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CHARACTERIZATIONS OF THE COMPACTNESS OF
RIEMANNIAN MANIFOLDS BY EIGENFUNCTIONS,

AND A PARTIAL PROOF OF A CONJECTURE
BY HAMILTON

XIANG GAO

ABSTRACT. In this paper, we deal with comparison
theorems for the first eigenvalue of the Schrödinger operator,
and we present some criteria for the compactness of a
Riemannian manifold in terms of the eigenfunctions of
its Laplacian. Firstly, we establish a comparison theorem
for the first Dirichlet eigenvalue µD

1 (B(p, r)) of a given
Schrödinger operator. We then prove that, for the space
form Mn

K with constant sectional curvature K, the first
eigenvalue of the Laplacian operator λ1(Mn

K) is greater
than the limit of the corresponding first Dirichlet eigenvalue
λD
1 (BK(p, r)). Based on these, we present a characterization

of a compact gradient shrinking Ricci soliton locally being an
n-dim space form by the first eigenfunctions of the Laplacian
operator, which gives a generalization of an interesting
result by Cheng [4] from 2-dim to n-dim. This result also
gives a partial proof of a conjecture by Hamilton [7] that
a compact gradient shrinking Ricci soliton with positive
curvature operator must be Einstein. Finally, we derive a
criterion of the compactness of manifolds, which gives a
partial proof of another conjecture by Hamilton [6] that,
if a complete Riemannian 3-manifold (M3, g) satisfies the
Ricci pinching condition Rc ≥ εRg, where R > 0 and ε is a
positive constant, then it is compact. In fact, our result is
also true for general n-dim manifolds.

1. Introduction and main results. Suppose that (Mn, g) is an n-
dimC∞ complete Riemannian manifold, and ∆ denotes the Laplacian
operator. If the manifold Mn is compact, it is well known that the
eigenvalue problem −∆φ = λφ has discrete eigenvalues, which are not
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counted according to their multiplicity. We list them as

0 = λ0 (M
n) < λ1 (M

n) ≤ λ2 (M
n) ≤ · · · ,

and call λi(M
n) the ith eigenvalue and a function satisfying ∆φi =

−λiφi the ith eigenfunction.

In this paper, we always assume thatV (x) is a non-negative function
defined on Mn, which is assumed to be smooth or at least continuous,
and deal with the eigenvalue problem −∆φ+ V φ = µφ for the famous
Schrödinger operator −∆+ V . We call µi(M

n) the ith eigenvalue and
a function satisfying −∆φ+ V φ = −µiφ the ith eigenfunction.

Recall that the first eigenvalue of the Laplacian operator λ1(M
n) and

the one of the Schrödinger operator µ1(M
n) for a closed Riemannian

manifold Mn are respectively defined as follows:

(1.1) λ1 (M
n) = inf

ϕ∈Ω

∫
Mn |∇ϕ|2dµ∫
Mn ϕ2dµ

̸= 0,

and

(1.2) µ1 (M
n) = inf

ϕ∈H2
1 (M

n)ϕ̸≡0

∫
Mn (|∇ϕ|2 + V ϕ2) dµ∫

Mn ϕ2dµ
̸= 0,

where

Ω =

{
ϕ ∈ H2

1 (M
n)

∣∣∣∣∫
Mn

ϕdµ = 0

}
,

and H2
1 (M

n) is the completed Hilbert space of C∞(Mn) under the
norm

∥ϕ∥2H2
1
=

∫
Mn

ϕ2dµ+

∫
Mn

|∇ϕ|2dµ.

It is well known that, for a closed Riemannian manifold with positive
Ricci curvature, we have the following famous Lichnerowicz-Obata
theorem [9]:

Theorem 1.1 (Lichnerowicz-Obata). Let (Mn, g) be a closed Rie-
mannian manifold satisfying Rc ≥ (n − 1)K > 0, for some constant
K > 0. Then

λ1 (M
n) ≥ nK,

and the equality holds if and only if (Mn, g) is isometric to the space
form (Mn

K , gK) with constant sectional curvature K, and the corre-
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sponding eigenfunction is

φ(x) = A cos(
√
Kr) +B sin(

√
Kr),

where A and B are two constants and r = d(p, x).

