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THE STRUCTURE OF SPACES OF R-PLACES
OF RATIONAL FUNCTION FIELDS

OVER REAL CLOSED FIELDS

KATARZYNA KUHLMANN

ABSTRACT. For arbitrary real closed fields R, we study
the structure of the space M(R(y)) of R-places of the
rational function field in one variable over R and determine
its dimension to be 1. We determine small subbases for its
topology and discuss a suitable metric in the metrizable case.
In the case of non-archimedean R, we exhibit the rich variety
of homeomorphisms of subspaces that can be found in such
spaces.

1. Introduction. Let X (K) be the space of orderings, given in the
form of positive cones (not containing 0), of a formally real field K,
and let M(K) be the space of R-places of K, i.e., places ξ : K → R,
where R = R ∪ {∞}, i.e., a circle. It is well known that X (K) is a
Boolean space (i.e., it is compact, Hausdorff and totally disconnected)
under the Harrison topology given by the subbasis of sets

H(a) := {P ∈ X (K) | a ∈ P}, a ∈ K \ {0}.

The natural surjection

(1.1) λ : X (K) −→M(K)

makes M(K) (with the quotient topology) a compact Hausdorff space.
A subbasis for the quotient topology on M(K) is given by the family
of open sets of the form

U(a) = {ξ ∈M(K) | ξ(a) ∈ R+}, a ∈ K.

Here, “ξ(a) ∈ R+” means that ∞ ̸= ξ(a) > 0. For details, see [9]. In
the present paper, the quotient topology will be called the Harrison
topology on M(K).
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Let R be a real closed field. The unique ordering Ṙ2 of R determines
a natural valuation

v : R −→ vR ∪ {∞}

with vR a divisible ordered abelian group. This turns R into an
ultrametric space, where the ultrametric distance u is defined as follows:

u(a, b) = v(a− b).

Take any cut (S, T ) in vR. The ultrametric ball with center at a ∈ R
and radius T is defined as:

BT (a) = {b ∈ R : v(b− a) ∈ T ∪ {∞}}.

If B1 and B2 are ultrametric balls in R, then one of the following holds:
B1 ⊂ B2, B2 ⊂ B1 or B1 ∩ B2 = ∅. Every ball B determines two cuts
in R: B− with the lower cut set {a ∈ R | a < B} and B+ with the
upper cut set {a ∈ R | a > B}.

Throughout this paper, R(y) will always denote the rational function
field in one variable over the field R. Let C(R) be the set of cuts in R
(which includes the improper cuts (∅, R) and (R, ∅)).

Proposition 1.1. If R is a real closed field, then there is a bijection
χ from C(R) onto X (R(y)) given by

(1.2) (D,E) 7−→ P, where

P = {f ∈ R(y) | ∃d∈D∪{−∞}∃e∈E∪{∞}∀c∈(d,e)f(c) > 0}

for (D,E) ∈ C(R). The inverse mapping is

(1.3) P 7−→ (DP , EP ),

where DP = {d ∈ R | d < y} and EP = {e ∈ R | y < e} for
P ∈ X (R(y)).

Indeed, it is well known that, since R is a real closed field, the
mapping (1.3) is a bijection, and it is an easy exercise to prove that the
set P in (1.2) is a positive cone. It contains y − c if and only if c ∈ D,
and therefore, P is the unique positive cone that maps to (D,E) via
the mapping in (1.3).
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The set of cuts of an ordered set is an ordered set, so it carries
the order topology. In fact, the bijection given above is a homeomor-
phism between the spaces C(R) with order topology and X (R(y)) with
Harrison topology. For details, see [8]. In that paper, we also gave
a handy criterion for two orderings on R(y) to be sent to the same
R-place by λ. We say that C1 and C2 are equivalent cuts if C1 = C2 or
{C1, C2} = {B−, B+} for some ultrametric ball B in R.

Theorem 1.2. Take a real closed field R and two distinct orderings P1

and P2 of R(y). Let C1 and C2 be the corresponding cuts in R. Then
λ(P1) = λ(P2) if and only if C1 and C2 are equivalent.

For any r ∈ R, the set {r} is an ultrametric ball since {r} = BT (r)
for T = ∅. AlsoR = BvR(0) is an ultrametric ball. The cuts r− := {r}−
and r+ := {r}+ determined by a ball {r} are called principal cuts.
The cuts determined by the ball R, i.e., the cuts (∅, R) and (R, ∅), are
called improper cuts. The R-place of R(y) determined by principal cuts
in r will be called the r-principal place, and the place determined by
improper cuts will be called the ∞-principal place. All these places will
be called principal places. Note that, since the set of principal cuts
is dense in the space X (R(y)), the set of principal places is dense in
M(R(y)).

In Section 2, we will show that a subbasis for the spaceM(R(y)) can
be given by the rather small collection of all sets U(f) where f runs
through all linear function and functions of the form (y − a)/(y − b),
all of them with coefficients in any dense subfield of R.

The space M(R(y)) is metrizable if and only if R contains a count-
able dense subfield (see [8]). In Section 3, we will use the subbasis
described above to obtain a metric on M(R(y)) in the metrizable case.

The problem of determining the topological dimensions of spaces
of R-places of function fields seems to be very complicated. Recently,
some new results have appeared in [1] regarding the dimension of spaces
of R-places of rational function fields in several variables over totally
archimedean fields. In Section 4, we determine the dimension of the
spaceM(R(y)) for any (not necessarily archimedean) real closed fieldR.
In general dimension theory, there are three basic notions of dimension
of a topological space: the covering dimension, the small inductive
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dimension and the large inductive dimension. If a compact space is
not metrizable, then the values of the various dimensions may differ.
However, we prove:

Theorem 1.3. If R is any real closed field, then the (small or large)
inductive dimension and the covering dimension of M(R(y)) are 1.

In Section 4, we will mention other known results about dimensions
of spaces of R-places of certain rational function fields.

It is well known that, for any archimedean real closed field R the
space M(R(y)) is homeomorphic to a circle. In fact, this is an easy
consequence of Theorem 1.2. The latter can be employed to show
the amazingly rich topological structure of M(R(y)) when R is non-
archimedean real closed. Indeed, any non-trivial automorphism of
the field R(y) generates a non-trivial homeomorphism of M(R(y))
which reveals homeomorphisms between subspaces of this space. In
particular cases, the space M(R(y)) can be self-homeomorphic, i.e.,
homeomorphic to proper subspaces. We will describe these types of
homeomorphisms of M(R(y)) in Sections 5 and 6.

