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ASYMPTOTIC BEHAVIOR OF STRONGLY DAMPED
NONLINEAR BEAM EQUATIONS

AHMED Y. ABDALLAH

ABSTRACT. For ξ ∈ [1/2, 3/4], the existence of the
global attractor for the evolutionary equation corresponding
to the following strongly damped nonlinear beam equation
(1 + βA1/2)utt + δA1/2ut + αAu + g(∥u∥2

ξ−1/4
)A1/2u = f ,

t > 0, has been studied in DH(Aξ) × DH(Aξ−1/4). Such an
equation is related to a nonlinear beam equation as well as
Timoshenko’s equation.

The main difficulty of our work comes from the terms
βA1/2utt and g(∥u∥2

ξ−1/4
)A1/2u, representing the rotational

inertia of the beam and the tension within the beam due
to its extensibility, respectively. We overcome the difficulty
of introducing the solution, bounded absorbing set, and κ-
contracting property by carefully using the fractional power
theory and suitable time-uniform a priori estimates.

1. Introduction. The asymptotic behavior and global dynamics for
nonlinear beam equations of the following form

(1.1) utt + δut + αuxxxx +

(
a0 + a1

∫ 1

0

|ux|2dx
)
uxx = f, t > 0,

where a0 ∈ R and δ, α, a1 > 0, have been carefully studied by many
researchers, cf., [4, 8, 13, 14]. The asymptotic behavior for different
types of nonlinear beam equations has been extensively studied in the
literature [2, 3, 5, 6, 7, 9, 12].

In [1, 11, 15] and the references therein, Timoshenko’s equation

utt + βuxxtt + αuxxxx +

(∫ 1

0

|ux|2dx
)
uxx = f, t > 0,(1.2)

has been studied, where α, β > 0.
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Here, we introduce a nonlinear equation related to equations (1.1)
and (1.2). Indeed, consider the Hilbert space H = L2(0, 1) whose inner
product and norm are denoted by ⟨·, ·⟩0 and ∥ · ∥0, respectively. For a
given ξ ∈ [1/2, 3/4], we shall study the existence of the global attractor
for an abstract evolutionary equation corresponding to the following
nonlinear strongly damped beam equation:

(1.3) (1+βA1/2)utt+δA
1/2ut+αAu+g(∥u∥2ξ−1/4)A

1/2u = f, t > 0,

with initial conditions

(1.4) u(0) = u0 and ut(0) = u1,

where the closed linear operator A, the functions f and g, and the
parameters α, β, and δ, are given by assumptions (A1)–(A4) below.

Taking into account assumption (A4) and the theory of fractional
powers discussed below, it is clear that, for β = 0, ξ = 1/2, damping
δut and g(u) = a0 + a1∥A1/4u∥20, equation (1.3) becomes identical to
equation (1.1), and for ξ = 1/2, δ = 0 and g(u) = ∥A1/4u∥20, equation
(1.3) becomes identical to equation (1.2). From the definition of the
closed linear operator A given by assumption (A4) below, it is clear
that the hinged boundary conditions are considered in this work.

The nonlinear beam equation (1.3) can be considered as a mathe-
matical model for small transversal vibrations of an extensible beam,
where u(x, t) is the transverse deflection of the beam, δ and β are the
parameters related to the structural strong damping and the rotational
inertia of the beam, respectively. The nonlinear term in the equation is
the tension within the beam due to its extensibility, and the function f
stands for an external input.

Within this work, we assume the following:

(A1) α, δ, β > 0 and ξ ∈ [1/2, 3/4].

(A2) f ∈ H = L2(0, 1), where the inner product and norm in H are
denoted by ⟨·, ·⟩0 and ∥ · ∥0, respectively.

(A3) g : [0,∞) → R is locally Lipschitz continuous and there exist
r, K0, K1 ≥ 0, with K1 < π2α, such that∫ s

r

g(y) dy ≥ −(K0 +K1s), g(s1) ≥ g(s2),(1.5)

for all s ≥ r, s1 ≥ s2 ≥ r.
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Choosing

