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MODULES WHOSE CERTAIN SUBMODULES ARE
ESSENTIALLY EMBEDDED IN DIRECT SUMMANDS

YELIZ KARA AND ADNAN TERCAN

ABSTRACT. It is well known that, if the ring has acc
on essential right ideals, then for every quasi-continuous
module over the ring, the finite exchange property implies
the full exchange property. In this paper, we obtain the
former implication for the generalizations of quasi-continuous
modules over a ring with acc on right annhilators of elements
of the module. Moreover, we focus on direct sums and
direct summands of weak C12 modules i.e., modules with the
property that every semisimple submodule can be essentially
embedded in a direct summand. To this end, we prove that
since weak C12 is closed under direct sums. Amongst other
results, we provide several counterexamples including the
tangent bundle of a real sphere of odd dimension over its
coordinate ring for the open problem of whether weak C12

implies the C12 condition.

1. Introduction. All rings are associative with unity and modules
are unital right modules. We use R to denote such a ring and M to
denote a right R-module. Recall that a module is called extending or
CS or said to satisfy the C1 condition if every submodule is essential
in a direct summand; equivalently, every complement submodule is
a direct summand. This condition has proved to be an important
common generalization of the injective, semisimple and uniform module
notions. There have been a number of generalizations of the extending
property, including the following:

(1) M is a weak CS [10] if every semisimple submodule of M is
essential in a direct summand of M ;

(2) M is a C11-module [12] if each submodule of M has a complement
that is a direct summand of M ;
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(3) M is a C12-module [12] if each submodule can be essentially
embedded in a direct summand of M , and

(4) M is PI-extending [3] if every projection invariant submodule
(i.e., every submodule such that the image under all idempotent
endomorphisms contained in itself) is essential in a direct summand
of M .

In a similar way to weak CS-modules [10], weak C11 and weak C12

modules were introduced in [6, 15]. Recall that a module M is a weak
C11 (C12)-module if each semisimple submodule ofM has a complement
that is a direct summand (if each semisimple submodule of M can be
essentially embedded in a direct summand) of M .

In this paper, we prove that if the ring R has acc (ascending
chain condition) on right annihilators r(m) = {r ∈ R | mr = 0},
where m ∈ M and MR satisfy C11 and C3 (or C12 and C2) then the
finite exchange property implies the full exchange property. We also
obtain the PI-extending version of the result on continuous modules [9,
Proposition 3.5] when the endomorphism ring of the module is Abelian.

Further, we focus our attention on weak C12-modules as a proper
generalization of extending modules. It is well known that a direct
summand of an extending module is extending, but a direct sum of
extending modules is not an extending module, e.g., let M be the Z-
module (Z/Zp)⊕ (Z/Zp3), where p is any prime integer (see [12, page
1814]). In contrast to extending modules, we show that any direct sum
of weak C12-modules is a weak C12-module. Since we are unable to
settle at this time whether a direct summand of a weak C12-module
needs to be a weak C12-module we obtain a positive answer for this
question under some conditions. Recall that, whether weak C12 implies
C12 was left as a problem in [6, page 496]. However, we provide several
counterexamples which exhibit the failure of the problem. To this end,
we observe that tangent bundles of all real spheres of odd dimensions
over their coordinate rings have weak C12 but not the C12 property.
We have then, for any module, the following implications:

CS =⇒ C11 =⇒ C12

⇓ ⇓ ⇓
weak CS =⇒ weak C11 =⇒ weak C12
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No other implications can be added to this table in general. To see
why this is the case, we refer to [12, page 1814], [12, Proposition 3.6],
[10, Example 1.1], Example 3.7, [17, Counter Example 3] and [13,
Proposition 2.6].

Let R be any ring and M a right R-module. If X ⊆ M , then
X ≤ M and SocX denote X as a submodule of M and the socle of X,
respectively. A module M is called locally Noetherian if every finitely
generated submodule is Noetherian. Further, a ring is called Abelian
if every idempotent is central. For any unexplained terminology,
definitions and notation, see [1, 4, 5, 7, 9].