Then we deal with the first Dirichlet eigenvalue of the Laplacian
operator and the Schrödinger operator. Let B(p, r) denote the geo-
desic ball with center p and radius r, and let BK(p′, r) denote the
geodesic ball with center p′ and radius r in the n-dim simply con-
nected space form Mn

K with constant sectional curvature K. The first
Dirichlet eigenvalue λD

1 (B(p, r)) of the Laplacian operator and the one
µD
1 (B(p, r)) of the Schrödinger operator for the geodesic ball B(p, r)

can be respectively defined as follows:

(1.3) λD
1 (B (p, r)) = inf

ϕ∈
o
H2

1(B(p,r))

∫
B(p,r)

|∇ϕ|2dµ∫
B(p,r)

ϕ2dµ
̸= 0,

and

(1.4) µD
1 (B (p, r)) = inf

ϕ∈
o
H2

1(B(p,r))

∫
B(p,r)

(
|∇ϕ|2 + V ϕ2

)
dµ∫

B(p,r)
ϕ2dµ

̸= 0,

where
o

H2
1(B(p, r)) is the completed Hilbert space of C∞

0 (B(p, r)) under
the norm

∥ϕ∥2o
H2

1

=

∫
B(p,r)

ϕ2dµ+

∫
B(p,r)

|∇ϕ|2 dµ.

Moreover, using the first Dirichlet eigenvalue λD
1 (B(p, r)) of the Lapla-

cian operator for B(p, r), we can define the first eigenvalue of the Lapla-
cian operator for the complete Riemannian manifold Mn as follows:

λ1 (M
n) = lim

r→∞
λD
1 (B (p, r)) ,

where B(p, r) is the geodesic ball in Mn.

Recall that, for the λD
1 (B(p, r)), we have the following famous

comparison theorem by Cheng [3]:
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Theorem 1.2 (Cheng). Let (Mn, g) be a complete Riemannian man-
ifold satisfying Rc ≥ (n− 1)K, where K ∈ R. Then

λD
1 (B (p, r)) ≤ λD

1 (BK(p′, r)) ,

and equality holds if and only if B(p, r) is isometric to BK(p′, r).

Corollary 1.3 (Cheng). Let (Mn, g) be a compact Riemannian man-
ifold satisfying Rc ≥ 0. Then

λ1 (M
n) ≤ λD

1

(
B

(
p,

dMn

2

))
≤ Cn

d2Mn

,

where Cn = 2n(n+ 4) and dMn is the diameter of Mn.

Moreover, for the Schrödinger operator L = −∆+V for the manifold
Mn and LK = −∆+VK for the space form Mn

K , where VK is assumed
to be smooth and nonnegative. By using Theorem 1.2, we can also
derive a similar comparison theorem as follows:

Theorem 1.4 (Comparison theorem for the Schrödinger operator). Let
(Mn, g) be a complete Riemannian manifold satisfying Rc ≥ (n− 1)K,
where K ∈ R. Then

µD
1 (B (p, r)) ≤ µD

1 (BK (p′, r)) + max
x∈B(p,r)

V (x)− min
x∈BK(p′,r)

VK (x) ,

and equality holds if and only if the following conditions are satisfied :

(i) B(p, r) is isometric to BK(p′, r);
(ii) the eigenfunctions corresponding to the first eigenvalues λD

1 (B(p, r))
and λD

1 (BK(p′, r)) of the Laplacian operator are, under the isome-
try from (i), precisely the ones corresponding to the first eigenval-
ues µD

1 (B(p, r)) and µD
1 (BK(p′, r)) of the Schrödinger operator ;

(iii) the function V (x) is a constant on B(p, r) and VK(x) is a constant
on BK(p′, r).
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In this paper, based on Theorem 1.2 and the definition of the first
Dirichlet eigenvalue of the Laplacian operator, we prove the useful
result below, which is also one of our main results:

Theorem 1.5 (Main result I). Let (Mn
K , gK) be a space form with

constant positive sectional curvature K, and let λD
1 (Mn

K) be the first
Dirichlet eigenvalue of the Laplacian operator for Mn

K , which is defined
as follows:

λD
1 (Mn

K) = lim
r→π/

√
K
λD
1 (BK (p′, r)) ,

where λD
1 (BK(p′, r)) is the first Dirichlet eigenvalue of the Laplacian

operator for BK(p′, r). Then we have
(1.5)

λD
1 (Mn

K) = lim
r→π/

√
K
λD
1 (BK (p′, r)) ≤ λ1 (M

n
K) ≤ λD

1

(
BK

(
p′,

π

2
√
K

))
.