K2 = K2(r) =
3

2
r max
y∈[0,r]

|g(y)|,

it is clear that, for 0 ≤ s < r,∫ s

0

g(y) dy ≥ −
∫ s

0

|g(y)| dy ≥ −r max
y∈[0,r]

|g(y)| ≥ −K2,

1

2

∫ s

0

g(y) dy−sg(s) ≤ 1

2

∫ s

0

|g(y)| dy + s|g(s)|≤ 3

2
r max
y∈[0,r]

|g(y)|=K2,

and, for s ≥ r,∫ s

0

g(y) dy =

∫ r

0

g(y) dy +

∫ s

r

g(y) dy ≥ −r max
y∈[0,r]

|g(y)|

+

∫ s

r

g(y) dy ≥ −(K2 +K0 +K1s),

1

2

∫ s

0

g(y) dy − sg(s)=
1

2

∫ r

0

g(y) dy+
1

2

∫ s

r

g(y) dy−(s− r)g(s)−rg(s)

=
1

2

∫ r

0

g(y) dy +

∫ s

r

(
1

2
g(y)− g(s)

)
dy − rg(s)

≤ 1

2
r max
y∈[0,r]

|g(y)| − 1

2

∫ s

r

g(y) dy − rg(r)

≤ 1

2
(K0 +K1s) +K2.

Hence, for s ≥ 0, we have

1

2

∫ s

0

g(y) dy − sg(s) ≤ 1

2
(K0 +K1s) +K2,(1.6) ∫ s

0

g(y) dy ≥ −(K2 +K0 +K1s).

(A4) A : DH(A) ⊂ H → H is the closed linear operator defined as
follows

Aφ = φxxxx, for all φ ∈ DH(A),

where the domain of A in H is given by

DH(A) = {φ ∈ H4(0, 1) : φ(0) = φxx(0) = φ(1) = φxx(1) = 0}.
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Following [13], it can be shown that A is a densely defined, self-
adjoint, positive definite operator with compact resolvent A−1. The
spectrum of A consists of the eigenvalues λn = (nπ)4, n ∈ N, with
eigenvectors en = 21/2 sin(nπx), n ∈ N.

Along the lines of the fractional power theory [10, 13], for ξ ≥ 0,
V ξ = DH(Aξ) is a Hilbert space where V 0 = H, whose inner product
and norm are given by

⟨φ,ψ⟩ξ = ⟨Aξφ,Aξψ⟩0, ∥φ∥ξ = ⟨Aξφ,Aξφ⟩1/20 = ∥Aξφ∥0,

for all φ, ψ ∈ V ξ. If ξ > η ≥ 0, then V ξ is compactly embedded in V η

and

(1.7) ∥φ∥η ≤ π4(η−ξ)∥φ∥ξ ≤ ∥φ∥ξ, for all φ ∈ V ξ.

For ξ, η ≥ 0, we have

AξAη = AηAξ = Aξ+η on V ξ+η,(1.8)

⟨Aξφ,ψ⟩0 = ⟨φ,Aξψ⟩0, for all φ,ψ ∈ V ξ.

Considering the linear operator A : DV ξ(A) ⊂ V ξ → V ξ, ξ ≥ 0, where
the domain of A in V ξ is given by DV ξ(A) = V ξ+1, one can show that
A is a sectorial operator and −A generates an analytic semigroup on
V ξ. Moreover, we have

A1/2φ = −φxx, for all φ ∈ V 1/2,

∥φ∥ξ =

∥∥∥∥∂4ξφ∂x4ξ

∥∥∥∥
0

, for all φ ∈ V ξ, 4ξ = 0, 1, 2, . . . .

For ξ, η ≥ 0, we shall consider the Hilbert space Eξ,η = V ξ × V η,
whose inner product and norm are given by:

⟨Ψ0,Ψ1⟩Eξ,η
= ⟨φ0, φ1⟩ξ + ⟨ψ0, ψ1⟩η,

∥Ψ0∥Eξ,η
= ⟨Ψ0,Ψ0⟩1/2Eξ,η

for all Ψi = (φi, ψi)
T ∈ Eξ,η, i = 0, 1.

The objective of this research is to prove the existence of the
global attractor for an abstract dynamical system corresponding to the
initial value problem (1.3)–(1.4) in Eξ,ξ−1/4. The existence of a global
attractor for the solution semiflow of a given dynamical system is very
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important because it is the depository of all the longtime dynamics of
such a system. The background material in regard to the theory of
global attractors can be found in [8, 13].

Fixing ξ ∈ [1/2, 3/4], this work is organized as follows. In Section 2,
the initial value problem (1.3)–(1.4) will be represented as an abstract
evolutionary equation in Eξ,ξ−1/4 and the standard semigroup theory
will be used to prove the existence of a local solution for this abstract
equation. In Section 3, we shall prove that the solution exists globally
and the semiflow generated by these solutions is bounded dissipative.
In Section 4, we shall show that the solution semiflow is κ-contracting.
Using these results, along the lines of the classical theory of global
attractors, it follows that the solution semiflow possesses a global
attractor.

