.

A short calculation gives

1− qk + kqk log q =

∞∑
n=2

logn(q−k)

n!
> 0,

which reveals that I0(2; q) > 0 for 0 < q < 1. When q ≥ 1, we have

I0(2; q) = log(1 + q) +
q2 log q

1− q2
+

1

2
log q.

Differentiation yields (d/dq)I0(2; q) = g(q)/(2(1− q2)2), where

g(q) = 4q2 log q + (1− q2)(1 + 2q − q2).

Again, differentiation gives

g′(q) = 2− 6q2 + 4q3 + 8q log q = 2(2q + 1)(q − 1)2 + 8q log q > 0,
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which concludes that g(q) is increasing on [1,∞) and since g(1) = 0,
then g(q) ≥ 0 for all q ≥ 1. Therefore, the function I0(2; q) is increasing
on [1,∞). Since limq→1 I0(2; q) = log 2 − (1/2) > 0, then I0(2; q) > 0
for all q ≥ 1. This completes the proof. �

Lemma 2.4. Suppose q ∈ R+. Then we have

(2.5) lim
x→∞

I0(x; q)

I1(x; q)
= 1.

Proof. When 0 < q < 1, equation (1.9) gives

lim
x→∞

I0(x; q)

I1(x; q)
= lim

x→∞
log[x]q+(qx log q)/(1−qx)

log[x+1]q+(qx log q)/(1−qx)

= lim
x→∞

log(1−qx)−log(1−q)+(qx log q)/(1−qx)
log(1−qx+1)−log(1−q)+(qx log q)/(1−qx

=
− log(1− q)

− log(1− q)
= 1.

When q ≥ 1, we obtain

lim
x→∞

I0(x; q)

I1(x; q)
= lim

x→∞
log[x]q+(qx log q)/(1−qx)+1/2 log q

log[x+1]q+(qx log q)/(1−qx)−1/2 log q

= lim
x→∞

log(qx−1)−log(q−1)+(qx log q)/(1−qx)+1/2 log q
log(qx+1−1)−log(q−1)+(qx log q)/(1−qx)−1/2 log q

= lim
x→∞

x log q+log(1−q−x)−log(q−1)+(log q)/(q−x−1)+1/2 log q
(x+1) log q+log(1−q−x−1)−log(q−1)+(log q)/(q−x−1)−1/2 log q.

Using L’Hopital’s rule yields

lim
x→∞

I0(x; q)

I1(x; q)
= lim

x→∞
log q+(q−x)/(1−q−x)+(q−x log2 q)/(q−x−1)2

log q+(q−x−1)/(1−q−x−1)+(q−x log2 q)/(q−x−1)2

=
log q

log q
= 1. �

Lemma 2.5. For all q > 0, the function,

(2.6) Fq(x) = log[x]q − log[x+ 1/2]q −
1

2

qx log q

1− qx
,

is strictly positive for all x > 0.
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Proof. When 0 < q < 1, the series expansion of the logarithm
function and binomial theorem give

Fq(x) =
1

2

∞∑
k=1

qxk

k
g(y), y = qk,

where g(y) = 2
√
y − log y − 2, which can be read as

g(y) = 2
√
y

∞∑
n=2

logn(1/y)

n!

(
1

2

)n

(n− 1) > 0.

Hence, Fq(x) > 0 for 0 < q < 1 and x > 0. When q ≥ 1, it is not
difficult to see that Fq(x) = Fq−1(x) which concludes that Fq(x) > 0
for all q > 0 and x > 0. �

Lemma 2.6. For all q > 0, the function

(2.7) Gq(x) =
1

2
log[x+ 1/2]q +

1

2
log[x]q +

3

4

qx log q

1− qx
− ψq(x),

is strictly positive for all x > 0.