2. Generalizations of extending modules with C2 or C3. Let
R be a ring and M a right R-module. Recall the following conditions
for M :

C3: for all direct summands K and L of M with K ∩ L = 0, the
submodule K ⊕ L is also a direct summand of M .

C2: for each direct summand N of M and each monomorphism
φ : N → M , the submodule φ(N) is also a direct summand of M .

A CS-module with (C3) C2 is called a (quasi) continuous module.
For good references on these notions, see [5, 9]. In this section, we
mainly work with the general form of (quasi) continuous modules.
We begin by proving a basic fact about indecomposable modules with
Goldie dimension 1.

Lemma 2.1. Let R be a right Noetherian ring and M a nonzero
indecomposable right R-module. Then the following conditions are
equivalent :

(i) M is uniform,
(ii) M has C11,
(iii) M has C12,
(iv) M is PI-extending.

Proof.

(i) ⇒ (ii) is clear.

(ii) ⇒ (iii). By [12, Proposition, 3.2]
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(iii) ⇒ (iv). By hypothesis, every submodule of M is projection
invariant in M . Let X be a nonzero submodule of M . Then there
exists a nonzero element x ∈ X and R/r(x) ∼= xR. Thus, there exists
a uniform submodule U of M such that U ≤ xR ≤ X ≤ M . By
hypothesis, there exists a monomorphism φ : U → M such that φ(U)
is essential in M . Since φ(U) ≤e M and φ is a monomorphism, we
have U is essential in M , and hence X is essential in M .

(iv) ⇒ (i). Let N be a nonzero submodule of M . Since M is
indecomposable, N is a projection invariant submodule of M . By (iv),
there exists a direct summand K of M such that N is essential in K.
Hence, K = M . Thus, N is essential in M so M is uniform. �

Corollary 2.2. Let R be a right locally Noetherian ring and M a
nonzero indecomposable right R-module. Then the following statements
are equivalent.

(i) M is uniform,
(ii) M has C11,
(iii) M has C12,
(iv) M is PI-extending.

Proof. The proof is immediate by Lemma 2.1. �

Lemma 2.3. Let R be a ring and M an R-module such that R satisfies
acc on right ideals of the form r(m) where m ∈ M . If MR satisfies

(a) C11 and C3,

or

(b) C12 and C2,

then M has an indecomposable decomposition.

Proof. The proof follows from [12, Lemma 4.6] and [9, Theorem
2.17]. �

Proposition 2.4. The following statements are equivalent for a non-
singular C11-module M which satisfies C3.

(i) M has an indecomposable decomposition.
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(ii) Every finitely generated submodule of M has finite uniform di-
mension.

(iii) Every cyclic submodule of M has finite uniform dimension.
(iv) R satisfies acc on right ideals of the form r(m) where m ∈ M .

Proof. (i) ⇒ (ii). There exist an index set I and indecomposable
submodules Mi (i ∈ I) of M such that M = ⊕i∈IMi. Since M is
C11-module with C3, Mi is also C11 by [12, Theorem 4.3]. It follows
that Mi (i ∈ I) is uniform. If L is a finitely generated submodule of
M , then L ⊆ ⊕i∈JMi for some finite subset J of I, and hence, L has
finite uniform dimension.

(ii) ⇒ (iii). Clear.

(iii) ⇒ (iv). Let m ∈ M . Suppose that r(m) is essential in a right
ideal A of R. Let a ∈ A. There exists an essential right ideal E of R
such that aE ⊆ r(m). It follows that maE = 0, and hence, ma = 0 so
a ∈ r(m). Thus, r(m) = A. Hence, r(m) is a complement in R-module
R for each m ∈ M . Moreover, R/r(m) ∼= mR, gives that the R-module
R/r(m) has finite uniform dimension. Now (iv) follows by [5, Theorem
5.10].

(iv)⇒ (i). Follows by [12, Theorem 4.7] and [9, Theorem 2.17]. �

Combining Proposition 2.4 together with [18, Corollary 6] gives the
following result on the exchange property of modules without further
proof.