The difficulty of studying the existence of the global attractor for the
evolutionary equation related to the initial value problem (1.3)–(1.4)
comes from the terms:

βA1/2utt and g(∥u∥2ξ−1/4)A
1/2u,

representing the rotational inertia of the beam and the tension within
the beam due to its extensibility, respectively. Carefully using the
fractional power theory and suitable time-uniform a priori estimates,
we overcome the difficulty of presenting the solution semiflow, bounded
absorbing set, and κ-contracting property for the solution semiflow.

2. Formulation and well posedness. Letting v = ut, we can
reformulate (1.3)–(1.4) as the following first-order evolution equation

BΦt = CΦ+ Fξ(Φ), t > 0

Φ(0) = Φ0 = (u0, u1)
T ,

where Φ = (u, v)T ,

B =

(
I 0
0 I + βA1/2

)
, C =

(
0 I

−αA −δA1/2

)
,

Fξ(Φ) = (0, Jξ(u))
T and Jξ(u) = f − g(∥u∥2ξ−1/4)A

1/2u.
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Using (1.7) and the assumption that g is locally Lipschitz continuous,
it follows that, for K > 0, φ, ψ ∈ V ξ with ξ ≥ 1/4,

∥φ∥ξ−1/4 ≤ K, ∥ψ∥ξ−1/4 ≤ K,

there exist constants ki = ki(K) > 0, i = 0, 1, such that

|g(∥φ∥2ξ−1/4)− g(∥ψ∥2ξ−1/4)| ≤ k0|∥φ∥2ξ−1/4 − ∥ψ∥2ξ−1/4|(2.1)

≤ k1∥φ− ψ∥ξ.

Lemma 2.1. Given ξ ∈ [1/2, 3/4], the nonlinear operator

B−1Fξ(Φ) = (0, (I + βA1/2)−1Jξ(u))
T , for all Φ = (u, v)T

is locally Lipschitz continuous in Eξ,ξ−1/4 and E3/4,1/2.

Proof. Given ξ ∈ [1/2, 3/4], let k2 > 0 and Φi = (ui, vi)
T ∈ Eξ,ξ−1/4

be such that
∥Φi∥Eξ,ξ−1/4

≤ k2, i = 0, 1.

Then, from equation (1.7) and the fact that (I+βA1/2)−1 is a bounded
operator from H into V 1/2, we find that there exist a constant k3 > 0
such that

∥B−1Fξ(Φ0)−B−1Fξ(Φ1)∥Eξ,ξ−1/4

= ∥(I + βA1/2)−1[g(∥u0∥2ξ−1/4)A
1/2u0 − g(∥u1∥2ξ−1/4)A

1/2u1]∥ξ−1/4

≤ ∥(I + βA1/2)−1[g(∥u0∥2ξ−1/4)A
1/2u0 − g(∥u1∥2ξ−1/4)A

1/2u1]∥1/2
≤ k3∥g(∥u0∥2ξ−1/4)A

1/2u0 − g(∥u1∥2ξ−1/4)A
1/2u1∥0

≤ k3(|g(∥u0∥2ξ−1/4)|∥u0 − u1∥1/2 + |g(∥u0∥2ξ−1/4)

− g(∥u1∥2ξ−1/4)|∥u1∥1/2).

From equations (1.7) and (2.1), along with the fact that g is locally
Lipschitz continuous, it follows that there exists a constant k4 =
k4(k2) > 0 such that

∥B−1Fξ(Φ0)−B−1Fξ(Φ1)∥Eξ,ξ−1/4

≤ k4∥u0 − u1∥ξ ≤ k4∥Φ0 − Φ1∥Eξ,ξ−1/4
.

Thus, B−1Fξ is locally Lipschitz continuous in Eξ,ξ−1/4. Similarly, one

can see that B−1Fξ is locally Lipschitz continuous in E3/4,1/2. �
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For ξ ∈ [1/2, 3/4], consider the linear operator

B−1C : DEξ,ξ−1/4
(B−1C) ⊂ Eξ,ξ−1/4 → Eξ,ξ−1/4,

given by

B−1C =

(
0 I

−α(I + βA1/2)−1A −δ(I + βA1/2)−1A1/2

)
,

whose domain in Eξ,ξ−1/4 is given by DEξ,ξ−1/4
(B−1C) = E1,ξ. It

can be shown that −B−1C is a sectorial operator and B−1C is the
infinitesimal generator of an analytic contraction semigroup in Eξ,ξ−1/4.
In this case, using Lemma 2.1, and the standard semigroup theory [13],
we get the following result.