Now we recall the definition of the gradient Ricci soliton as follows
[6]:

Definition 1.6 (Gradient Ricci soliton). A complete Riemannian
manifold (Mn, g) is called a gradient Ricci soliton if there exists a
smooth function f : Mn → R, such that

Rc(g) +∇∇f +
ε

2
g = 0,

where Rc is the Ricci curvature tensor and ε is a real constant.
Furthermore,

(i) If ε < 0, then it is called a shrinking gradient Ricci soliton;
(ii) If ε = 0, then it is called a steady soliton;
(iii) If ε > 0, then it is called an expanding one.

It is well known that one of the basic problems in Riemannian ge-
ometry is to relate curvature and topology. In [1], Böhm and Wilking
proved that n-dim closed Riemannian manifolds with 2-positive cur-
vature operators are diffeomorphic to spherical space forms, i.e., they
admit metrics with constant positive sectional curvature. Moreover, it
is a well-known theorem of Tachibana [11] that any compact Einstein
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manifold with positive sectional curvature must be of constant curva-
ture. Note that Einstein manifolds are special Ricci solitons with the
constant Ricci potential function; hence, inspired by his own work in
[7, 8], Hamilton made the following conjecture [7]:

Conjecture 1.7 (Hamilton). A compact gradient shrinking Ricci soli-
ton with positive curvature operator must be Einstein.

Hence, if Conjecture 1.7 is true, then together with Tachibana’s
theorem, we have:

Conjecture 1.8. A compact gradient shrinking Ricci soliton with
positive curvature operator must be a space form with constant positive
sectional curvature.

Moreover, for the compact gradient steady or expanding case, Hamil-
ton actually proved a similar result [7]:

Theorem 1.9 (Hamilton). A compact gradient steady or expanding
Ricci soliton must be Einstein.

Although the general proof of Conjecture 1.8 is hard, for the special
case S2, Cheng [4] proved the following interesting result by using
tensor analysis and the famous Gauss-Bonnet theorem.

Theorem 1.10 (Cheng). Suppose that M2 is homeomorphic to S2

and that φ1, φ2, φ3 are all first eigenfunctions on (M2, g) (that is,
eigenfunctions corresponding to λ1(M

2)), such that the sum of their
squares is equal to a constant. Then (M2, g) is actually isometric to a
sphere with constant sectional curvature.

Remark 1.11. In fact, as mentioned in [4], in Theorem 1.10, m = 3 is
the only number such that there are m first eigenfunctions with square
sum equal to a constant. Since every nonconstant eigenfunction must
vanish somewhere, this rules out that the case m = 1, m = 2 is not
possible because, by the results of [5] we have φ−1

1 (0) ∩ φ−1
2 (0) ̸= ϕ

whenever −∆φi = λφi, i = 1, 2, λ > 0. Also the results of [5] show
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that if M is homeomorphic to S2, then the multiplicity of the first
eigenfunction is at most 3. This shows that m > 3 is not possible.

Since each manifold with dim = 2 is actually an Einstein manifold,
which is a special Ricci soliton with a constant Ricci potential function.
Then, for the special case of Ricci solitons, we may prove a similar
result to Theorem 1.10. In fact, we present a characterization of a
Ricci soliton being an n-dim space form by the first eigenfunctions of
the Laplacian operator, which gives a partial proof of Conjecture 1.8
as follows:

Theorem 1.12 (Main result II). Let (Mn, g) be a compact gradient
Ricci soliton with positive Ricci curvature. Suppose that there exists a
geodesic ball B(p, r) with center p and radius r such that the eigenfunc-
tions {φi}Ni=1 corresponding to the first Dirichlet eigenvalue λD

1 (B(p, r))
of the Laplacian operator satisfy

∑
i φ

2
i ≡ C, where C is a nonzero con-

stant. Letting
µ = inf {λ ∈ R |∇∇f ≤ λg } ,

then we have

(i) (Mn, g) is a shrinking Ricci soliton;
(ii) B(p, r) is isometric to a geodesic ball BK(p′, r) in the space form

(Mn
K , gK) with constant sectional curvature

K = −[µ+ ε/2]/n− 1.