Theorem 2.5. Let M be a nonsingular module such that mR has finite
uniform dimension for each m ∈ M . If M satisfies C11 and C3, then
the finite exchange property implies the full exchange property.

Corollary 2.6. Let R be a ring with finite uniform dimension and M
a nonsingular right R-module which satisfies C11 and C3. Then the
finite exchange property implies the full exchange property.

Proof. Let M and R be as stated. Let m ∈ M . Then r(m) is a
complement in the right R-module R. Hence, the R-module R/r(m)
has finite uniform dimension. It is clear that mR ∼= R/r(m). Now
apply Theorem 2.5 to get the result. �
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Recall that, over a ring with acc on essential right ideals, the finite
exchange property implies the full exchange property for every quasi-
continuous module [16]. We have the following result in this trend.

Theorem 2.7. Let R be a ring with acc on right ideals of the form
r(m) where m ∈ M and M is a right R-module. If MR satisfies

(a) C11 and C3,

or

(b) C12 and C2,

then the finite exchange property implies the full exchange property.

Proof. By Lemma 2.3, M has an indecomposable decomposition.
Then the result follows from [18, Corollary 6]. �

The next example shows that the assumptions of the above theorem
do not imply the quasi-continuity of the module.

Example 2.8. LetM denote the Z-module (Z/Zp)⊕Q for any prime p.
Then M satisfies C11 and C2 as well as C12 and C3 by [12, Proposition
3.2] and [9, Proposition 2.2]. Since MZ is not a CS module, it is not
a quasi-continuous module (see [12, Example 4.2]).

Corollary 2.9. Let M be a locally Noetherian module with C11 and C3.
Then the finite exchange property implies the full exchange property.

Proof. Let m ∈ M . Since R/r(m) ∼= mR, R/r(m) is a Noetherian
right R-module. It follows that R satisfies acc on right ideals of the
form r(x), x ∈ M . Then Theorem 2.7 yields the result. �

One might ask whether a PI-extending module with the full ex-
change property and C3 condition (or C2) implies that the endomor-
phism ring of the module is Abelian or not? However, we provide
examples which eliminate these possibilities.

Example 2.10. Let R = Z(p) be the localization of integers Z at a
prime p. Put MR = Z(p)⊕Z(p∞). Then MR is a PI-extending module
with C3 which does not satisfy C2. Moreover, M has the full exchange
property whose endomorphism ring has noncentral idempotents.
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Proof. Observe that MR is quasi-continuous by [16, Example 2.13].
Hence, MR is PI-extending with C3 by [3, Proposition 3.7]. Now, let
us consider f ∈ End (MR) such that f(x, y) = (px, y) where (x, y) ∈ M .
It is easy to see that f is a monomorphism and f(M) = pZ(p) ⊕Z(p∞)
which is an essential submodule of M . By [9, Lemma 3.14], MR does
not satisfy the C2 condition. For the last part, see [16, Example
2.13]. �

Example 2.11. Let M2(R) be the matrix ring as in [2, Example 2.7].
Let T = M2(R). Since TT is a C11-module then TT is a PI-extending
module by [3, Proposition 3.7]. Note that TT has the full exchange
property by [9, Theorem 3.24]. Moreover, it can be seen easily that
the endomorphism ring of T is not Abelian.

The next few results concern the endomorphism ring of PI-extending
modules. To this end, we refer to [14, 15] for the corresponding results
in terms of C11-modules and weak C11-modules, respectively. We will
use S and J(S) to denote the endomorphism ring of a module M and
the Jacobson radical of S, respectively. Further, ∆ will stand for the
ideal {α ∈ S | kerα is essential in M}.

Theorem 2.12. Let MR be a PI-extending module with the C2 con-
dition, and let S be an Abelian ring. Then S/∆ is a (von Neumann)
regular ring and ∆ = J(S).