Analyzing the gluing, we obtain in Section 6 the big picture of what
we have named the “densely fractal pearl necklace.” While a rich self-
similarity structure is commonly seen as an indication for a fractal, it is
usually not taken as the only criterion, However, M(R(y)) is compact;
hence, in the metrizable case (see Section 3) it is automatically called
“fractal” by some authors. Using the results from Sections 2 and 3, we
will study in a subsequent paper in which way M(R(y)) meets other
classical definitions of fractals. In the non-metrizable case, the use of
the notion “fractal” is even more delicate, as there seems to be no
authoritative literature on possible definitions in this case. We will try
to make a contribution to this problem in another subsequent paper.

2. A small subbasis for M(R(y)). Take any real closed field R.
Denote by v the natural valuation on R with value group vR and by
ξ0 the corresponding unique R-place of R. A subbasis of M(R(y)) is
given by the sets

U(f) = {ξ ∈M(R(y)) | ξ(f) ∈ R+}, f ∈ R(y).
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In this chapter, we will present a much smaller subbasis. We need
some preparations. We will say that f ∈ R(y) is Q+-bounded on a
subset S ⊆ R if there are positive rational numbers q1 and q2 such that
q1 ≤ f(c) ≤ q2 for every c ∈ S.

Lemma 2.1. Take f ∈ R(y), ξ ∈ M(R(y)) and P ∈ λ−1(ξ). Let
(D,E) be the cut in R corresponding to P . Then ξ ∈ U(f) if and only
if there are d ∈ D∪{−∞} and e ∈ E∪{∞} such that f is Q+-bounded
on (d, e).

Proof. Assume first that ξ ∈ U(f). Then there are positive rational
numbers q1 and q2 such that q1 < ξ(f) < q2. Therefore, q1 <P f <P q2.
By (1.2), there exist d ∈ D ∪ {−∞} and e ∈ E ∪ {∞} such that
q1 < f(c) < q2 holds in R for every c ∈ (d, e).

Now suppose that there are d ∈ D ∪ {−∞}, e ∈ E ∪ {∞} and
positive rational numbers q1 and q2 such that q1 ≤ f(c) ≤ q2 for every
c ∈ (d, e). Then there are also positive rational numbers q′1 and q′2 such
that q′1 < f(c) < q′2 for every c ∈ (d, e). This implies by (1.2) that
q′1 <P f <P q

′
2, whence q

′
1 ≤ ξ(f) ≤ q′2 and ξ ∈ U(f). �

Corollary 2.2. Take g ∈ R(y), and suppose that g is Q+-bounded on
(d, e). If (D∗, E∗) is a cut in (d, e), i.e., d ∈ D∗∪{−∞} and E∗∪{∞},
then the R-place η determined by the ordering corresponding to the cut
(D∗, E∗) is in U(g).

Corollary 2.3. Assume that f is a linear polynomial and ξ ∈M(R(y))
is induced by the ball-cuts generated by a ball B. Then ξ ∈ U(f) if and
only if f is Q+-bounded on B.

Proof. Denote by (D,E) and (D′, E′) with D ⊂ D′ the two ball cuts
induced by B. Then Lemma 2.1 shows that ξ ∈ U(f) if and only if
there are d ∈ D∪{−∞}, e ∈ E, d′ ∈ D′, and e′ ∈ E′∪{∞} such that f
is Q+-bounded on (d, e) and on (d′, e′). This in turn holds if and only
if f is Q+-bounded on (d, e) ∪ (d′, e′).

Assume that the latter holds. Because f is linear, we then have for
every b ∈ B that f(b) lies between f(d) and f(e′), so f is Q+-bounded
on B.
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Now assume that f is Q+-bounded on B, that is, there are positive
rational numbers q1, q2 such that q1 ≤ f(c) ≤ q2 for every c ∈ B. Take
positive rational numbers q′1 and q′2 such that q′1 < q1 and q2 < q′2. If
f is not constant, then define

d = min{f−1(q′1), f
−1(q′2)}

and

e′ = max{f−1(q′1), f
−1(q′2)}.

Then d, e′ /∈ B, and therefore, d ∈ D and e′ ∈ E′. If f is constant and
Q+-bounded on the ball B, then f is Q+-bounded on R, and hence,
also on (d, e) ∪ (d′, e′). �

Remark 2.4. The Baer-Krull theorem says that the number of or-
derings of the field F determining the same R-place ξ is equal to the
number of characters of the quotient group Vξ/2Vξ, where Vξ denotes
the value group of the valuation vξ originating from ξ. In [7], the au-
thors described all possible value groups determined by orderings of the
field R(y). Either the group is equal to vR (in the immediate and in
the residue transcendental case), or it is isomorphic to vR ⊕ Z (in the
value transcendental case). Since vR is divisible, ξ is determined by a
single ordering if Vξ = vR, and by two orderings if Vξ = vR ⊕ Z. On
the other hand, Theorem 1.2 gives us that ξ ∈M(R(y)) is determined
by a single ordering if and only if the cut corresponding to this ordering
is a non-ball cut. We conclude that Vξ = vR ⊕ Z if ξ is induced by a
ball cut, and Vξ = vR otherwise.

If ξ ∈M(R(y)) is induced by the ball-cuts generated by a ball BT (a),
then by [8, Lemma 2.6], we have that

v(a− d) > vξ(y − a) > v(a− e),

for every d ∈ BT (a) and e /∈ BT (a), that is, vξ(y − a) is not an
element of vR, and it induces the cut (vR \ T, T ) in vR. Conversely, if
vξ(y− a) ∈ vR(y) \ vR induces the cut (vR \ T, T ) in vR, then the cut
induced by y − a is a ball cut induced by the ball BT (a).



SPACES OF R-PLACES 539

Suppose that F is any dense subfield of R. Consider the following
family F of functions:

F =
{
a+ by,

y − a

y − b
| a, b ∈ F

}
.

Theorem 2.5. The family {U(f) | f ∈ F} forms a subbasis for the
Harrison topology on M(R(y)).