Lemma 2.2. For ξ ∈ [1/2, 3/4], consider the initial value problem

Φt = B−1CΦ+B−1Fξ(Φ), t > 0(2.2)

Φ(0) = Φ0 = (u0, u1)
T .

(a) Given Φ0 = (u0, u1)
T ∈ Eξ,ξ−1/4, equation (2.2) has a unique

maximal solution

Φ(t; ξ,Φ0) = (u(t), ut(t))
T ,

t ∈ [0, τ) and τ = τ(Φ0) > 0,

in Eξ,ξ−1/4 satisfying (2.2) for t ∈ [0, τ), such that

(u(·), ut(·))T = C([0, τ), Eξ,ξ−1/4)(2.3)

∩ C1((0, τ), Eξ,ξ−1/4) ∩ C((0, τ), E1,ξ),

where E1,ξ is DEξ,ξ−1/4
(B−1C). Moreover, if τ <∞, then

(2.4) lim
t→τ−

∥(u(t), ut(t))T ∥Eξ,ξ−1/4
= ∞.

(b) Given Φ0 = (u0, u1)
T ∈ E3/4,1/2, equation (2.2) has a unique

maximal solution

Φ(t; ξ,Φ0) = (u(t), ut(t))
T ,

t ∈ [0, τ) and τ = τ(Φ0) > 0,
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in E3/4,1/2 satisfying (2.2) for t ∈ [0, τ) such that

(u(·), ut(·))T = C([0, τ), E3/4,1/2)(2.5)

∩ C1((0, τ), E3/4,1/2) ∩ C((0, τ), E1,3/4),

where E1,3/4 is DE3/4,1/2
(B−1C). Moreover, if τ <∞, then

(2.6) lim
t→τ−

∥(u(t), ut(t))T ∥E3/4,1/2
= ∞.

3. Global solutions and dissipativity. Before introducing Lem-
mas 3.2 and 4.1, we need the following remark to explain the reason
for choosing the initial data Φ0 in E3/4,1/2 while studying in Eξ,ξ−1/4

the global existence of solutions bounded dissipativity, and uniform
κ-contracting property for the solution semiflow associated with the
initial value problem (2.2).

Remark 3.1. In both lemmas, we need (1.3) to be satisfied as a first
step to complete the proof. Reading (2.3) and (2.5) carefully, one can
see that, for Φ0 ∈ Eξ,ξ−1/4, the solution given by (2.3) satisfies (2.2),
but it does not satisfy (1.3). For Φ0 ∈ E3/4,1/2, the solution given by
(2.5) satisfies (2.2), and it consequently satisfies (1.3).

The key idea for proving the following lemma is applying suitable
time-uniform a priori estimates.

Lemma 3.2. In Eξ,ξ−1/4, ξ ∈ [1/2, 3/4], for each Φ0 ∈ Eξ,ξ−1/4, the
unique solution of the initial value problem (2.2) given by equation (2.3),
exists globally and the associated semiflow Sξ(t) generated by these
solutions is bounded dissipative.

Proof. Let
ξ ∈ [1/2, 3/4], Φ0 ∈ E3/4,1/2

and
Sξ(t)Φ0 = Φ(t) = (u(t), ut(t))

T

be the solution of equation (2.2) in E3/4,1/2, given by equation (2.5).
Recalling Remark 3.1, it is clear that equation (1.3) is satisfied for
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t ∈ (0, τ). For ε > 0, if we consider the inner product of equation (1.3)
with A2ξ−1(ut+εu) in H, taking into account equation (1.8), we obtain

(3.1)
d

dt
Θξ(t) + Πξ(t) = 0, for all t ∈ (0, τ),

where

Θξ(t) =
1

2
∥ut∥2ξ−1/2 +

β

2
∥ut∥2ξ−1/4 +

α

2
∥u∥2ξ +

εδ

2
∥u∥2ξ−1/4(3.2)

− ⟨f,A2ξ−1u⟩0 +
1

2

∫ ∥u∥2
ξ−1/4

0

g(y) dy

+ ε⟨ut, u⟩ξ−1/2 + εβ⟨ut, u⟩ξ−1/4

and

Πξ(t) = (δ − εβ)∥ut∥2ξ−1/4 − ε∥ut∥2ξ−1/2 + εα∥u∥2ξ(3.3)

+ εg(∥u∥2ξ−1/4)∥u∥
2
ξ−1/4 − ε⟨f,A2ξ−1u⟩0.

