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CHARACTERIZATIONS OF THE COMPACTNESS OF
RIEMANNIAN MANIFOLDS BY EIGENFUNCTIONS,
AND A PARTIAL PROOF OF A CONJECTURE
BY HAMILTON

XIANG GAO

ABSTRACT. In this paper, we deal with comparison
theorems for the first eigenvalue of the Schrodinger operator,
and we present some criteria for the compactness of a
Riemannian manifold in terms of the eigenfunctions of
its Laplacian. Firstly, we establish a comparison theorem
for the first Dirichlet eigenvalue uP(B(p,r)) of a given
Schrédinger operator. We then prove that, for the space
form My with constant sectional curvature K, the first
eigenvalue of the Laplacian operator \i1(Mp) is greater
than the limit of the corresponding first Dirichlet eigenvalue
AP (B (p,r)). Based on these, we present a characterization
of a compact gradient shrinking Ricci soliton locally being an
n-dim space form by the first eigenfunctions of the Laplacian
operator, which gives a generalization of an interesting
result by Cheng [4] from 2-dim to n-dim. This result also
gives a partial proof of a conjecture by Hamilton [7] that
a compact gradient shrinking Ricci soliton with positive
curvature operator must be Einstein. Finally, we derive a
criterion of the compactness of manifolds, which gives a
partial proof of another conjecture by Hamilton [6] that,
if a complete Riemannian 3-manifold (M3, g) satisfies the
Ricci pinching condition Rc¢ > €Rg, where R > 0 and ¢ is a
positive constant, then it is compact. In fact, our result is
also true for general n-dim manifolds.

1. Introduction and main results. Suppose that (M™, g) is an n-
dim C*° complete Riemannian manifold, and A denotes the Laplacian
operator. If the manifold M™ is compact, it is well known that the
eigenvalue problem —Ap = Ap has discrete eigenvalues, which are not
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counted according to their multiplicity. We list them as
OZAQ(MR) <)\1(Mn) S)\Q(Mn) <l

and call \;(M™) the ith eigenvalue and a function satisfying Ap; =
—M\ip; the ith eigenfunction.

In this paper, we always assume thatV (z) is a non-negative function
defined on M™, which is assumed to be smooth or at least continuous,
and deal with the eigenvalue problem —Ayp + Vo = pyp for the famous
Schrodinger operator —A + V. We call p;(M™) the ith eigenvalue and
a function satisfying —Ay + Vi = —pu,;¢ the ith eigenfunction.

Recall that the first eigenvalue of the Laplacian operator A; (M™) and
the one of the Schrodinger operator g (M™) for a closed Riemannian
manifold M™ are respectively defined as follows:

an |V¢|2dﬂ

1.1 A (M™) = inf 0
(1.1) 1 (M") = inf [ dn #0,
and
. Jarn (VO +V¢?) du
1.2 M") = inf 0,
(12) o (M) SEHZ(M™)$20 Japm O2dp #
where
Q:{qser(M") mm:o},
Mn

and HZ?(M™) is the completed Hilbert space of C°°(M™) under the
norm

ol = [ ¢du+ [ VoPan
M™ M™

It is well known that, for a closed Riemannian manifold with positive
Ricci curvature, we have the following famous Lichnerowicz-Obata
theorem [9]:

Theorem 1.1 (Lichnerowicz-Obata). Let (M™,g) be a closed Rie-
mannian manifold satisfying Rc > (n — 1)K > 0, for some constant
K > 0. Then

)\1 (Mn) > ’I’LK,

and the equality holds if and only if (M™,g) is isometric to the space
form (M3, gi) with constant sectional curvature K, and the corre-
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sponding eigenfunction is
o(z) = Acos(VEKr) + Bsin(VKr),

where A and B are two constants and r = d(p, x).