Furthermore, for the complete case, we also have the following
similar result:

Theorem 1.13. Let (Mn, g) be a complete gradient Ricci soliton,
and suppose that there exists a geodesic ball B(p, r) with center p
and radius r such that the eigenfunctions {φi}Ni=1 corresponding to the
first Dirichlet eigenvalue λD

1 (B(p, r)) of the Laplacian operator satisfy∑
i

φ2
i ≡ C, where C is a nonzero constant. If

∇∇f (x) ≤ µg (x)
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for any x ∈ BK(p′, r) and

λD
1 (BK (p′, r)) ≤ − 1

1− 1/n

(
µ+

ε

2

)
,

where BK(p′, r) is a geodesic ball in the space form (Mn
K , gK) with

constant sectional curvature K = −(µ+ ε/2)/n− 1, then B(p, r) is
isometric to BK(p′, r).

Remark 1.14. Note that any Einstein manifold is automatically a
Ricci soliton with a constant Ricci potential function,the similar result
is also true naturally.

Corollary 1.15 (Einstein manifold). Let (Mn, g) be a complete Ein-
stein manifold, and suppose that there exists a geodesic ball B(p, r)
with center p and radius r such that the eigenfunctions {φi}Ni=1 corre-
sponding to the first Dirichlet eigenvalue λD

1 (B(p, r)) of the Laplacian
operator satisfy

∑
i

φ2
i ≡ C, where C is a nonzero constant. If

(1.6) λD
1 (BK (p′, r)) ≤ − 1

1− 1/n

(
µ+

ε

2

)
,

where BK(p′, r) is a geodesic ball in the space form (Mn
K , gK) with

constant sectional curvature K = −(µ+ ε/2)/n− 1, then B(p, r) is
isometric to BK(p′, r).

Remark 1.16. For an Einstein manifold, condition (6) in Corol-
lary 1.13 is not satisfied naturally, but for an Einstein manifold with
constant positive scalar curvature, condition (6) is satisfied naturally.
In fact, for an Einstein manifold with constant positive scalar curva-
ture, according to the Bonnet-Myers theorem [6], we have the manifold
is compact. Moreover, using the lower bound estimation for the first
eigenvalue and the equality condition in Theorem 1.1, it can be seen
that condition (6) is only satisfied for an Einstein manifold with positive
constant scalar curvature.

For the space form MK satisfying λ1(MK) = nK, condition (6) is
satisfied naturally. Moreover, for an Einstein manifold with positive
scalar curvature, condition (6) is also satisfied naturally. Thus, Corol-
lary 1.13 is actually a sufficient condition for the Einstein manifolds
isometric isomorphic to the space form.
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On the other hand, the classical Myers theorem says that a complete
Riemannian manifold with Ricci curvature bounded below by a positive
constant is compact. Based on the study of Ricci flow, Hamilton
conjectured (see [6]) that, if (M3, g) is a complete Riemannian 3-
manifold with the Ricci pinching condition Rc(g) ≥ εRg, where R > 0
is the positive scalar curvature and ε > 0 is a uniform constant, then
M3 is compact.

With the extra assumption that the sectional curvature is bounded
and non-negative (and in this case one has the injectivity radius
bounded and Hamilton’s Harnack differential inequality for Ricci flow),
the conjecture has been proved by Chen and Zhu in [2]. Moreover, the
complex version is a conjecture due to Yau (see [10]), and the above
question was posed to Hamilton by Shi, who was asked for this by Yau.

In this paper, we will give a partial proof of this conjecture. In
fact, we present a characterization of the compactness of manifolds by
the first eigenfunctions of the Laplacian operator, and our result also
satisfies for general n-dim manifolds:

Theorem 1.17 (Main result III). Let (Mn, g) be an n-dim complete
Riemannian manifold with the Ricci pinching condition Rc(g) ≥ εRg,
where R > 0 is the positive scalar curvature and ε > 0 is a uniform
constant. If there exist some non-constant eigenfunctions φi, where
1 ≤ i ≤ N , corresponding to the first eigenvalue of the Laplacian
operator such that

∑
i

φ2
i ≡ C, where C is a nonzero constant, then

(Mn, g) is compact.

The paper is organized as follows. In Section 2, we prove Theo-
rem 1.4 by using Theorem 1.2. In Section 3, we give the proof of
Theorem 1.5 by using Theorem 1.2. Based on these, in Section 4 we
prove Theorems 1.11 and 1.12. In Section 5, we present the proof of
Theorem 1.14.