From Young’s inequality and (1.7), we find

|⟨ut, u⟩ξ−1/2| ≤
1

2
∥ut∥2ξ−1/2 +

1

2
∥u∥2ξ−1/2 ≤ 1

2
∥ut∥2ξ−1/4 +

1

2
∥u∥2ξ ,

(3.4)

|⟨ut, u⟩ξ−1/4| ≤
1

2
∥ut∥2ξ−1/4 +

1

2
∥u∥2ξ ,

|⟨f,A2ξ−1u⟩0| ≤ ∥f∥0∥u∥2ξ−1 ≤ ∥f∥20
2ε

+
ε

2
∥u∥2ξ .

Using (3.2) and (3.4), we get

Θξ(0) ≤
1

2
∥ut(0)∥2ξ−1/2 +

β

2
∥ut(0)∥2ξ−1/4 +

α

2
∥u(0)∥2ξ

+
ε

2
δ∥u(0)∥2ξ−1/4 +

∥f∥20
2ε

+
ε

2
∥u(0)∥2ξ +

1

2

∫ ∥u(0)∥2
ξ−1/4

0

· g(y) dy + ε

2
(1 + β)(∥ut(0)∥2ξ−1/4 + ∥u(0)∥2ξ).
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From (1.7), it follows that

Θξ(0) ≤
1

2
(1 + β + ε(1 + β))∥ut(0)∥2ξ−1/4 +

∥f∥20
2ε

(3.5)

+
1

2
(α+ ε(2 + δ + β) + max

y∈[0,∥u(0)∥2
ξ]
|g(y)|)∥u(0)∥2ξ .

Again, recalling (3.2) and (3.4), we have

1

2
∥ut(t)∥2ξ−1/2 +

β

2
∥ut(t)∥2ξ−1/4 +

α

2
∥u(t)∥2ξ +

εδ

2
∥u(t)∥2ξ−1/4

− ∥f∥20
2ε

− ε

2
∥u(t)∥2ξ +

1

2

∫ ∥u(t)∥2
ξ−1/4

0

g(y) dy

− 1

2
ε(1 + β)(∥ut(t)∥2ξ−1/4 + ∥u(t)∥2ξ) ≤ Θξ(t),

1

2
(β−ε(1+β))∥ut(t)∥2ξ−1/4+

1

2
(α−ε(2+β))∥u(t)∥2ξ+

1

2

∫ ∥u(t)∥2
ξ−1/4

0

g(y)dy

≤ Θξ(t) +
∥f∥20
2ε

,

From (1.6) and (1.7) we obtain

1

2
(β − ε(1 + β))∥ut(t)∥2ξ−1/4 +

1

2
(α− π−2K1 − ε(2 + β))∥u(t)∥2ξ

(3.6)

≤ Θξ(t) +
∥f∥20
2ε

+
K0

2
+
K2

2
.

Taking into account (3.2) and (3.3), we find

εΘξ(t)−Πξ(t) =
3ε

2
∥ut∥2ξ−1/2 +

(
3εβ

2
− δ

)
∥ut∥2ξ−1/4 −

εα

2
∥u∥2ξ

+
ε2δ

2
∥u∥2ξ−1/4 +

ε

2

∫ ∥u∥2
ξ−1/4

0

g(y) dy

− εg(∥u∥2ξ−1/4)∥u∥
2
ξ−1/4

+ ε2⟨ut, u⟩ξ−1/2 + ε2β⟨ut, u⟩ξ−1/4,
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using (3.4) it follows that

εΘξ(t)−Πξ(t) =
3ε

2
∥ut∥2ξ−1/2 +

(
3εβ

2
− δ

)
∥ut∥2ξ−1/4 −

εα

2
∥u∥2ξ

+
ε2δ

2
∥u∥2ξ−1/4 +

ε

2

∫ ∥u∥2
ξ−1/4

0

g(y) dy

− εg(∥u∥2ξ−1/4)∥u∥
2
ξ−1/4

+
1

2
ε2(1 + β)(∥ut∥2ξ−1/4 + ∥u∥2ξ).