Then we deal with the first Dirichlet eigenvalue of the Laplacian
operator and the Schrodinger operator. Let B(p,r) denote the geo-
desic ball with center p and radius r, and let Bg(p,r) denote the
geodesic ball with center p’ and radius 7 in the n-dim simply con-
nected space form M7 with constant sectional curvature K. The first
Dirichlet eigenvalue AP (B(p,r)) of the Laplacian operator and the one
uP (B(p,r)) of the Schrédinger operator for the geodesic ball B(p,r)
can be respectively defined as follows:

fB(p,r) \V¢|2du

(1.3) MNP (B(p,r))=  inf 7
beH2(B(p,r)) fB(p,r) P2du
and
fB( ) |V¢|2+V¢2 dp
(14)  p? (B(p,r))=  inf P, ( ) 2o

o 2
befi}(B.) Jp.r) P
where ]Oif(B(p, 7)) is the completed Hilbert space of C§°(B(p,r)) under

the norm
ol = [ ddus [ (ol dn.
! B(p,r) B(p,r)

Moreover, using the first Dirichlet eigenvalue AP (B(p,r)) of the Lapla-
cian operator for B(p, r), we can define the first eigenvalue of the Lapla-
cian operator for the complete Riemannian manifold M™ as follows:

A (M™) = lim AP (B (p,r)),
r—00

where B(p,r) is the geodesic ball in M™.

Recall that, for the AP (B(p,r)), we have the following famous
comparison theorem by Cheng [3]:



464 XIANG GAO

Theorem 1.2 (Cheng). Let (M™,g) be a complete Riemannian man-
ifold satisfying Rc > (n — 1)K, where K € R. Then

AP (B (p,7)) < AP (Bx (P, 7)),

and equality holds if and only if B(p,r) is isometric to Bi(p',r).

Corollary 1.3 (Cheng). Let (M™,g) be a compact Riemannian man-
ifold satisfying Rc > 0. Then

M) < AP (B(p, 2} ) < S
2 &2,

where C,, = 2n(n +4) and dp is the diameter of M™.

Moreover, for the Schrédinger operator L = —A+V for the manifold
M"™ and Lg = —A+ Vi for the space form M7}, where Vi is assumed
to be smooth and nonnegative. By using Theorem 1.2, we can also
derive a similar comparison theorem as follows:

Theorem 1.4 (Comparison theorem for the Schrodinger operator). Let
(M™, g) be a complete Riemannian manifold satisfying Re > (n— 1)K,
where K € R. Then

pt (B(p,r)) < pt’ (Bx (0,r)) + max V(z)— min Vi (z),
z€B(p,r) rE€BK (p’,1)

and equality holds if and only if the following conditions are satisfied:

(i) B(p,r) is isometric to Bk (p',7);

(i) the eigenfunctions corresponding to the first eigenvalues AXP(B(p, )
and NP (Bg (p', 7)) of the Laplacian operator are, under the isome-
try from (1), precisely the ones corresponding to the first eigenval-
ues pP (B(p,r)) and uP (Bk(p',7)) of the Schridinger operator;

(iii) the function V (x) is a constant on B(p,r) and Vi (x) is a constant
on Bg(p',r).
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In this paper, based on Theorem 1.2 and the definition of the first
Dirichlet eigenvalue of the Laplacian operator, we prove the useful
result below, which is also one of our main results:

Theorem 1.5 (Main result I). Let (M}, gx) be a space form with
constant positive sectional curvature K, and let NP (M) be the first
Dirichlet eigenvalue of the Laplacian operator for My, which is defined
as follows:

A (M) = Hlil/nﬁ/\? (Bk (¢'1)),

where AP (B (p',r)) is the first Dirichlet eigenvalue of the Laplacian
operator for By (p',r). Then we have
(1.5)

APy = lim AP (B (p,7)) < Ay (MR <)\D<B (/,”)).
1 (Mg) r—m/\/fl(K(p ) <A (Mg) <\ Kp2\/7{

Now we recall the definition of the gradient Ricci soliton as follows

[6]:

Definition 1.6 (Gradient Ricci soliton). A complete Riemannian
manifold (M™,g) is called a gradient Ricci soliton if there exists a
smooth function f: M"™ — R, such that

Re(g) + VVf + %g —0,

where Rec is the Ricci curvature tensor and e is a real constant.
Furthermore,

(i) If € <0, then it is called a shrinking gradient Ricci soliton;
(ii) If € = 0, then it is called a steady soliton;
(iii) If € > 0, then it is called an expanding one.