Proof. Take any g ∈ R(y). We will show that U(g) is the union
of finite intersections of sets U(f) for suitable f ∈ F . For this, it is
enough to show that, for each ξ ∈ U(g), there is a finite intersection U
of sets U(f) such that ξ ∈ U ⊂ U(g).

Let P be an ordering corresponding to ξ ∈ U(g). We will consider
two cases, depending on whether the cut (D,E) corresponding to P is
a ball cut or not.

Case 1. Assume that (D,E) is a non-ball cut, i.e., P is the unique
ordering determining ξ and (D,E) is a proper cut. Denote by Vξ the
value group of the valuation vξ which corresponds to ξ. According to
Remark 2.4, we have that Vξ = vR. By Lemma 2.1, and since D ̸= ∅
and E ̸= ∅, there are d ∈ D and e ∈ E such that g is Q+-bounded
on (d, e). Since (D,E) is a non-ball cut, it cannot be principal, i.e., D
does not have a last element and E does not have a first element. So
we can choose elements d and e closer and closer to the cut, and by the
density of F in R we can assume that d, e ∈ F . Suppose first that the
following equalities hold:

(2.1) vξ(y − d) = v(e− d) = vξ(e− y).

Consider the linear functions

f1(y) =
y − d

e− d
and f2(y) =

e− y

e− d
,

and set U = U(f1) ∩ U(f2). We have that vξ(f1) = vξ(f2) = 0 and
f1, f2 ∈ P , so ξ ∈ U . Take any η ∈ U and a cut (D∗, E∗) corresponding
to any ordering determined by η. There are d∗ ∈ D∗ and e∗ ∈ E∗ such
that f1 and f2 are Q+-bounded on (d∗, e∗). Therefore, f1(c) > 0 and
f2(c) > 0 for every c ∈ (d∗, e∗). Since both functions f1 and f2 are
positive at the same time only on the interval (d, e), we have that
d ≤ d∗ < e∗ ≤ e. By Corollary 2.2, η ∈ U(g).
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Now suppose that (2.1) does not hold. We shall consider the case of
v(e− d) < vξ(y − d). The case of v(e− d) < vξ(e− y) is symmetrical.
By the density of F in R and the equality Vξ = vR, there is a positive
b ∈ F such that v(b) = vξ(y − d). Set f(y) = (y − d)/b and U = U(f).
Then, vξ(f) = 0 and f ∈ P , thus ξ ∈ U . Take η ∈ U , and let (D∗, E∗)
be a cut corresponding to any ordering determined by η. Then there
are d∗ ∈ D∗ and e∗ ∈ E∗ such that f is Q+-bounded on (d∗, e∗). This
yields that d ≤ d∗. Since v(e − d) < vξ(y − d) = v(b), we have that
v(e− d)/b < 0 which shows that e cannot lie in (d∗, e∗) and therefore,
e∗ ≤ e. Hence, again by Corollary 2.2, η ∈ U(g).

Case 2. Assume that (D,E) is a ball cut induced by B = BT (a).
Let (D′, E′) be the other cut induced by this ball. We can assume
that (D,E) = B− and (D′, E′) = B+. First we consider the case of
B ̸= R. By Lemma 2.1, there exist d ∈ D, e ∈ E, d′ ∈ D′ and e′ ∈ E′

such that g is Q+-bounded on (d, e) ∪ (d′, e′). Then, by continuity, g
is Q+-bounded on [d, e] ∪ [d′, e′] as well. Since B = E ∩ D′ is a ball,
D does not have a last element and E′ does not have a first element.
Therefore, by the density of F in R, we can assume that d and e′ belong
to F .

First, assume that [d, e]∩ [d′, e′] ̸= ∅, i.e., g is Q+-bounded on [d, e′].
Using the density of F in R, we choose positive b1, b2 ∈ F such that
v(b1) = v(a−d) and v(b2) = v(e′−a). We consider the linear functions

f1(y) =
y − d

b1
and f2(y) =

e′ − y

b2
.

We set U = U(f1) ∩ U(f2) and take d1 = (d+ a)/2. Since d /∈ BT (a),
we have that v(d1 − a) = v(d− a)/2 = v(d− a) < T ; thus, d1 /∈ BT (a).
Therefore, d1 ∈ D. Moreover, f1(d1) = (a− d)/(2b1) > 0 and
v(f1(d1)) = 0, so ξ(f1(d1)) ∈ R+. Similarly, ξ(f1(a)) ∈ R+, and since
f1 is a linear function, we have that f1(d1) ≤ f1(c) ≤ f1(a) for every
c ∈ [(d+ a)/2, a]. Therefore, f1 is Q+-bounded on ((d+ a)/2, a). By
Lemma 2.1, this implies that ξ ∈ U(f1). In a similar way, one shows
that f2 is Q+-bounded on (a, (a+ e′)/2), and therefore, ξ ∈ U(f2). We
have proved that ξ ∈ U .

Take any η ∈ U . Let (D∗, E∗) be a cut corresponding to any order-
ing determined by η. Then there are d∗ ∈ D∗ and e∗ ∈ E∗ such that f1
and f2 are Q+-bounded on (d∗, e∗). Therefore, f1(c) > 0 and f2(c) > 0
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for every c ∈ (d∗, e∗). This implies that d ≤ d∗ < e∗ ≤ e′ and, by
Corollary 2.2, η ∈ U(g).

Now assume that [d, e] ∩ [d′, e′] = ∅. Then B has more than one
element. In this case, we can choose the elements d < e < d′ < e′ to
be in F . Consider the two linear functions

f1(y) =
y − d

e− d
and f2(y) =

e′ − y

e′ − d′
,

and the function

(2.2) f3 =
y − e

y − d′
= 1 +

d′ − e

y − d′
.

We set U = U(f1) ∩ U(f2) ∩ U(f3). Since e, d′ ∈ B, we have that
B = BT (a) = BT (e) = BT (d

′). Therefore, the same arguments as in
the previous case yield that f1 is Q+-bounded on ((d+ e)/2, e) and f2
is Q+-bounded on (d′, (d′ + e′)/2), whence ξ ∈ U(f1) ∩ U(f2). Since
B = BT (d

′) and e ∈ B, by Remark 2.4, we have that v(e − d′) >
vξ(y − d′). Therefore, we obtain that

vξ(f3) = min

{
v(1), vξ

(
d′ − e

y − d′

)}
= 0.

Moreover, f3 ∈ P , thus ξ ∈ U(f3) and finally ξ ∈ U .