From (1.6) and (1.7), we get

εΘξ(t)−Πξ(t) ≤
(
ε

2
(1 + β)(ε+ 3)− δ

)
∥ut(t)∥2ξ−1/4

+
ε

2
[ε(δ + 1 + β) + π−2K1 − α]∥u(t)∥2ξ(3.7)

+ ε

(
K0

2
+K2

)
.

In (A3), we assumed that K1 < π2α. For sufficiently small ε > 0,
inequality (3.7) becomes

εΘξ(t)−Πξ(t) ≤ ε

(
K0

2
+K2

)
.

Using (3.1), we get

d

dt
Θξ(t) + εΘξ(t) ≤ ε

(
K0

2
+K2

)
,

that is,
d

dt
(eεtΘξ(t)) ≤ ε

(
K0

2
+K2

)
eεt.

Integrating the above inequality from 0 into t, where t ∈ (0, τ), we find

(3.8) Θξ(t) ≤ Θξ(0)e
−εt +

K0

2
+K2, for all t ∈ [0, τ).

Again, since K1 < π2α, we can choose ε > 0 sufficiently small such
that

min{β − ε(1 + β), α− π−2K1 − ε(2 + β)} > 0.
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Choosing

k7 = 1
2 min{β − ε(1 + β), α− π−2K1 − ε(2 + β)},

k8 = 1
2 max

{
1 + β + ε(1 + β),

α+ ε(2 + δ + β) + maxy∈[0,∥u(0)∥2
ξ]
|g(y)|

}
,

and using (3.5) and (3.6), it follows that

Θξ(0) ≤ k8(∥ut(0)∥2ξ−1/4 + ∥u(0)∥2ξ) +
∥f∥20
2ε

= k8∥Φ0∥2Eξ,ξ−1/4
+

∥f∥20
2ε

and

k7∥Sξ(t)Φ0∥2Eξ,ξ−1/4
= k7(∥ut(t)∥2ξ−1/4 + ∥u(t)∥2ξ)

≤ Θξ(t) +
∥f∥20
2ε

+
K0

2
+
K2

2
.

In such a case, recalling (3.8) and the previous two inequalities, it
follows that for t ∈ [0, τ),

(3.9) ∥Sξ(t)Φ0∥2Eξ,ξ−1/4
≤ 1

k7

[(
k8∥Φ0∥2Eξ,ξ−1/4

+
∥f∥20
2ε

)
e−εt + k9

]
,

where

k9 =
∥f∥20
2ε

+K0 +
3K2

2
.

Using (2.6) and (3.9) it is clear that for Φ0 ∈ E3/4,1/2, the solution exists
globally in E3/4,1/2, and since E3/4,1/2 ⊂ Eξ,ξ−1/4, such a solution
exists globally in Eξ,ξ−1/4. Using the fact that E3/4,1/2 is dense in
Eξ,ξ−1/4, we find that for ξ ∈ [1/2, 3/4] and Φ0 ∈ Eξ,ξ−1/4, the unique
solution (2.3) of (2.2) exists globally in Eξ,ξ−1/4.

For R > 0 and Φ0 ∈ Eξ,ξ−1/4 such that ∥Φ0∥2Eξ,ξ−1/4
≤ R, using

(3.9), it follows that

(3.10) ∥Sξ(t)Φ0∥2Eξ,ξ−1/4
≤ 2k9/k7, for all t ≥ t1,

where

t1 = t1(R) =
1

ε
ln[(k8R+ ∥f∥20/2ε)/k9].
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Thus, the solution semiflow S(t) generated by the solutions of (2.2) is
bounded dissipative in Eξ,ξ−1/4. �

4. Global attractor. Here we present the main result of this work,
where we prove the existence of a global attractor for the solution
semiflow generated by the solutions of (2.2) in Eξ,ξ−1/4, for ξ ∈
[1/2, 3/4]. Indeed, we show that the solution semiflow is κ-contracting,
then Lemma 3.2 and the classical theory of global attractors provide
the result.

Lemma 4.1. In Eξ,ξ−1/4, ξ ∈ [1/2, 3/4], the semiflow Sξ(t) generated
by the solutions of (2.2) is uniformly κ-contracting.

Proof. For ξ ∈ [1/2, 3/4], let D be a bounded set in

Eξ,ξ−1/4, Φ0i ∈ E3/4,1/2 ∩D, i = 1, 2,

and let
Sξ(t)Φ0i = Φi(t) = (ui(t), uit(t))

T , i = 1, 2

be the solutions of (2.2) given by (2.5). Let

Y (t) = Φ1(t)− Φ2(t) = (y(t), yt(t))
T ,

where y(t) = u1(t) − u2(t). Recalling Remark 3.1 and equation (1.3),
we obtain

(4.1) (1 + βA1/2)ytt + δA1/2yt + αAy

= g(∥u2∥2ξ−1/4)A
1/2u2 − g(∥u1∥2ξ−1/4)A

1/2u1.