It is well known that one of the basic problems in Riemannian ge-
ometry is to relate curvature and topology. In [1], Bohm and Wilking
proved that n-dim closed Riemannian manifolds with 2-positive cur-
vature operators are diffeomorphic to spherical space forms, i.e., they
admit metrics with constant positive sectional curvature. Moreover, it
is a well-known theorem of Tachibana [11] that any compact Einstein



466 XIANG GAO

manifold with positive sectional curvature must be of constant curva-
ture. Note that Einstein manifolds are special Ricci solitons with the
constant Ricci potential function; hence, inspired by his own work in
[7, 8], Hamilton made the following conjecture [7]:

Conjecture 1.7 (Hamilton). A compact gradient shrinking Ricci soli-
ton with positive curvature operator must be Einstein.

Hence, if Conjecture 1.7 is true, then together with Tachibana’s
theorem, we have:

Conjecture 1.8. A compact gradient shrinking Ricci soliton with
positive curvature operator must be a space form with constant positive
sectional curvature.

Moreover, for the compact gradient steady or expanding case, Hamil-
ton actually proved a similar result [7]:

Theorem 1.9 (Hamilton). A compact gradient steady or expanding
Ricci soliton must be Finstein.

Although the general proof of Conjecture 1.8 is hard, for the special
case S?, Cheng [4] proved the following interesting result by using
tensor analysis and the famous Gauss-Bonnet theorem.

Theorem 1.10 (Cheng). Suppose that M? is homeomorphic to S*
and that o1, 2,03 are all first eigenfunctions on (M?,g) (that is,
eigenfunctions corresponding to A\1(M?)), such that the sum of their
squares is equal to a constant. Then (M?,g) is actually isometric to a
sphere with constant sectional curvature.

Remark 1.11. In fact, as mentioned in [4], in Theorem 1.10, m = 3 is
the only number such that there are m first eigenfunctions with square
sum equal to a constant. Since every nonconstant eigenfunction must
vanish somewhere, this rules out that the case m = 1, m = 2 is not
possible because, by the results of [5] we have o7 !(0) N @5 (0) # ¢
whenever —Ap; = Ap;, © = 1,2, A > 0. Also the results of [5] show
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that if M is homeomorphic to S2, then the multiplicity of the first
eigenfunction is at most 3. This shows that m > 3 is not possible.

Since each manifold with dim = 2 is actually an Einstein manifold,
which is a special Ricci soliton with a constant Ricci potential function.
Then, for the special case of Ricci solitons, we may prove a similar
result to Theorem 1.10. In fact, we present a characterization of a
Ricci soliton being an n-dim space form by the first eigenfunctions of
the Laplacian operator, which gives a partial proof of Conjecture 1.8
as follows:

Theorem 1.12 (Main result II). Let (M™,g) be a compact gradient
Ricci soliton with positive Ricci curvature. Suppose that there exists a
geodesic ball B(p,r) with center p and radius r such that the eigenfunc-
tions {¢; }., corresponding to the first Dirichlet eigenvalue N (B(p,))
of the Laplacian operator satisfy >, p? = C, where C is a nonzero con-
stant. Letting

pw=inf {A eR|IVVf <IAg},

then we have

(i) (M™,g) is a shrinking Ricci soliton;
(ii) B(p,r) is isometric to a geodesic ball Bk (p',r) in the space form
(M}, gx) with constant sectional curvature

K=—[p+¢e/2]/n -1

Furthermore, for the complete case, we also have the following
similar result:

Theorem 1.13. Let (M"™,g) be a complete gradient Ricci soliton,
and suppose that there exists a geodesic ball B(p,r) with center p
and radius v such that the eigenfunctions {p;}X_| corresponding to the
first Dirichlet eigenvalue AP (B(p,r)) of the Laplacian operator satisfy
> 2 = C, where C is a nonzero constant. If

K3

VVf(z) < pg(x)



468 XIANG GAO

for any x € Bk (p',r) and

1 €
AD B / < - - e
1( K(p?r))— 11/n<M+2>7
where Bi (p',r) is a geodesic ball in the space form (M}, gx) with
constant sectional curvature K = —(u+¢/2)/n—1, then B(p,r) is
isometric to Bx(p',r).

Remark 1.14. Note that any Einstein manifold is automatically a
Ricci soliton with a constant Ricci potential function,the similar result
is also true naturally.

Corollary 1.15 (Einstein manifold). Let (M™,g) be a complete Ein-
stein manifold, and suppose that there exists a geodesic ball B(p,r)
with center p and radius r such that the eigenfunctions {p;}¥ ; corre-
sponding to the first Dirichlet eigenvalue AP (B(p,r)) of the Laplacian
operator satisfy > p? = C, where C is a nonzero constant. If

K3

1 €
1.6 AP (B (1) < ———— -
(1.6 P (B 0/.r) < 1= (04 5 ).
where Bi (p',r) is a geodesic ball in the space form (M}, gx) with
constant sectional curvature K = —(u+e¢/2)/n—1, then B(p,r) is
isometric to Bg(p',r).

Remark 1.16. For an Einstein manifold, condition (6) in Corol-
lary 1.13 is not satisfied naturally, but for an Einstein manifold with
constant positive scalar curvature, condition (6) is satisfied naturally.
In fact, for an Einstein manifold with constant positive scalar curva-
ture, according to the Bonnet-Myers theorem [6], we have the manifold
is compact. Moreover, using the lower bound estimation for the first
eigenvalue and the equality condition in Theorem 1.1, it can be seen
that condition (6) is only satisfied for an Einstein manifold with positive
constant scalar curvature.

For the space form My satisfying A (Mg) = nK, condition (6) is
satisfied naturally. Moreover, for an Einstein manifold with positive
scalar curvature, condition (6) is also satisfied naturally. Thus, Corol-
lary 1.13 is actually a sufficient condition for the Einstein manifolds
isometric isomorphic to the space form.
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On the other hand, the classical Myers theorem says that a complete
Riemannian manifold with Ricci curvature bounded below by a positive
constant is compact. Based on the study of Ricci flow, Hamilton
conjectured (see [6]) that, if (M3,g) is a complete Riemannian 3-
manifold with the Ricci pinching condition Re(g) > eRg, where R > 0
is the positive scalar curvature and £ > 0 is a uniform constant, then
M?3 is compact.

With the extra assumption that the sectional curvature is bounded
and non-negative (and in this case one has the injectivity radius
bounded and Hamilton’s Harnack differential inequality for Ricci flow),
the conjecture has been proved by Chen and Zhu in [2]. Moreover, the
complex version is a conjecture due to Yau (see [10]), and the above
question was posed to Hamilton by Shi, who was asked for this by Yau.

In this paper, we will give a partial proof of this conjecture. In
fact, we present a characterization of the compactness of manifolds by
the first eigenfunctions of the Laplacian operator, and our result also
satisfies for general n-dim manifolds:

Theorem 1.17 (Main result III). Let (M™,g) be an n-dim complete

Riemannian manifold with the Ricci pinching condition Re(g) > Ry,

where R > 0 is the positive scalar curvature and € > 0 is a uniform

constant. If there exist some non-constant eigenfunctions @;, where

1 < i < N, corresponding to the first eigenvalue of the Laplacian

operator such that Z(pf = C, where C is a nonzero constant, then
1

(M™,g) is compact.