Take η ∈ U , and let (D∗, E∗) be a cut corresponding to any ordering
determined by η. Then there are d∗ ∈ D∗ and e∗ ∈ E∗ such that f1,
f2 and f3 are Q+-bounded on (d∗, e∗). Therefore, f1(c) > 0, f2(c) > 0
and f3(c) > 0 for every c ∈ (d∗, e∗). Since all three functions f1, f2 and
f3 are positive at the same time only on the set (d, e)∪ (d′, e′), we find
that either d ≤ d∗ < e∗ ≤ e or d′ ≤ d∗ < e∗ ≤ e′. By Corollary 2.2,
η ∈ U(g).

Now we consider the case of B = R, so D = ∅ = E′. By
Lemma 2.1, there exist e ∈ E and d′ ∈ D′ such that g is Q+-bounded on
(−∞, e)∪ (d′,∞). If (−∞, e)∩ (d′,∞) ̸= ∅, then we can take U = U(1)
since U = U(g) = U(1), and we are done. So let us assume now that
(−∞, e) ∩ (d′,∞) = ∅.
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Consider the function

f =
y − e

y − d′
= 1 +

d′ − e

y − d′
,

and set U = U(f). Since ξ(f) = 1, we have that ξ ∈ U .

Take η ∈ U , and let (D∗, E∗) be a cut corresponding to any ordering
determined by η. Then there are d∗ ∈ D∗ and e∗ ∈ E∗ such that f
is Q+-bounded on (d∗, e∗). Therefore, f(c) > 0 for every c ∈ (d∗, e∗).
Since f is positive only on the set (−∞, e)∪ (d′,∞), we find that either
d∗ < e∗ ≤ e or d′ ≤ d∗ < e∗. By Corollary 2.2, η ∈ U(g). �

Remark 2.6. The family {U(f) | f linear polynomial in F (y)} does
not form a subbasis for the Harrison topology on M(R(y)). Indeed,
take any non-singleton ball B in R and any two elements e < d′

in B. Consider the function f3 as in (2.2). We have already shown
that the place ξ induced by the ball-cuts generated by B belongs to
U(f3). Suppose there was a finite intersection U = U(g1)∩ · · · ∩U(gk)
with linear polynomials g1, . . . , gk such that ξ ∈ U ⊆ U(f3). By
Corollary 2.3, ξ ∈ U(gi) implies that gi is Q+-bounded on B and
hence on {d′}, for 1 ≤ i ≤ k. Now take η to be the principal place
induced by the ball-cuts generated by the principal ball {d′}. Again,
by Corollary 2.3, η ∈ U(gi) for 1 ≤ i ≤ k, whence η ∈ U(f3). But
η(f3) = ∞, a contradiction.

As a corollary to Theorem 2.5, it follows that the family F weakly
separates points in M(R(y)), i.e., if ξ, η ∈ M(R(y)) with ξ ̸= η, then
there is an f ∈ F such that ξ(f) ̸= η(f). But we will prove an even
stronger result. For every γ ∈ vR = vF , we choose an element cγ ∈ F
such that vcγ = γ. For every γ ∈ vR, write Oγ = {a ∈ R | va ≥ γ}
and Mγ = {a ∈ R | va > γ}. Then consider a set S0

γ of representatives
for the cosets in the quotient R/Oγ of additive groups, and Sγ to be
a set of representatives for the cosets in the quotient R/Mγ . By the
density of F in R, the sets S0

γ and Sγ can be chosen as subsets of F .
We will consider the following subfamilies of F :

F0 :=

{
y − a

cγ
| a ∈ Soγ , γ ∈ vR

}
F1 :=

{
y − a

rcγ
| a ∈ Sγ , γ ∈ vR

}
.
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Proposition 2.7. The family F0 weakly separates points in M(R(y)).
It is minimal with this property.

Proof. Take ξ1, ξ2 ∈ M(R(y)) with ξ1 ̸= ξ2, and take Ci = (Di, Ei)
to be a cut corresponding to any ordering determined by ξi for = 1, 2.
We can assume that D1 ⊂ D2. Since ξ1 ̸= ξ2, we know that E1 ∩D2 is
not a ball. Hence, there are a1, a2 ∈ E1 ∩D2 and a3 /∈ E1 ∩D2 such
that

γ := v(a2 − a1) ≤ v(a3 − a1).

Take a ∈ S0
γ to be a representative of a1+Oγ , and consider the function

f(y) =
y − a

cγ
∈ R(y).

Note that v(a− ai) ≥ γ for all i. This implies that vf(ai) ≥ 0, whence
ξ0(f(ai)) ∈ R for all i. One of the cuts Ci lies between a1 and a3; since
f is a linear function, this yields that, for the corresponding i, ξi(f)
lies between the values ξ0(f(a1)) and ξ0(f(a3)) and is therefore itself
a real number. If only one of the two values ξ1(f) and ξ2(f) is finite,
then we are done. So let us assume that both are finite.

We have that

v(f(a1)− f(a2)) = v

(
a1 − a

cγ
− a2 − a

cγ

)
= v

(
a1 − a2
cγ

)
= 0,

so that
ξ0(f(a1)) ̸= ξ0(f(a2)).

Using this together with the fact that C1 lies on the left and C2 lies on
the right of a1 and a2, we obtain that

ξ1(f) ≤ min{ξ0(f(a1)), ξ0(f(a2))}
< max{ξ0(f(a1)), ξ0(f(a2))}
≤ ξ2(f),

which proves our first assertion.

It remains to prove that the family F0 is minimal with the property
of weakly separating points. To show this, it is enough to find, for
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every f ∈ F0, two places ξ and η ∈ M(R(y)) such that ξ(f) ̸= η(f)
and ξ(g) = η(g) whenever f ̸= g ∈ F0.

Given

f(y) =
y − a

cγ
∈ F0,

we take two balls BT (a) and BT (b), where b ∈ R, T = {δ ∈ vR : δ > γ}
and v(a− b) = γ. Then

ξ0

(
b− a

cγ

)
∈ R \ {0}.

Take ξ to be the place corresponding to the cuts BT (a)
+ and BT (a)

−

and η the place corresponding to the cuts BT (b)
+ and BT (b)

−. Then
we have:

(2.3) γ < vξ(y − a) < δ and γ < vη(y − b) < δ

for every δ > γ, which implies that

ξ

(
y − a

cγ

)
= 0 and η

(
y − b

cγ

)
= 0.