Proof. Let α ∈ S, K = kerα. Let f2 = f ∈ S, and let y ∈
f(K). Then there exists an element k of K such that y = f(k). So
α(y) = α(f(k)). Therefore, α(y) = α(f(k)) = f(α(k)) = 0. Hence,
y ∈ K. It follows that K is a projection invariant submodule of M .
By hypothesis, there exists a direct summand L of M such that L is
a complement of K in M . Since α|L is a monomorphism then α(L) is
a direct summand of M , by C2. Hence, there exists β ∈ S such that
βα = 1|L. Then

(α− αβα) (K ⊕ L) = (α− αβα) (L) = 0,

and so K ⊕L is a submodule of ker(α−αβα). Since K ⊕L is essential
in M then α − αβα ∈ ∆. Therefore, S/∆ is a regular ring. This also
proves that J is contained in ∆.



526 YELIZ KARA AND ADNAN TERCAN

Let a ∈ ∆. Since ker a ∩ ker(1 − a) = 0 and ker a is essential in M
then ker(1 − a) = 0. Hence, (1 − a)M is a direct summand of M by
C2. However, (1 − a)M is essential submodule of M since ker a is a
submodule of (1− a)M . Thus, (1− a)M = M , therefore 1− a is a unit
in S. Hence, a ∈ J . It follows that ∆ = J . �

Corollary 2.13. Let M be a nonsingular right R-module. If M is a
PI-extending module with C2 condition and S is Abelian, then S is a
regular ring.

Proof. Let g ∈ ∆ and N = ker g. Then, for any x ∈ M , we build up
the following set

L = {r ∈ R | xr ∈ N} .

Then clearly L is a right ideal of R and also L is essential in R. Now,
g(x)L = 0. Since M is nonsingular then g(x) = 0, and since x is
arbitrary, g = 0. Therefore, ∆ = 0. Hence, the result follows from
Theorem 2.8. �

Note that C2 cannot be replaced by C3 in Theorem 2.12 as the fol-
lowing example illustrates. Let M denote the Z-module Z. Obviously,
MZ is a PI-extending module with C3 and S = End (MZ) ∼= Z is
Abelian. But ∆ = End (MZ) ∼= Z and 0 = J(S) ̸= ∆.

We conclude this section with the following example which demon-
strates both Theorem 2.7 and Theorem 2.12.

Example 2.14. Let M be the module as in Example 2.8, i.e., let M
be the Z-module (Z/Zp)⊕Q. Then MZ is a PI-extending module with
C2 and the endomorphism ring of M is Abelian.

Proof. From Example 2.8 and [3, Proposition 3.7], MZ is a PI-
extending module. Moreover, [12, Example 4.2] shows that MZ
satisfies the C2 property. Now,

S = End (M) ∼=
[

End (Z/Zp) Hom (Q,Z/Zp)
Hom (Z/Zp,Q) End (Q)

]
=

[
Z/Zp 0
0 Q

]
which is Abelian. �
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3. Weak C12 modules. In this section we focus our attention on
weak C12 modules, i.e., modules with the property that each semisimple
submodule can be essentially embedded in a direct summand. Recall
that a direct sum of extending modules is not an extending module
in general (see, for example, Example 2.14). However, we have the
following closure property which shows that any direct sum of weak
C12 modules are also a weak C12-module.

Theorem 3.1. Any direct sum of modules with the weak C12 property
satisfies weak C12.

Proof. Let Mλ (λ ∈ Λ) be a nonempty collection of modules, each
satisfying weak C12. Let M = ⊕λ∈ΛMλ, and let N be any semisimple
submodule of M . Let Λ′ be a nonempty subset of Λ containing λ such
that M ′ = ⊕λ∈Λ′Mλ. Assume that M ′ satisfies the weak C12 property.
Then for any semisimple submodule N ′ of M ′ there exists a direct
summand K ′ of M ′ and a monomorphism α1 : N ′ → K ′ such that
α1(N