The paper is organized as follows. In Section 2, we prove Theo-
rem 1.4 by using Theorem 1.2. In Section 3, we give the proof of
Theorem 1.5 by using Theorem 1.2. Based on these, in Section 4 we
prove Theorems 1.11 and 1.12. In Section 5, we present the proof of
Theorem 1.14.

2. The comparison theorem for the Schrédinger operator.
In this section, we prove the comparison theorem for the Schrodinger
operator as follows.



470 XIANG GAO

Proof of Theorem 1.4. Let ¢ be the eigenfunction corresponding to
the first Dirichlet eigenvalue AP (B(p,r)) of the Laplacian operator for
B(p,r), and let ¢k be the one corresponding to the first Dirichlet
eigenvalue pP (Bg(p',r)) of the Schrédinger operator for Bg(p/,7).
Then, by the definition of the first Dirichlet eigenvalue, we have

2
AP (B () = 20 VAL
7 fB(p,'r‘) (,OQd,U,

and

I5. o m VoK |? + Vipk) du
(B (1) = = >
B (p',r) PEOH

_ fBK(p’,r) Veor|du fBK(p’,r) Vigicdu
fo (') icdn fBK (') P

Y

where ¢ €H1(B(p, 7)) and px €H}(Bk(p',7)).
Then, by the definition of the first Dirichlet eigenvalue, we have

. Ty (VO +V¢?) dp
:ulD (B (pa T)) = ° lnf (p, )f ¢2d
63 (B(pr) B(p.r) "
< fB(p,r) |V‘P|2dﬂ fB(p,r) Vtdp
N fB(p,r) (‘02d'u’ fB(p,r) (‘OQd'u’
<A (B(p,r)) + max V(x)
z€B(p,r)

and

D / fBK(P’J’) |V(pK|2d'u fBK(P’vT’) VK(p%(dM
H1 (BK (p ,’I")) = D) D)
i) P b1,y Phcdn

o |V6Pdp
> inf fBK(p’ ) 5 + min Vik(x)
oei2 (B ) Sy QP w€BK(r)

= AP (B (¢',r))+ min )VK(x).

z€Bk (p',r
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Thus,
(2.1) ut (B (p,r)) — ax V(@) < A (B(p,r)),
A (Bk (¢,r) < uf (Bx (0/,7)) — min V().

z€Bk (p’,r)
Note that Rc > (n — 1)K g; thus, by Theorem 1.2, we have
Together with equation (7), it follows that

pt (B(p,r) — max V() <py (B (p/,r)) = min Vi (z),
z€B(p,r) z€Bk (p',r)

which implies that

(2.2) ui (B(p,r) <pi (Bi (p,r))+ max V(z)—  min  Vi(x).
z€B(p,r) z€Bk (p',r)

Furthermore, if the equality in equation (8) holds, by the proof we
have

WP~ i Asen(VOTE VO
be B2 (B(p,r)) Jo(p.ry P21t
IVl +Ve?) dp
- fB(pW) ©2dp
_ inf fBK(pf,r) IVo|*dp
fBK(p/”‘) Picd $€H3 (B (v'.7)) fBK(p’,r) P*dp
=\ (Bk (p,7)),

V(z) = max V(x),
(z) Lmax (z)

b

Ity IV

Vi (z) = weérzl{l(rzlﬂ,r) Vi (x)

and
A (B(p,r) = A (B (9',7)) -

Hence, ¢ is also an eigenfunction corresponding to the first Dirichlet
eigenvalue P (B(p,7)) of the Schrédinger operator, g is also an eigen-
function corresponding to the first Dirichlet eigenvalue AP (Bg (p', 7))
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of the Laplacian operator. The functions V(z) and Vi (z) are constant
on B(p,r) and Bk (p',r), respectively.

Moreover by using the equality condition in Theorem 1.2, it follows
from

A (B (p,r)) = A (Bk (p',7))

that B(p,r) is isometric to B (p',r).