For t > 0, let us consider the inner product of the last equation with
A2ξ−1(yt + εy) in H, ε > 0, we get

(4.2)
d

dt
Ξξ(t) + Γξ(t) = Gξ(t;u1, u2),

where

Ξξ(t) =
1

2
∥yt∥2ξ−1/2 +

β

2
∥yt∥2ξ−1/4 +

α

2
∥y∥2ξ +

εδ

2
∥y∥2ξ−1/4

+ ε⟨yt, y⟩ξ−1/2 + εβ⟨yt, y⟩ξ−1/4

Γξ(t) = (δ − εβ)∥yt∥2ξ−1/4 − ε∥yt∥2ξ−1/2 + εα∥y∥2ξ ,
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and

Gξ(t;u1, u2) = ⟨g(∥u2∥2ξ−1/4)A
1/2u2

− g(∥u1∥2ξ−1/4)A
1/2u1, A

2ξ−1(yt + εy)⟩0.

Recalling (1.7) and (3.4) it follows that, for sufficiently small ε,

(4.3) Ξξ(0) ≤
1

2
(1+β)(1+ε)∥yt(0)∥2ξ−1/4+

1

2
(α+ε(1+β+δ))∥y(0)∥2ξ ,

(4.4) Ξξ(t) ≥
1

2
(β − ε(1 + β))∥yt(t)∥2ξ−1/4 +

1

2
(α− ε(1 + β))∥y(t)∥2ξ ,

(4.5) εΞξ(t)− Γξ(t) ≤ 0.

In such a case, using (4.2) and (4.5), we obtain

d

dt
Ξξ(t) + εΞξ(t) ≤ Gξ(t;u1, u2), for all t > 0.

That is,

(4.6)
d

dt
(eεtΞξ(t)) ≤ eεtGξ(t;u1, u2), for all t > 0.

From (3.9), it follows that there exists k10 = k10(D) such that

(4.7) ∥Sξ(t)Φ0i∥Eξ,ξ−1/4
= (∥ui(t)∥2ξ + ∥uit(t)∥2ξ−1/4)

1/2 ≤ k10,

for all t ≥ 0, i = 1, 2. Taking into account (1.7), (2.1) and (4.7), there
exists k11 = k11(D) such that for t ≥ 0,

Gξ(t;u1, u2) = ⟨(g(∥u2∥2ξ−1/4)− g(∥u1∥2ξ−1/4))A
1/2u1

− g(∥u2∥2ξ−1/4)A
1/2y, A2ξ−1(yt + εy)⟩0.

= (g(∥u2∥2ξ−1/4)− g(∥u1∥2ξ−1/4))⟨u1, yt + εy⟩ξ−1/4

− g(∥u2∥2ξ−1/4)⟨y, yt + εy⟩ξ−1/4

≤ |g(∥u2∥2ξ−1/4)− g(∥u1∥2ξ−1/4)|∥u1∥ξ−1/4∥yt + εy∥ξ−1/4

+ |g(∥u2∥2ξ−1/4)|∥y∥ξ−1/4∥yt + εy∥ξ−1/4 ≤ k11∥y∥ξ−1/4.
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Substituting the previous inequality into (4.6) and integrating the result
from 0 into t > 0, we get

(4.8) Ξξ(t) ≤ e−εtΞξ(0) + ε−1k11 max
l∈[0,t]

∥y(l)∥ξ−1/4.

We can choose ε > 0 sufficiently small such that

min{β − ε(1 + β)α− ε(1 + β)} > 0.

Let

k12 =
1

2
max{(1 + β)(1 + ε), α+ ε(1 + β + δ)},

k13 =
1

2
min{(β − ε(1 + β)), (α− ε(1 + β))} > 0.

In such a case, recalling (4.3) and (4.4), we find

(4.9) Ξξ(0) ≤ k12(∥yt(0)∥2ξ−1/4 + ∥y(0)∥2ξ) = k12∥Φ01 − Φ02∥2Eξ,ξ−1/4
,

(4.10)

k13∥Sξ(t)Φ01−Sξ(t)Φ02∥2Eξ,ξ−1/4
=k13(∥yt(t)∥2ξ−1/4+∥y(t)∥2ξ)1/2≤Ξξ(t).