′) is essential in K ′. Suppose Λ ̸= Λ′. Then there exists µ ∈ Λ,
µ /∈ Λ′. Let Λ′′ = Λ′∪{µ} and M ′′ = ⊕λ∈Λ′′Mλ = M ′⊕Mµ. Since Mµ

is a weak C12 module, for any semisimple submodule Nµ of Mµ there
exist a direct summand Kµ of Mµ and a monomorphism α2 : Nµ → Kµ

such that α2(Nµ) is essential in Kµ. It is clear that K
′ ∩Kµ = 0. Let

K ′′ = K ′⊕Kµ. Note thatK ′′ is a direct summand ofM ′′. Consider the
semisimple submodule N ′⊕Nµ of M ′′. Define β : N ′⊕Nµ → K ′⊕Kµ

by
β(n) = β(m1 +m2) = α1(m1) + α2(m2),

where n ∈ N ′ ⊕Nµ, m1 ∈ N ′ and m2 ∈ Nµ. It is easy to check that β
is a monomorphism. Furthermore,

β(N ′ ⊕Nµ) = α1(N
′)⊕ α2(Nµ)

is an essential submodule of K ′ ⊕Kµ by [1, Proposition 5.20 ]. When
using the transfinite induction argument, there exist a direct summand
K of M and a monomorphism γ : N → K such that γ(N) is essential
in K. Thus, M satisfies weak C12. �

The proof of the above theorem brings us to the following observa-
tion. Although the statement of [13, Theorem 1.2] is true, its proof is
not complete at all. Incidentally, the idea in the proof of Theorem 3.1
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works exactly by replacing semisimple submodules with submodules to
obtain [13, Theorem 1.2].

Corollary 3.2. Any direct sum of modules which satisfy the weak C11

(respectively, one of the conditions, extending, uniform or C11) satisfy
weak C12.

Proof. Immediate by Theorem 3.1. �

After applying Theorem 3.1, we have the next easy fact on modules
over Dedekind domains.

Corollary 3.3. Let R be a Dedekind domain and M an R-module with
finite uniform dimension. Then M is a weak C12 module.

Proof. It follows from [10, Corollary 1.17] and Corollary 3.2. �

Recall that C11 and also C12 properties are not inherited by direct
summands (for details see, [11, 13, 15]). We do not know whether
direct summands of a weak C12-module need to be weak C12 or not, so
far. Now we deal with some special cases for the former question.

Corollary 3.4. Let M be a right R-module and M = U ⊕ V where U
and V are uniform submodules. Then every direct summand of M is a
weak C12-module.

Proof. Let 0 ̸= K be a direct summand of M . If K = M , then K
has a weak C12 from Corollary 3.2. If K ̸= M , then K is uniform.
Hence, K has a weak C12. �

Theorem 3.5. Let M be a Z-module such that M is a direct sum of
uniform modules. Then every direct summand of M is a weak C12-
module.

Proof. Let N be a direct summand of M . Then N is also a direct
sum of uniform modules by [12, Theorem 5.5]. Now, Corollary 3.2
yields that N satisfies weak C12. �
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The next result provides a condition which ensures that a direct
summand of a module is a weak C12-module.

Theorem 3.6. Let M = M1⊕M2. Then M1 satisfies weak C12 if and
only if, for every semisimple submodule N of M1, there exist a direct
summand K of M and φ monomorphism on N such that M2 ⊆ K,
φ(N) ∩K = 0 and φ(N)⊕K is an essential submodule of M .

Proof. Suppose M1 satisfies weak C12. Let N be any semisimple
submodule of M1. There exist a direct summand L of M1 and a
monomorphism φ : N → L such that φ(N) is an essential submodule
of L. So M1 = L⊕ L′ for some submodule L′ of M1. Clearly, L

′ ⊕M2

is a direct summand of M , (L′⊕M2)∩φ(N) = 0 and (L′⊕M2)⊕φ(N)
is an essential submodule of M .