Conversely, if B(p,r) is isometric to Bg(p’,r), the eigenfunc-
tions corresponding to the first Dirichlet eigenvalue A\ (B(p,r)) and
AP(Bg(p',r)) of the Laplacian operator are, respectively, the eigen-
functions corresponding to the first Dirichlet eigenvalue u? (B(p,r))
and pP(Bg(p',r)) of the Schrodinger operator. Together with the
condition that V(z) and Vi (x) are constant on B(p,r) and Bk (p/, ),
respectively, the equality in equation (2.2) holds clearly. a

3. Proof of Theorem 1.5. In this section, we prove Theorem 1.5.

Proof of Theorem 1.5. Firstly, select two points p and ¢ such that
d(p, q) = dk[}é = ﬁa

and consider the geodesic balls B (p, (7/(2VK)) and B (q, (7/(2VK)))
in the n-dim simply connected space form Mp. We denote v and v

as the first Dirichlet eigenfunctions of the Laplacian operator corre-

sponding to Bg(p, (7/(2VK))) and Bg(q, (7/(2VK))), respectively,

and define the following two functions:

u(@) @€ B (p.(r/(2VE))).
0 weMp\Bx (p(r/(2VK)))

u(x) =

and

v(z) € Bg <q7 (W/(Q\/R))) )

=9, 7 € Mp\Bxc (a, (r/(2VE)))
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Then
(3.1)
~2
fM;‘g Val*du _ Jpctwr vy VUl - D( K(p 7 >)
—~ - o ! ’
Jary Wdpe JB o (2 WU 2K
and
(3.2)
~2
Jag WPl Jiq rpvmon V0P D(BK (q W))
—~ - o ! 7 .
Sy, e JBicta ey vmy) VU 2K

Now we choose a constant C such that
/ (u+ Cv) dp =0,
My

and by the definition of the first eigenfunction of the Laplacian opera-

tor, we have
IM;; V(@ + C)[*du

T @+ C)2dy

AL (ME) <

Note that M is a space form with diameter dym = m/VK, and it
follows that

P (B (v =) ) =30 (B (0,7 ) )

and

T 7r
Vol | B ,—— | NB ,—— ] ] =0
< K<p NE) K(q NE))
Then, by using equations (9) and (10), we have
fM}'é |V (a+ C?)|*du _ fM;”é |Vau|?du + C? fM?« |V |2dp
fM; (U + Cv)2du fM; u2dp + C2 fM;; v2dpu

(0w 57) 4o 57)

M (Mg) <
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For the other inequality, note that the metric of space form M} is
the form of

gr = dr? + s (r)ggn-1.

Then, by Theorem 1.1, we can select the first eigenfunction of the
Laplacian operator

o(z) = Acos (\/ET) + Bsin (\/E?") ,
where r = d(p, x) such that

Sy 1VePdn [T G 00 s (1) dr gy dppsaes
an prdp foﬂ/\ﬁgo(r) sk (r)"rdr [gu_y dppgn—
STV 19 25 ()"~ Ldr
JTVE o2 (ryn=tdr

0
oy do [VO)Psr(r)"tdr
sor/VE fos o(r)2sg(r)n=tdr ’

A (M) =

where we use the fact that My is a space form with diameter dyp =

7/v/K. Then we define another function o, € H?(Bg(p,s)) such that
vs(z) = @(x) for any x € Bg(p,s), and, by the definition of the first
Dirichlet eigenvalue of the Laplacian operator for By (p, s), it follows
that

fos |V(,0 |2 ( )n_ldr — foS |V@S(T)‘2SK(T)"_1dT fSn—l d.uS'”*l
fo 90 n Ldr fog (pS(T)QSK(T)”_ld’r fsn—l d/vLS"*1

_ fBK(p,S)\VsDSIQdu
fBK(p,s) ‘Pgdﬂ

Consequently, by the definition of AP (M%), we have

s \V4 2 n—ld
M) =t J VPO dr b g )
sor/VE [y o(r)2sg(r)ntdr " son/vE

=\ (ME). 0
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4. Characterizations of Ricci solitons as space forms. In this
section, by using Theorems 1.1, 1.2 and 1.5, we turn to prove Theorems
1.11 and 1.12.