Therefore,

η(f) = η

(
y − a

cγ

)
= η

(
y − b

cγ
+
b− a

cγ

)
= ξ0

(
b− a

cγ

)
̸= 0 = ξ(f).

Now take

g(y) =
y − a′

cγ′
∈ F0, f ̸= g.

We will consider four cases to show that ξ(g) = η(g).

Case 1. Assume first that γ = γ′. Then a ̸= a′ and, by our choice of
a, we obtain that v(a−a′) < γ. It follows that vξ(y−a′) = min{vξ(y−
a), v(a−a′)} = v(a−a′) < γ′, and thus, ξ(g) = ∞. In a similar way, we
obtain that vη(y−a′) = min{vη(y−b), v(b−a), v(a−a′)} = v(a−a′) <
γ′, so ξ(g) = ∞.

Case 2. Assume that γ ̸= γ′ and v(a − a′) > γ. Then, we
have that vξ(y − a′) = min{vξ(y − a), v(a − a′)} = vξ(y − a) and
vη(y−a′) = min{vη(y− b), v(b−a), v(a−a′)} = γ. By the inequalities
(2.3), we obtain that ξ(g) = ∞ = η(g) if γ′ > γ and ξ(g) = 0 = η(g) if
γ′ < γ.
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Case 3. Assume that γ ̸= γ′ and v(a − a′) = γ. Then vξ(y − a′) =
v(a − a′) = γ. Moreover, v(b − a′) ≥ min{v(b − a), v(a − a′)} = γ. If
v(b− a′) > γ, then vη(y − a′) = min{vη(y − b), v(b− a′)} = vη(y − b).
If v(b − a′) = γ, then vη(y − a′) = min{vη(y − b), v(b − a′)} = γ. In
both subcases, again using (2.3) and distinguishing the cases of γ′ > γ
and γ′ < γ as in Case 2, one shows that ξ(g) = η(g).

Case 4. Assume that γ ̸= γ′ and v(a − a′) < γ. Then vξ(y − a′) =
v(a − a′) and vη(y − a′) = v(a − a′). If v(a − a′) ̸= γ′, then
ξ(g) = ∞ = η(g) if γ′ > γ and ξ(g) = 0 = η(g) if γ′ < γ. So,
assume now that v(a − a′) = γ′. Then, also v(b − a′) = γ′. Since
γ′ = v(a− a′) < γ = v(b− a), we have that ξ0(b− a)/cγ′ = 0. By the
inequalities (2.3), we get that

ξ

(
y − a

cγ′

)
= 0 = η

(
y − b

cγ′

)
.

Thus,

η(g) = η

(
y − a′

cγ′

)
= η

(
y − b

cγ′
+
b− a′

cγ′

)
= ξ0

(
b− a′

cγ′

)
= ξ0

(
b− a

cγ′
+
a− a′

cγ′

)
= ξ0

(
a− a′

cγ′

)
= ξ

(
y − a

cγ′
+
a− a′

cγ′

)
= ξ

(
y − a′

cγ′

)
= ξ(g).

This completes the proof of our proposition. �

Proposition 2.8. The family F1 separates points in M(R(y)) in the
topological sense, that is, if ξ1, ξ2 ∈ M(R(y)) with ξ1 ̸= ξ2, then there
is an f ∈ F such that ξ1 /∈ U(f) ∋ ξ2 or ξ2 /∈ U(f) ∋ ξ1.

Proof. In the proof of Proposition 2.7, we constructed the function
f(y) = (y − a)/cγ such that only one of the two values ξ1(f) and ξ2(f)
is finite or ξ1(f) < ξ2(f) if both are finite.

Take any rational number q, and denote by ã ∈ Sγ the representative
of a+ qcγ modulo Mγ . We set

f̃(y) :=
y − ã

cγ
.
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Since v(ã− (a+ qcγ) > γ, for every place ξ ∈M(R(y)), we have that

ξ

(
y − ã

cγ

)
= ξ

(
y − (a+ qcγ)

cγ

)
= ξ

(
y − a

cγ

)
+ ξ

(
−qcγ
cγ

)
(2.4)

= ξ(f)− q.

If ξ1(f) and ξ2(f) are both finite, then we choose q such that ξ1(f) <
q < ξ2(f) and obtain that

ξ1(f̃) < 0 < ξ2(f̃).

If ξ(f) is infinite, then by (2.4), ξ(f̃) is also infinite. Hence, in the case
of ξ1(f) finite and ξ2(f) infinite, we choose q < ξ1(f) to obtain that

ξ1(f̃) > 0 and ξ2(f̃) is infinite. For the remaining case, we interchange
the role of ξ1 and ξ2. �

3. The metrizable case. We assume that M(R(y)) is metrizable,
which is equivalent to the existence of a countable real closed field F
that lies dense in R (see [8, Theorem 4.7]).

Since F (y) is a countable field and since a subbasis for the space
M(F (y)) is defined by the elements of the field F (y), the spaceM(F (y))
is second-countable, and, by Urysohn’s metrization theorem, is metriz-
able. On the other hand, one can see M(F (y)) as a closed subset of

the space RF (y)
, where R = R ∪ {∞} is the circle (see [1]). There-

fore, the topology on M(F (y)) is induced by the restriction of the

canonical metric of the product RF (y)
. According to [3, Chapter

IX, Theorem 7.2], this metric can be defined in the following way.
First, choose any bijection σ : F (y) → N ∪ {0}. Then, the metric
ρ :M(F (y))×M(F (y)) → [0,∞) is given by

ρ(ξ, η) = sup
f∈F (y)

{2−σ(f)d0(ξ(f), η(f))},

where d0 is any fixed metric on the circle R.
Let F be the family of functions defined in Section 2. We will show

that, in the above definition of the metric, one can restrict the functions
f to the family F . The mapping d : M(F (y)) ×M(F (y)) → [0,∞),
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given by:
d(ξ, η) = sup

f∈F
{2−σ(f)d0(ξ(f), η(f))},

is symmetric, and the triangle inequality holds since it holds for d0.
By Proposition 2.7, we have d(ξ, η) = 0 if and only if ξ = η, so d is a
metric on M(F (y)).