2. The comparison theorem for the Schrödinger operator.
In this section, we prove the comparison theorem for the Schrödinger
operator as follows.



470 XIANG GAO

Proof of Theorem 1.4. Let φ be the eigenfunction corresponding to
the first Dirichlet eigenvalue λD

1 (B(p, r)) of the Laplacian operator for
B(p, r), and let φK be the one corresponding to the first Dirichlet
eigenvalue µD

1 (BK(p′, r)) of the Schrödinger operator for BK(p′, r).
Then, by the definition of the first Dirichlet eigenvalue, we have

λD
1 (B (p, r)) =

∫
B(p,r)

|∇φ|2 dµ∫
B(p,r)

φ2dµ

and

µD
1 (BK (p′, r)) =

∫
BK(p′,r)

(|∇φK |2 + VKφ2
K) dµ∫

BK(p′,r)
φ2
Kdµ

=

∫
BK(p′,r)

|∇φK |2dµ∫
BK(p′,r)

φ2
Kdµ

+

∫
BK(p′,r)

VKφ2
Kdµ∫

BK(p′,r)
φ2
Kdµ

,

where φ ∈
o

H2
1(B(p, r)) and φK ∈

o

H2
1(BK(p′, r)).

Then, by the definition of the first Dirichlet eigenvalue, we have

µD
1 (B (p, r)) = inf

ϕ∈
o
H2

1(B(p,r))

∫
B(p,r)

(|∇ϕ|2 + V ϕ2) dµ∫
B(p,r)

ϕ2dµ

≤

∫
B(p,r)

|∇φ|2dµ∫
B(p,r)

φ2dµ
+

∫
B(p,r)

V φ2dµ∫
B(p,r)

φ2dµ

≤ λD
1 (B (p, r)) + max

x∈B(p,r)
V (x)

and

µD
1 (BK (p′, r)) =

∫
BK(p′,r)

|∇φK |2dµ∫
BK(p′,r)

φ2
Kdµ

+

∫
BK(p′,r)

VKφ2
Kdµ∫

BK(p′,r)
φ2
Kdµ

≥ inf
ϕ∈

o
H2

1(BK(p′,r))

∫
BK(p′,r)

|∇ϕ|2dµ∫
BK(p′,r)

ϕ2dµ
+ min

x∈BK(p′,r)
VK(x)

= λD
1 (BK (p′, r)) + min

x∈BK(p′,r)
VK(x).
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Thus,

µD
1 (B (p, r))− max

x∈B(p,r)
V (x) ≤ λD

1 (B (p, r)) ,(2.1)

λD
1 (BK (p′, r)) ≤ µD

1 (BK (p′, r))− min
x∈BK(p′,r)

VK(x).

Note that Rc ≥ (n− 1)Kg; thus, by Theorem 1.2, we have

λD
1 (B (p, r)) ≤ λD

1 (BK(p′, r)) .

Together with equation (7), it follows that

µD
1 (B (p, r))− max

x∈B(p,r)
V (x) ≤ µD

1 (BK (p′, r))− min
x∈BK(p′,r)

VK (x) ,

which implies that

(2.2) µD
1 (B (p, r)) ≤ µD

1 (BK (p′, r))+ max
x∈B(p,r)

V (x)− min
x∈BK(p′,r)

VK(x).

Furthermore, if the equality in equation (8) holds, by the proof we
have

µD
1 (B (p, r)) = inf

ϕ∈
o
H2

1(B(p,r))

∫
B(p,r)

(|∇ϕ|2 + V ϕ2) dµ∫
B(p,r)

ϕ2dµ

=

∫
B(p,r)

(|∇φ|2 + V φ2) dµ∫
B(p,r)

φ2dµ
,∫

BK(p′,r)
|∇φK |2dµ∫

BK(p′,r)
φ2
Kdµ

= inf
ϕ∈

o
H2

1(BK(p′,r))

∫
BK(p′,r)

|∇ϕ|2dµ∫
BK(p′,r)

ϕ2dµ

= λD
1 (BK (p′, r)) ,

V (x) = max
x∈B(p,r)

V (x),

VK(x) = min
x∈BK(p′,r)

VK(x)

and
λD
1 (B (p, r)) = λD

1 (BK (p′, r)) .