Using (4.8)–(4.10), it follows that

∥Sξ(t)Φ01 − Sξ(t)Φ02∥2Eξ,ξ−1/4
≤ k12
k13

e−εt∥Φ01 − Φ02∥2Eξ,ξ−1/4

+
k11
εk13

max
l∈[0,t]

∥u1(l)− u2(l)∥ξ−1/4, for all t > 0,

that is,

∥Sξ(t)Φ01 − Sξ(t)Φ02∥Eξ,ξ−1/4
≤

(
k12
k13

)1/2

e−εt/2∥Φ01 − Φ02∥Eξ,ξ−1/4

(4.11)

+

(
k11
εk13

)1/2

max
l∈[0,t]

∥u1(l)− u2(l)∥1/2ξ−1/4, for all t > 0.

Since E3/4,1/2 is dense in E3/4,1/2, one can see that the above inequality
is satisfied for Φ0i ∈ D, i = 1, 2.
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Now we shall apply the Ascoli-Arzela theorem in order to prove that
for all t > 0,

ρt(Φ01,Φ02) =

(
k11
εk13

)1/2

max
l∈[0,t]

∥u1(l)− u2(l)∥1/2ξ−1/4,

is a precompact pseudometric in Eξ,ξ−1/4. Indeed, given a bounded se-

quence {Φn
0}∞n=1 in Eξ,ξ−1/4, let Sξ(t)Φ

n
0 = Φn(t) = (un(t), unt(t))

T , n =
1, 2, . . ., be the solutions of (2.2). From (3.9), it is clear that there exists
a constant k14 = k14({Φn

0}) > 0 such that

(4.12) ∥Sξ(t)Φ
n
0∥2Eξ,ξ−1/4

= ∥un(t)∥2ξ + ∥unt(t)∥2ξ−1/4 ≤ k214,

for all t ≥ 0, n = 1, 2, . . . . Using (4.12) and the fact that V ξ is
compactly embedded in V ξ−1/4, we find that {un(t)}∞n=1 is precompact
in V ξ−1/4, for all t ≥ 0. From the Sobolev embedding theorem, we know
that V ξ−1/4 is compactly embedded in

CB(0, 1) = {f : f is a continuous and bounded function on (0, 1)},

that is, there exists a constant k15 such that

sup
ρ∈(0,1)

|φ(ρ)| ≤ k15∥φ∥2ξ−1/4, for all φ ∈ V ξ−1/4.

From (4.12) and the last inequality, it follows that

sup
ρ∈(0,1)

|unt(ρ, t)| ≤ k16, for all t ≥ 0, n = 1, 2, . . . ,

where k16 = k14k15. In such a case, using the mean value theorem, we
find

∥un(t1)− un(t2)∥ξ−1/4 ≤ k16|t1 − t2|,
for all t1, t2 ≥ 0, n = 1, 2, . . . ,

that is, the sequence {un(t)}∞n=1, as V
ξ−1/4-valued functions, is equicon-

tinuous in t, for all t ≥ 0. In such a case, using the Ascoli-Arzela
theorem, there is a subsequence of {un(t)}∞n=1which is convergent in
the Frechet space L∞

loc[0,∞;V ξ−1/4) and this is a Cauchy sequence
with respect to ρt(Φ01,Φ02). Thus ρt is a precompact pseudometric on
Eξ,ξ−1/4.

Taking into account (4.11), since Ψ(t) = (k12/k13)
1/2e−εt/2 is a

nonincreasing function such that Ψ(t) → 0 as t → ∞ and we proved
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that ρt is a precompact pseudometric on Eξ,ξ−1/4. From [13, Lemma
22.5] we find that the semigroup Sξ(t) on Eξ,ξ−1/4 is uniformly κ-
contracting. �

Now we are ready to introduce the main result of this work.

Theorem 4.2. Given ξ ∈ [1/2, 3/4], there exists a global attractor
Aξ,ξ−1/4 for the solution semiflow Sξ(t) generated by the solutions of
(2.2) in Eξ,ξ−1/4 which attracts every bounded set in Eξ,ξ−1/4.

Proof. From Lemmas 3.2 and 4.1, we know that for ξ ∈ [1/2, 3/4],
the semiflow Sξ(t) is bounded dissipative and κ-contracting in Eξ,ξ−1/4.
In such a case, following the classical theory of global attractors we get
the result. �
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