Lemma 3.1. For every f ∈ F and every ξ ∈ U(f). There is a δ > 0
such that, if d(ξ, η) < δ, then η ∈ U(f), i.e., the metric ball Bd(ξ, δ) is
contained in U(f).

Proof. Take f ∈ F and ξ ∈ U(f). We have that ξ(f) ∈ (0,∞). Set

δ = 2−σ(f) min{d0(ξ(f), 0), d0(ξ(f),∞)}.

If d(ξ, η) < δ, then also 2−σ(f)d0(ξ(f), η(f)) < δ. Thus,

d0(ξ(f), η(f)) < min{d0(ξ(f), 0), d0(ξ(f),∞)}

and therefore, η(f) ∈ (0,∞), so η ∈ U(f). �

Proposition 3.2. The Harrison topology of the spaceM(F (y)) is equal
to the topology introduced by the metric d defined above.

Proof. Lemma 3.1 shows that every subbasic set U(f), for f ∈ F ,
is open in the topology induced by the metric d. Hence, this topology
is finer than or equal to the Harrison topology. For the reverse, note
that, since F ⊂ F (y), the definitions of the metrics d and ρ give us that
Bρ(ξ, ϵ) ⊂ Bd(ξ, ϵ). Take η ∈ Bd(ξ, ϵ). We have that, for some δ < ϵ,
Bd(η, δ) ⊂ Bd(ξ, ϵ), whence Bρ(η, δ) ⊂ Bd(η, δ) ⊂ Bd(ξ, ϵ). Therefore,
Bd(ξ, ϵ) is open in the topology induced by ρ, that is, the Harrison
topology is finer than or equal to the topology induced by d. �

By [8, Theorem 3.2], the restriction mapping

res :M(R(y)) −→M(F (y)), res(ξ) = ξ |F (y)

is a homeomorphism. By this homeomorphism, the metric d induces
the metric on M(R(y)). We have proved:
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Theorem 3.3. Let R be a real closed field and F be a countable, real
closed, dense subfield of R. Set

F =
{
a+ by,

y − a

y − b
| a, b ∈ F

}
.

Take any bijection σ : F → N. Then the mapping d : M(R(y)) ×
M(R(y)) → [0,∞) given by

d(ξ, η) = sup
f∈F

{2−σ(f)d0(ξ(f), η(f))}

is a metric on M(R(y)).

4. The dimension of M(R(y)). In the paper [1], the authors
evaluated the dimensions of the spaces of R-places of a rational function
field L = K(x1, . . . , xn) over a totally archimedean field K. They
proved that the covering dimension (dim) of such spaces is bounded
from above by n. Moreover, for n 6 2, dim(M(L)) = n. The authors
also proved that the cohomological dimension ofM(K(x1, x2)) is equal
to 1, which shows that this space is not dimensionally full-valued. The
methods used in the proofs of these results strongly rely on the fact that
K is a totally archimedean field and cannot be extended to general case.

In the present paper, we will determine the dimension of the space
M(R(y)) for any real closed field R. We consider the covering dimen-
sion dim, the small inductive dimension ind, and the strong inductive
dimension Ind. The following result is part of [11, Theorem 5]:

Theorem 4.1. If Y is the continuous image of a compact ordered
space, then dimY = indY = IndY .

Since the spaceM(R(y)) is the continuous image under the mapping
(1.1) of the compact space X (R(y)), which is ordered through the
homeomorphism with totally ordered space C(R) of cuts in R given
in Proposition 1.1, we obtain the following result:

Corollary 4.2. We have that

dimM(R(y)) = indM(R(y)) = IndM(R(y)).
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The space M(R(y)) is connected (see [5]). That gives us a lower
bound for the dimension of that space; it is at least 1. To obtain an
upper bound, we use the following theorem (cf., [10, Theorem III.7]):

Theorem 4.3. Let f be a continuous mapping of a space X onto
a space Y such that, for each point η of Y , the boundary of f−1(η)
contains at most m+ 1 points (m ≥ 1). Then dimY ≤ dimX +m.

We apply the theorem to λ : X (R(y)) → M(R(y)). For every
η ∈ M(R(y)), λ−1(η) contains at most two points and is closed, so
its boundary contains at most two points. On the other hand,

dimX (R(y)) = IndX (R(y)) = 0,

since X (R(y)) is totally disconnected. The last theorem now shows
that dimM(R(y)) ≤ 1. Putting everything together, we obtain the
equation

1 = dimM(R(y)) = indM(R(y)) = IndM(R(y)),

which proves Theorem 1.3.

5. Homeomorphisms between subspaces of M(R(y)). If L is
any field, then every automorphism σ of L induces the following
bijection of M(L) onto itself:

M(L) ∋ ξ 7−→ ξ ◦ σ ∈M(L).

This bijection is in fact a homeomorphism because

ξ ∈ U(b) ⇐⇒ ξ ◦ σ ∈ U(σ−1b).

Let us have a closer look at the case ofM(R(y)), with R a real closed
field. It is well known that the automorphisms σ of R(y) which leave
R element-wise fixed are precisely those given by

(5.1) y 7−→ ay + b

cy + d
with ad− bc ̸= 0.

We can study the effect of the homeomorphism ofM(R(y)) induced by
such an automorphism by analyzing the corresponding effect on C(R).



550 KATARZYNA KUHLMANN

If c ̸= 0, then
ay + b

cy + d
=
a

c
+
b− ad

c

cy + d
.

Hence, the assignment (5.1) can always be achieved by a composition
of addition of, and multiplication by, elements from R together with
one inversion of a linear polynomial in y. The corresponding actions
on C(R) can be described as follows. Fix an ordering on R(y), take
z ∈ R(y) such that R(y) = R(z), and let C = (D,E) be the cut
induced by z in R.

(1) The automorphism induced by z 7→ z + c for some c ∈ R. The cut
induced by z + c in R is the shifted cut C + c = (D + c, E + c). If
C = (D,E) is a ball cut generated by the ball BT (a), then C + c
is a ball cut generated by the ball BT (a+ c).

(2) The automorphism induced by z 7→ cz for some c ∈ R \ {0}. The
cut induced by cz in R is the cut cC = (cD, cE) if c > 0, and
cC = (cE, cD) if c < 0. If C is a ball cut generated by the ball
BT (a), then cC is a ball cut generated by the ball BT+v(c)(ca)
where T + v(c) is the final segment {t+ v(c) | t ∈ T}.