Hence, φ is also an eigenfunction corresponding to the first Dirichlet
eigenvalue µD

1 (B(p, r)) of the Schrödinger operator, φK is also an eigen-
function corresponding to the first Dirichlet eigenvalue λD

1 (BK(p′, r))
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of the Laplacian operator. The functions V (x) and VK(x) are constant
on B(p, r) and BK(p′, r), respectively.

Moreover by using the equality condition in Theorem 1.2, it follows
from

λD
1 (B (p, r)) = λD

1 (BK (p′, r))

that B(p, r) is isometric to BK(p′, r).

Conversely, if B(p, r) is isometric to BK(p′, r), the eigenfunc-
tions corresponding to the first Dirichlet eigenvalue λD

1 (B(p, r)) and
λD
1 (BK(p′, r)) of the Laplacian operator are, respectively, the eigen-

functions corresponding to the first Dirichlet eigenvalue µD
1 (B(p, r))

and µD
1 (BK(p′, r)) of the Schrödinger operator. Together with the

condition that V (x) and VK(x) are constant on B(p, r) and BK(p′, r),
respectively, the equality in equation (2.2) holds clearly. �

3. Proof of Theorem 1.5. In this section, we prove Theorem 1.5.

Proof of Theorem 1.5. Firstly, select two points p and q such that

d (p, q) = dMn
K
=

π√
K

,

and consider the geodesic ballsBK(p, (π/(2
√
K)) andBK(q, (π/(2

√
K)))

in the n-dim simply connected space form Mn
K . We denote u and v

as the first Dirichlet eigenfunctions of the Laplacian operator corre-
sponding to BK(p, (π/(2

√
K))) and BK(q, (π/(2

√
K))), respectively,

and define the following two functions:

ũ(x) =

u(x) x ∈ BK

(
p, (π/(2

√
K))

)
,

0 x ∈ Mn
K\BK

(
p, (π/(2

√
K))

)
,

and

ṽ(x) =

v(x) x ∈ BK

(
q, (π/(2

√
K))

)
,

0 x ∈ Mn
K\BK

(
q, (π/(2

√
K))

)
.
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Then

∫
Mn

K
|∇ũ|2dµ∫

Mn
K
ũ2dµ

=

∫
BK(p,(π/(2

√
K)))

|∇u|2dµ∫
BK(p,(π/(2

√
K)))

u2dµ
= λD

1

(
BK

(
p,

π

2
√
K

))(3.1)

and

∫
Mn

K
|∇ṽ|2dµ∫

Mn
K
ṽ2dµ

=

∫
BK(q,(π/(2

√
K)))

|∇v|2dµ∫
BK(q,(π/(2

√
K)))

v2dµ
= λD

1

(
BK

(
q,

π

2
√
K

))
.

(3.2)

Now we choose a constant C such that∫
Mn

K

(ũ+ Cṽ) dµ = 0,

and by the definition of the first eigenfunction of the Laplacian opera-
tor, we have

λ1 (M
n
K) ≤

∫
Mn

K
|∇(ũ+ Cṽ)|2dµ∫

Mn
K
(ũ+ Cṽ)2dµ

.

Note that Mn
K is a space form with diameter dMn

K
= π/

√
K, and it

follows that

λD
1

(
BK

(
p,

π

2
√
K

))
= λD

1

(
BK

(
q,

π

2
√
K

))
and

Vol

(
BK

(
p,

π

2
√
K

)
∩BK

(
q,

π

2
√
K

))
= 0.

Then, by using equations (9) and (10), we have

λ1(M
n
K) ≤

∫
Mn

K
|∇(ũ+ Cṽ)|2dµ∫

Mn
K
(ũ+ Cṽ)2dµ

=

∫
Mn

K
|∇ũ|2dµ+ C2

∫
Mn

K
|∇ṽ|2dµ∫

Mn
K
ũ2dµ+ C2

∫
Mn

K
ṽ2dµ

= λD
1

(
BK

(
p,

π

2
√
K

))
= λD

1

(
BK

(
q,

π

2
√
K

))
.
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For the other inequality, note that the metric of space form Mn
K is

the form of
gK = dr2 + sK(r)gSn−1 .