Proof of Theorem 1.11.
(i) If (M™,g) is a steady or expanding Ricci soliton
Re+VVf + %gzO,

where € > 0, then, by Theorem 1.9, we have M™ is actually
an Einstein manifold with the Ricci potential function f being a
constant. Thus,

9
Rc=—--g<0
C 29_7

which leads to a contradiction to the positive Ricci curvature.
(ii) By the assumption of Theorem 1.11, for the geodesic ball B(p,r),
we have

Ap; + A7 (B(p,r)) @i =0

ngz EC,

where 1 < i < N for some N € N. Thus,
0= A<Zs012) = ZQW%F JFQZ%‘A%’
= 2[Veil* =2A7 (B(p,7) D 7,

and

which implies that
(4.1) > Vel = CAP (B(p, 7))
i
Taking the Laplacian of both sides of equation (4.1) and using
the Bochner formula [6]:
AV =2[VVf* +2(Vf,VAf) +2Re(Vf, V),

we have
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0= ZA|V<Pi|2
= QZZ: |VVil? + 2 Z(Wi, VAg;) +2>  Re(Vei, Vi)
_2Z|VV%\2—2/\D Zwl Z
- ZZVVf Vi, Vi) — ez \WZ\Q
> mem?szD Zcpz
— QMZ Vo] — EZ Veil®
= —2(1- )P B =2+ 5 )N B C

Note that, if for any geodesic ball B(p, r), the first Dirichlet eigenvalue
AP(B(p,r)) of the Laplacian operator is positive, then together with
C > 0 we have

(4.2) A (B(p) 2 — s (04 5 ).

On the other hand, since (M™, g) is a compact gradient Ricci soliton
with positive Ricci curvature, we have

0<dg < Rc= —(VVf+ ;g),
which is equivalent to
€
By the definition of u, we have p < —(§ +¢/2). Then

(4.3) Rc:—VVf—;gz—(u+;)926g>O.



THE COMPACTNESS OF RIEMANNIAN MANIFOLDS 477

Thus, for the space form (M}, gx) with constant sectional curvature
K =—[u+¢/2]/n—1, we have

Rc(gK)—<u+;>g>0.

Then, by the equality condition in Theorem 1.1, we have

1 €
M(MR)=——""— = .
01 == (04 5)
Furthermore, by Theorem 1.2, it follows from equation (4.3) that
(4.4) A (B(p,r)) <A (B (p,7))

where Bg(p',r) is a geodesic ball in the space form M} with K =
—[u+¢€/2]/n — 1. Note that Theorem 1.5 implies that

(43) AP (Brf,) < M OFR) =~ = (u ; 2)

where A1 (M} ) denote the first eigenvalue of the Laplacian operator for
the space form M.

Thus, by equations (4.2) and (4.5), it follows that

(18 AP (B> - (1 5) 220 B,

ot
= i/m)
Together with equation (4.4), we have

A (Bp,) = A7 (Bk(p,7))-

Then, by the equality condition in Theorem 1.2, we derive that B(p,r)
is isometric to By (p',r). O

Proof of Theorem 1.12. As in the proof of Theorem 1.11, for the
geodesic ball B(p,r), we can derive that

1 €
A (B > =
Then, together with the assumption

AP (Biew'r) < = (0 5):
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we can also obtain that
A (Bp,r) 2 A7 (Bk (7)),
and the rest of the proof is similar to the proof of Theorem 1.11. [J

5. Compactness of complete manifolds with Ricci pinching.
In this section, we prove Theorem 1.14.

Proof of Theorem 1.14. As the proof of Theorem 1.11, we can also
derive

0=2) |VV@i|* =2)\7 (M") > ¢} +2)  Rc(Vei, Vi)
> 23 1Al - 2 (UM 3 + 2:R Y [V

= _2(1 — :L)Af (M™)C +2CeRN (M™).