(3) The automorphism induced by z 7→ z−1. Denote the cut induced
by z−1 in R by C ′. If z > 0, then

C ′ = ({d | d ≤ 0 or d−1 ∈ E}, {e > 0 | e−1 ∈ D}).

If z < 0, then

C ′ = ({d < 0 | d−1 ∈ E}, {e | e ≥ 0 or e−1 ∈ D}).

In particular, this shows that, if C is a ball cut generated by the
ball {0}, then C ′ is a ball cut generated by the ball R, and vice
versa.

Now assume that C is a ball cut generated by a ball BT (a) different
from {0} and R. Let us first discuss the case where 0 ∈ BT (a), so
we can take a = 0. Then, by Remark 2.4, v(z) induces the cut (S, T )
in vR, and it follows that v(z−1) = −v(z) induces the cut (−T,−S).
Consequently, again by Remark 2.4, C ′ is a ball cut generated by the
ball B−S(0).

Finally, we deal with the case of 0 /∈ BT (a). Then, again from
Remark 2.4, it follows that vz ∈ vR and v(z − a) /∈ vR. This yields
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that v(z − a) > vz = va and

v

(
1

z
− 1

a

)
= v

(
a− z

az

)
= v(z − a)− 2v(a) /∈ vR.

The value v(z − a) − 2v(a) induces the cut in vR that has upper cut
set T − 2v(a). Consequently, by Remark 2.4, C ′ is a ball cut generated
by the ball BT−2v(a)(a

−1).

Note that the inverses of each of these actions are again of the same
form. The first two actions are either order preserving or order reversing
on R, and the last is order reversing on {r ∈ R | r < 0} and on
{r ∈ R | r > 0}. Therefore, they induce homeomorphisms on C(R).
We summarize:

Proposition 5.1. All three actions induce homeomorphisms on C(R)
that are compatible with equivalence.

As we see already from the above discussion, the balls in R are
crucial for the analysis of the homeomorphisms between subspaces of
M(R(y)). So let us make the link precise. For any set S ⊆ R, we

define Ŝ to be the closure of the set {a−, a+ | a ∈ S} in C(R). If S is

an interval in R, then Ŝ is a closed interval in C(R). If S = B is a ball

in R, then Ŝ = [B−, B+]. If S is a ball complement Bc := R \ B for

some ball B, then Ŝ = [R−, B−] ∪ [B+, R+].

Further, we send Ŝ to

S := λ ◦ χ(Ŝ) ⊆M(R(y)),

which is the set of all the R-places induced by cuts in Ŝ. Let us call
a subset of M(R(y)) a ball (in M(R(y))) if it is the image B or Bc of
a ball or ball complement in R. We can view the latter as the balls
around the place at infinity.

Now the homeomorphisms between subspaces of M(R(y)) can be
analyzed by determining which balls in R can be sent onto each other
by homeomorphisms of M(R(y)). Take a, b ∈ R, γ ∈ vR and a final
segment T of vR. Then, by a combination of actions (1) and (2)
above, BT (a) can be sent onto BT+γ(b) and BT (a)

c can be sent onto
BT+γ(b)

c, so the corresponding balls inM(R(y)) can be sent onto each
other by a homeomorphism. Further, action (3) transforms an interval
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[BT (0)
−, BT (0)

+] in C(R) into the set [R−, B−S(0)
−]∪ [B−S(0)

+, R+],

where S = vR\T . The image of this set inM(R(y)) is the ball B−S(0)c

around infinity. In particular, for every γ ∈ vR, we have the following
sequence of homeomorphisms, which we will interpret later:

Bγ+(b) −→ Bγ+(0) −→ Bγ+−2γ(0)(5.2)

= B(−γ)+(0) −→ Bγ−(0)c −→ Bγ−(a)c.

For any r ∈ R, the set

(5.3) {Bγ−(r) | γ ∈ vR}

forms a cofinal and coinitial chain of subspaces of M(R(y)) which are
all mutually homeomorphic, and whose intersection only contains the r-
principal place. The order type of this chain is equal to that of vR. The
same is true for the chains {Bγ+(r) | γ ∈ vR} and {BT+γ(r) | γ ∈ vR}.

So far, we have discussed homeomorphisms of M(R(y)) that trans-
form it onto itself. The question arises whether there are also home-
omorphisms onto proper subspaces, like zooming in on a fractal sub-
structure. How “homogeneous” is the space M(R(y))? For example,
can such chains as in (5.3) be taken so that all spaces in it are homeo-
morphic to M(R(y))? Moreover, the following question appears to be
of importance when the spaces of R-places of finite extensions of R(y)
are studied:

Open problem. If B is a non-singleton ball in R, is there a

homeomorphism from C(R) onto B̂ that is compatible with equivalence?
More generally, give a criterion for two non-singleton balls B and B′ in

R to admit a homeomorphism from B̂ onto B̂′ that is compatible with
equivalence.

Such homeomorphisms would induce interesting homeomorphisms of
M(R(y)) onto proper subspaces B. Indeed, if S is any subset of R and

ψ̂ : C(R) → Ŝ a homeomorphism compatible with equivalence, then we
obtain an induced homeomorphism ψ such that the following diagram
commutes:
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C(R)

λ◦χ

��

ψ̂ // Ŝ

λ◦χ

��
M(R(y)) ψ // S

For the conclusion of this section, we wish to give an example of a
real closed field R for which there exist homeomorphisms fromM(R(y))
onto infinitely many distinct subspaces.

Consider the power series field R = R((tQ)) with coefficients in R
and exponents in Q. This is a real closed field ([4, Theorem 4.3.7]).
Since any two countable dense linear orderings without endpoints are
order isomorphic, there exists an order isomorphism φT from Q onto
any non-empty final segment T of Q which does not have a smallest
element. Any such isomorphism induces an isomorphism

ψT : R = R((tQ)) ∋
∑
q∈Q

cqt
q 7−→

∑
q∈Q

cqt
φT (q) ∈ BT (0)

from the ordered additive group of R onto its convex subgroup B =

BT (0). This isomorphism induces a homeomorphism ψ̂T : C(R) →
B̂T (0) which is compatible with equivalence. Indeed, if T ′ is a final
segment of Q, then φT (T

′) is a final segment of Q contained in T ; hence,
the image of the ball BT ′(a) under ψT is the ball BφT (T ′)(ψT (a)).