Proof. The function Gq(x) can be represented by using (1.4) as

Gq(x) = −1

4

∞∑
k=1

qxk

k(1− qk)
h(y), y = qk; 0 < q < 1,

where
h(y) = log y + 3y log y + 2

√
y(1− y) + 2(1− y),

which can be read as

h(y) = −y√y
∞∑

n=3

logn(1/y)

n!{(
3

2

)n−1

(n− 3) +

(
1

2

)n−1

(3n+ 1)− 2

}
< 0,

which reveals that Gq(x) > 0 for 0 < q < 1 and x > 0. When q ≥ 1,
(1.7) gives Gq(x) = Gq−1(x), and so Gq(x) > 0 for q > 0 and x > 0.
This ends the proof. �
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3. The main results. In this section, we are seeking to derive an
infinite family of approximations of the q-digamma function and, as a
consequence, new inequalities for the q-digamma function. The infinite
family Ia(x; q) : a ∈ [0, 1] can be used as approximating functions for
ψq(x). We show that, for all a ∈ [0, 1], Ia is asymptotically equivalent
to ψq(x) for q > 0 and is a good pointwise approximation. In order
to present our proofs, we will use the lemmas proved in the previous
section and the same technique used in [5].

Theorem 3.1. For every x, q ∈ R+, there exists at least one real
number a ∈ [0, 1] such that

(3.1) ψq(x) = Ia(x; q).

Proof. The intermediate value theorem states that, for each value
between the least upper bound and greatest lower bound of the image of
a continuous function, there is at least one point in its domain which the
function maps to that value. It is clear that the function a 7→ Ia(x; q)
is a continuous function for all a ∈ [0, 1]. From equation (1.9) and
Lemma 2.1, along with the identity [7],

(3.2) ψq(x+ 1) = ψq(x)−
qx log q

1− qx
.

we have

(3.3) I0(x; q) ≤ ψq(x) ≤ I1(x; q).

According to the intermediate value theorem, we conclude that at least
one real number a ∈ [0, 1] exists such that ψq(x) = Ia(x; q). This
concludes the proof. �

As in [5], we will use the notation f ∼ g on R+ to denote that the
functions f and g are asymptotic.

Theorem 3.2. For all a ∈ [0, 1] and q > 0, then ψq(x) ∼ Ia(x; q) on
R+.
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Proof. Dividing the inequality (3.3) by I1(x; q) which is a positive
for all x ∈ [2,∞), see Lemma 2.3, would yield

I0(x; q)

I1(x; q)
≤ ψq(x)

I1(x; q)
≤ 1.

Exploiting equation (2.5) gives

lim
x→∞

ψq(x)

I1(x; q)
= 1,

and thus,

(3.4) ψq(x) ∼ I1(x; q) on R+.

Similarly, we can deduce that

lim
x→∞

ψq(x)

I0(x; q)
= 1,

and thus,

(3.5) ψq(x) ∼ I0(x; q) on R+.

In view of Lemmas 2.2 and 2.3, we see, for all x ≥ 2, q > 0 and for all
a ∈ [0, 1], that

(3.6) 0 < I0(x; q) ≤ Ia(x; q) ≤ I1(x; q),

and ψq(x) > 0 for all x ≥ 2 and q > 0. Therefore,

(3.7)
ψq(x)

I1(x; q)
≤ ψq(x)

Ia(x; q)
≤ ψq(x)

I0(x; q)
.

In view of equations (3.4), (3.5) and (3.7), we conclude that

lim
x→∞

ψq(x)

Ia(x; q)
= 1,

and thus,
ψq(x) ∼ Ia(x; q) on R+.

This ends the proof. �

We are now interested in studying the error of the approximation.
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Definition 3.3. Suppose that x ∈ [2,∞), q ∈ R+ and a ∈ [0, 1]. We
define

(3.8) Ea(x; q) = ψq(x)− Ia(x; q)

as the error of the approximation ψq(x) ≈ Ia(x; q).

Theorem 3.4. For any a ∈ [0, 1] and q ∈ R+, the error Ea(x; q)
approaches zero as x→ ∞, and therefore ψq(x) ≈ Ia(x; q) for relatively
large x.

Proof. In view of equations (3.3) and (3.6), we deduce for a ∈ [0, 1],
q ∈ R+ and x ∈ [2,∞) that

|ψq(x)− Ia(x; q)| ≤ I1(x; q)− I0(x; q),

or equivalently,

(3.9) 0 ≤ |Ea(x; q)| ≤ log

(
1− qx+1

1− qx

)
−H(q − 1) log q.