Conversely, suppose M1 has the stated property. Let H be a
semisimple submodule of M1. By hypothesis, there exist a direct
summand K of M and a monomorphism on H such that M2 ⊆ K,
φ(H) ∩K = 0 and φ(H)⊕K is an essential submodule of M . Now

K = K ∩ (M1 ⊕M2) = (K ∩M1)⊕M2,

so that K ∩M1 is a direct summand of M , and hence also of M1. Let
M1 = (K ∩M1)⊕X for some submodule X of M1 and let π : M → X
be the canonical projection with kernel K. Define f : H → X
by f(h) = π(φ(h)) where h ∈ H. It is easy to check that f is a
monomorphism. Let 0 ̸= x ∈ X. Then there exists an r ∈ R such that
0 ̸= xr ∈ φ(H)⊕K. It follows that xr = π(xr) = f(h)+π(k) for some
h ∈ H, k ∈ K. So

0 ̸= xr = f(h) ∈ f(H).

Hence, f(H) is an essential submodule of X. Thus, M1 satisfies the
weak C12 condition. �

A question posed in [6, page 496] which asks whether the weak C12

condition implies the C12 condition or not? Our final concern is to
answer this question negatively by providing several counter examples.
First, note that the next two examples are based on the Abelian group,
i.e., the Z-module and the torsion-free module over a principal ideal
domain.
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Example 3.7. The Specker group satisfies the weak C12 but does not
satisfy C12.

Proof. Let M be the Specker group
∏∞

i=1 Z. First note that MZ
does not satisfy C12 by [12, Lemma 3.4]. Now MZ is nonsingular by
[7, Proposition 1.22]. Hence, [7, Corollary 1.26] gives that MZ has
zero socle. So MZ has the weak C12 condition. �

Example 3.8. Let R be a principal ideal domain. If R is not a
complete discrete valuation ring, then there exists an indecomposable
torsion-free R- module M of rank 2 by [8, Theorem 19]. For M ,
SocM = 0. Hence, clearly M satisfies the weak C12 condition.
However, MR has uniform dimension 2. By Lemma 2.1, MR does not
have the C12 property.

Although Examples 3.7 and 3.8 show the existence of counter exam-
ples for the aforementioned question, surprisingly we can provide more
algebraic topology type examples in the following result.

Theorem 3.9. Let R be the real field and n any odd integer with n ≥ 3.
Let S be the polynomial ring R[x1, . . . , xn] indeterminates x1, . . . , xn

over R. Let R be the ring S/Ss, where s = x2
1 + · · ·+ x2

n − 1. Then the
free R-module M = ⊕n

i=1R contains a submodule KR which satisfies
weak C12 but does not satisfy C12.

Proof. It is clear that R is a commutative Noetherian domain. Let
φ : M → R be the homomorphism defined by

φ(a1 + Ss, . . . , an + Ss) = a1x1 + · · ·+ anxn + Ss

for all ai in S, 1 ≤ i ≤ n. Clearly, φ is an epimorphism and hence
its kernel K is a direct summand of M , i.e., M = K ⊕ K ′ for some
submodule K ′ ∼= R. Obviously, K is not uniform. Note that K is
the R-module of regular sections of the tangent bundle of the (n− 1)-
sphere Sn−1. Since the Euler characteristic χ(Sn−1) ̸= 0 it follows that
the (n − 1)-sphere cannot have a nonvanishing regular section of its
tangent bundle (see, [4, Corollary VI.13.3]). Now KR has zero socle
and hence it satisfies the weak C12 condition. However, KR has uniform
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dimension n−1 which yields that KR does not satisfy the C12 property
by Lemma 2.1. �

Remark 3.10.

(i) If n is 1 or 2 in Theorem 3.9, then KR is isomorphic to 0 or R,
respectively. In these cases, KR has C12 and so too does the
weak C12.

(ii) If n is any even integer with n ≥ 4, then the proof of Theorem
3.9 does not work. For example, S3, S5 and S7 all have
decomposable tangent bundles by the result of Adams (see [4])
and in these cases, KR is isomorphic to a (finite) direct sum
of uniform modules. Hence, KR has C12 by [13, Theorem 1.2]
and also satisfies the weak C12.
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