If A;(M™) is equal to 0, then by Li and Yau’s gradient estimate (see
[9]), we derive that ¢; = C;, where C; is a constant for each 1 <7 < N.
Thus, without loss of generality, we can assume that \; (M™) > 0, and

consequently,
ne

A (M™) > R.

n—1

Then we consider the geodesic ball B(p,r) with center p and radius
r, and, by Corollary 1.3, we have

Ch
A (B(p,r) < —5——,

B(p,r)
where C, = 2n(n +4) and dp(y, is the diameter of B(p, 7).

On the other hand, let ¢ be the first Dirichlet eigenfunction of the
Laplacian operator for B(p,r1) such that

/ ©du = 1.
B(p,r1)



THE COMPACTNESS OF RIEMANNIAN MANIFOLDS 479

Then, for a larger geodesic ball B(p,r2), it is easy to see that

() = 1 #(@) T €BpT)
P(z) {() z € B(p,r2)\B(p,71)

is a function defined on B(p,r2) such that

/ @2dp = 1.
B(p,r2)

Then, by the definition of the first Dirichlet eigenvalue of the Laplacian
operator, we have

M (B ) = [

Vel *du :/ V|2 du
B(pvrl) B(p,’r‘g)

> it [ VP =M (B ().
l¢ll2=1 B(p,r2)
Thus, if the first eigenvalue of the Laplacian operator for M™
M(M™) = lim A? (B(p,7))
r—00

exists, then actually AP (B(p,r)) tends to A;(M™) monotone decreas-
ingly. Hence,

C n ne
d n—1
B(p,r)
for any r, that is to say, that
2(n+4)(n—1)
dpp,r) S| ———F5 5 < 0,
B(p,r) ER(p)
for any r, where we use R(p) > 0. This implies that the manifold M"™
is compact. (Il

Acknowledgments. We would especially like to thank the referee
for meaningful suggestions that led to improvements of the article.

REFERENCES

1. C. Bohm and B. Wilking, Manifolds with positive curvature operators are
space forms, Ann. Math. 167 (2008), 1079-1097.



480 XIANG GAO

2. B.L. Chen and X.P. Zhu, Complete Riemannian manifolds with pointwise
pinched curvature, Invent. Math. 140 (2000), 423-452.

3. S.Y. Cheng, Figenvalue comparison theorems and its geometric application,
Math. Z. 143 (1975), 289-297.

4. , A characterization of the 2-sphere by eigenfunctions, Proc. Amer.
Math. Soc. 55 (1976), 379-381.

5. , Nodal sets and eigenfunctions, Comm. Math. Helv. 51 (1976), 43-55.

6. B. Chow, P. Lu and L. Ni, Hamilton’s Ricci flow, Lect. Contemp. Math. 3,
Sci. Press Grad. Stud. Math. 77, American Mathematical Society (co-publication),
2006.

7. R.S. Hamilton, Four manifolds with positive curvature operator, J. Diff.
Geom. 24 (1986), 153-179.

8. , The Harnack estimate for the Ricci flow, J. Diff. Geom. 37 (1993),
225-243.

9. R. Schoen and S.T. Yau, Lectures on differential geometry, Conference Pro-
ceedings and Lecture Notes in Geometry and Topology I, International Press, Cam-
bridge, MA, 1994.

10. W.X. Shi and S.T. Yau, A note on the total curvature of a Kahler manifold,
Math. Res. Lett. 3 (1996), 123-132.

11. S. Tachibana, A theorem of Riemannian manifolds of positive curvature
operator, Proc. Japan Acad. 50 (1974), 301-302.

SCHOOL OF MATHEMATICAL SCIENCES, OCEAN UNIVERSITY OF CHINA, LANE 238,
SONGLING RoOAD, LAOSHAN DISTRICT, QINGDAO CITY, SHANDONG PROVINCE,
266100, P.R. CHINA

Email address: gaoxiangshuli@126.com