Taking the limits as x→ ∞ when 0 < q < 1 gives

(3.10) lim
x→∞

|Ea(x; q)| = lim
x→∞

log

(
1− qx+1

1− qx

)
= 0,

and when q ≥ 1, gives

(3.11)

lim
x→∞

|Ea(x; q)| = lim
x→∞

log

(
qx+1 − 1

qx − 1

)
− log q

= lim
x→∞

log

(
1− q−x−1

1− q−x

)
= 0.

By virtue of equations (3.10) and (3.11) we conclude, for q > 0, that

lim
x→∞

Ea(x; q) = 0. �

Theorem 3.5. For any x ∈ [2,∞), a ∈ [0, 1] and q ∈ R+, we have

(i) the errors Ea(x; q) are uniformly bounded between − log(3/2) and
log(3/2).
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(ii)

ψq(x) = log[x+ a]q +
qx log q

1− qx
−
(
1

2
+ a

)
H(q − 1) log q

+O

(
log

(
q−H(q−1)

(
1 +

qx

[x]q

)))
.

Proof. Define the function

α(x, q) = log[x+ 1]q − log[x]q −H(q − 1) log q.

Differentiation gives, for all q > 0,

∂

∂x
α(x, q) = −q

x+1 log q

1− qx+1
+
qx log q

1− qx
=

qx(1− q) log q

(1− qx+1)(1− qx)
< 0,

which reveals that the function α(x, q) is decreasing on [2,∞) for all
q > 0 with a maximum of

α(2, q) = log(1 + q + q2)− log(1 + q)−H(q − 1) log q.

When 0 < q < 1, we get

d

dq
α(2, q) =

q2 + 2q

(1 + q)(1 + q + q2)
> 0,

which shows that α(2, q) is increasing function on (0, 1) onto (0, log(3/2)).
When q > 1, we get

d

dq
α(2, q) =

−1− 2q

q(1 + q)(1 + q + q2)
< 0,

which reveals that α(2, q) is a decreasing function on (1,∞) onto
(0, log(3/2)).

In view of the previous information, we can conclude that the
function α(x, q) is bounded between zero and log(3/2). Therefore,
|Eq(x; q)| < log(3/2). The second case follows immediately from
equations (1.9) and (3.9). �

Remark 3.6. It is worth mentioning that Moak [4] proved the follow-
ing approximation for the q-digamma function:

ψq(x) = log[x]q +
1

2

qx log q

1− qx
+O

(
qx log2 q

(1− qx)2

)
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holds for all q > 0 and x > 0 and so ψq(x) ∼ I(x; q) on R+ where

(3.12) I(x; q) = log[x]q +
1

2

qx log q

1− qx
.

In the following theorem, we will show that the approximation
I1/2(x; q) of ψq(x) is better than the approximation (of Moak) I(x; q)
of ψq(x) for all q > 0 and x > 0.

Theorem 3.7. For all x, q ∈ R+ such that x ≥ 2, the error of
approximation I1/2(x; q) of ψq(x) is less than the error of approximation
I(x; q) of ψq(x).

Proof. Lemma 2.5 gives that

− log[x]q − 1/2
qx log q

1− qx
< − log[x+ 1/2]q −

qx log q

1− qx
,

which can be rewritten as

ψq(x)− log[x]q −
1

2

qx log q

1− qx
< ψq(x)− log[x+ 1/2]q −

qx log q

1− qx
,

or equivalently,

(3.13) ψq(x)− I(x; q) < ψq(x)− I1/2(x; q).

Also, from Lemma 2.6, we have

ψq(x)− log[x+ 1/2]q −
qx log q

1− qx
< log[x]q +

1

2

qx log q

1− qx
− ψq(x),

which is equivalent to

(3.14) ψq(x)− I1/2(x; q) < I(x; q)− ψq(x).

Combining equations (3.13) and (3.14) yields

|ψq(x)− I1/2(x; q)| < |ψq(x)− I(x; q)|.

Equivalently,
|E1/2(x; q)| < |ψq(x)− I(x; q)|. �
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