If r is any element in R, then we can compose the homeomorphism

ψ̂T with the homeomorphism that sends B̂T (0) to B̂T (r), in order to
obtain a homeomorphism

(5.4) ψT,r :M(R(y)) −→ BT (r).

As the non-empty final segments T of Q without smallest element form
a dense linear ordering under inclusion, and since their intersection is
empty, we obtain:

Theorem 5.2. Take the field R = R((tQ)) and r ∈ R. Then there
exists a set of subspaces of M(R(y)), all homeomorphic to M(R(y)),
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on which inclusion induces the dense linear order of vR, and such that
the r-principal place is the only R-place of R contained in all of them.

Based on this theorem we will now show that the spaceM(R(y)) for
R = R((tQ)) is even self-homeomorphic, in the sense of [2], which means
that every open subset contains a homeomorphic copy of M(R(y)). To
this end, we prove:

Lemma 5.3. Take an arbitrary real closed field R. Then every
nonempty open subset of M(R(y)) contains Bγ+(r) for some γ ∈ vR
and r ∈ R.

Proof. Take a nonempty open subset U of M(R(y)). Its preimage
(λ◦χ)−1(U) in C(R) is nonempty open and thus contains an nonempty
open interval (C1, C2). Writing C1 = (D1, E1) and C2 = (D2, E2),
we find that E1 ∩D2 ̸= ∅ must contain more than one element since,
otherwise, we would have C1 = a− and C2 = a+ and the interval would
be empty. Therefore, we can choose distinct elements a, b ∈ E1 ∩D2.
We set γ = v(a − b) and r = (a+ b)/2. Then Bγ+(r) ⊂ E1 ∩D2, and

thus, Bγ+(r) ⊂ U . �

Using (5.4) with T = γ+, we obtain:

Corollary 5.4. For R = R((tQ)), the spaceM(R(y)) is self-homeomor-
phic.

6. The “densely fractal pearl necklace”. Take any non archime-
dean real closed fieldR. In this section, we describe the fractal structure
of M(R(y)). We start with the linearly ordered set C(R). For every
element a ∈ R, there are the two principal cuts a− and a+ in C(R).
But these are glued by λ ◦ χ, so we obtain a canonical embedding of
R in M(R(y)) whose image is exactly the set of principal places. Also,
the cuts R− and R+ are glued by λ◦χ, which closes the linear ordering
of the principal places at the ends, making it into a (non-archimedean)
circle. If we started with R = R, these are already all possible gluings,
and we have obtained the usual circle. If R ̸= R, we have to go on.

In the circular structure we have obtained, the principal places are
joined by the images of the non-ball cuts, on which λ ◦ χ is injective,
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that is, which are not glued with other cuts. If R is a real closed subfield
of R, the first step has put all elements of R in the circle, while this
second step has added all elements of R, and we are done, again having
obtained the usual circle.

From now on, we assume that R is any non-archimedean real closed
field. By the first two steps, we have obtained what at first glance
appears to be the circular string of our necklace.

Sitting densely between the non-gluing and principal cuts are the
ball-cuts. Each gluing of two cuts B− and B+ splits the necklace open
and forms from a part of it a smaller “circle”–a ball in our necklace.
But as B = BT (a) for a final segment with T ̸= ∅, vR of vR, there are
final segments T ′, T ′′ ̸= ∅, vR such that T ′ ( T ( T ′′. It follows that
BT ′′(a) ( BT (a) ( BT ′(a), and the same happens around every other
b ∈ R. This shows that each ball is made up of smaller balls and is
itself part of a larger ball.

It should be noted that gluings do not “cross” each other; this is
because if two balls have a non-empty intersection, then one of the
balls is contained in the other.

Our understanding of a necklace usually is that there is a thread
that holds together pearls. So let us look for subspaces of M(R(y))
which resemble this pattern. For each γ ∈ vR and a ∈ R, we will call
Bγ−(a) a subnecklace of M(R(y)). We observe that

Bγ−(a) =
∪

b∈Bγ− (a)

Bγ+(b),

so we will call Bγ+(b) a pearl of Bγ−(a). Then we can take the thread

to be S for any set S ⊂ Bγ−(a) of representatives of the subsets Bγ+(b).

Let us have a closer look at the subnecklace Bγ−(a). It contains
the place that is induced by the equivalent ball cuts Bγ−(a)− and

Bγ−(a)+. This place is not contained in any of the pearls Bγ+(b). It
can be seen as the point through which the subnecklace is connected
to the rest of M(R(y)). This, however, can itself be viewed as a

pearl of the subnecklace Bγ−(a). This is because, by (5.2), Bγ−(a)c

is homeomorphic to every pearl Bγ+(b).
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We see that if we apply a homeomorphism sending Bγ−(a) to

Bδ−(a′), we zoom from one subnecklace to another. That is why we
talk of a “fractal pearl necklace.” However, there is a difference to the
well known fractal structures. Since R is real closed, its value group
vR is divisible and hence dense. Therefore, the final segments of vR,
ordered by inclusion, also form a dense linearly ordered set. Every
final segment corresponds to a “level” of subnecklaces, a level of the
fractal structure. So for each level, there is no immediate predecessor
or successor; when we pass from one subnecklace to a bigger or smaller
one we automatically jump through infinitely many intermediate levels.
This is why we call M(R(y)) “densely fractal.”

We also observe that, by our definition, M(R(y)) is actually not

itself a necklace, as it is not of the form Bγ−(a). It is rather the union
of an infinite ascending chain (5.3) of subnecklaces. The situation
is the same around every principal place, represented by an element
r ∈ R. Switching from one element r to another can be considered
as turning the necklace, or more precisely, turning subnecklaces and
pearls at infinitely many levels. This is a fractal rotational symmetry
along the string(s) of principal and non-glued places.

It is not necessarily true that each level is perfectly similar to every
other level. For instance, the balls in R can have different cofinalities.
The more homogeneous the field R is, the more homeomorphisms we
will obtain between balls in M(R(y)). If the field R is sufficiently
homogeneous, as is the case for the field R((tQ)) which we discussed in
the previous section, then around every principal place there will even
be a coinitial and cofinal chain of subspaces at all levels that are all
homeomorphic to M(R(y)) (cf., Theorem 5.2).
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