Then, by Theorem 1.1, we can select the first eigenfunction of the
Laplacian operator

φ(x) = A cos
(√

Kr
)
+B sin

(√
Kr

)
,

where r = d(p, x) such that

λ1 (M
n
K) =

∫
Mn

K
|∇φ|2dµ∫

Mn
K
φ2dµ

=

∫ π/
√
K

0
|∇φ(r)|2sK(r)n−1dr

∫
Sn−1 dµSn−1∫ π/

√
K

0
φ(r)2sK(r)n−1dr

∫
Sn−1 dµSn−1

=

∫ π/
√
K

0
|∇φ(r)|2sK(r)n−1dr∫ π/

√
K

0
φ(r)2sK(r)n−1dr

= lim
s→π/

√
K

∫ s

0
|∇φ(r)|2sK(r)n−1dr∫ s

0
φ(r)2sK(r)n−1dr

,

where we use the fact that Mn
K is a space form with diameter dMn

K
=

π/
√
K. Then we define another function φs ∈

o

H2
1 (BK(p, s)) such that

φs(x) = φ(x) for any x ∈ BK(p, s), and, by the definition of the first
Dirichlet eigenvalue of the Laplacian operator for BK(p, s), it follows
that∫ s

0
|∇φ(r)|2sK(r)n−1dr∫ s

0
φ(r)2sK(r)n−1dr

=

∫ s

0
|∇φs(r)|2sK(r)n−1dr

∫
Sn−1 dµSn−1∫ s

0
φs(r)2sK(r)n−1dr

∫
Sn−1 dµSn−1

=

∫
BK(p,s)|∇φs|2dµ∫
BK(p,s)

φ2
sdµ

≥ λD
1 (BK(p, s)) .

Consequently, by the definition of λD
1 (Mn

K), we have

λ1 (M
n
K) = lim

s→π/
√
K

∫ s

0
|∇φ(r)|2sK(r)n−1dr∫ s

0
φ(r)2sK(r)n−1dr

≥ lim
s→π/

√
K
λD
1 (BK(p, s))

= λD
1 (Mn

K) . �
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4. Characterizations of Ricci solitons as space forms. In this
section, by using Theorems 1.1, 1.2 and 1.5, we turn to prove Theorems
1.11 and 1.12.

Proof of Theorem 1.11.

(i) If (Mn, g) is a steady or expanding Ricci soliton

Rc+∇∇f +
ε

2
g = 0,

where ε ≥ 0, then, by Theorem 1.9, we have Mn is actually
an Einstein manifold with the Ricci potential function f being a
constant. Thus,

Rc = −ε

2
g ≤ 0,

which leads to a contradiction to the positive Ricci curvature.
(ii) By the assumption of Theorem 1.11, for the geodesic ball B(p, r),

we have
∆φi + λD

1 (B(p, r))φi = 0

and ∑
i

φ2
i ≡ C,

where 1 ≤ i ≤ N for some N ∈ N. Thus,

0 = ∆

(∑
i

φ2
i

)
=

∑
i

2|∇φi|2 + 2
∑
i

φi∆φi

=
∑
i

2|∇φi|2 − 2λD
1 (B(p, r))

∑
i

φ2
i ,

which implies that

(4.1)
∑
i

|∇φi|2 = CλD
1 (B(p, r)) .

Taking the Laplacian of both sides of equation (4.1) and using
the Bochner formula [6]:

∆|∇f |2 = 2|∇∇f |2 + 2⟨∇f,∇∆f⟩+ 2Rc(∇f,∇f),

we have
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0 =
∑
i

∆|∇φi|2

= 2
∑
i

|∇∇φi|2 + 2
∑
i

⟨∇φi,∇∆φi⟩+ 2
∑
i

Rc(∇φi,∇φi)

= 2
∑
i

|∇∇φi|2 − 2λD
1 (B(p, r))2

∑
i

φ2
i

− 2
∑
i

∇∇f(∇φi,∇φi)− ε
∑
i

|∇φi|2

≥ 2

n

∑
i

|∆φi|2 − 2λD
1 (B(p, r))

2
∑
i

φ2
i

− 2µ
∑
i

|∇φi|2 − ε
∑
i

|∇φi|2

= −2

(
1− 1

n

)
λD
1 (B(p, r))

2
C − 2

(
µ+

ε

2

)
λD
1 (B(p, r))C.

Note that, if for any geodesic ball B(p, r), the first Dirichlet eigenvalue
λD
1 (B(p, r)) of the Laplacian operator is positive, then together with

C > 0 we have

(4.2) λD
1 (B(p, r)) ≥ − 1

(1− 1/n)

(
µ+

ε

2

)
.

On the other hand, since (Mn, g) is a compact gradient Ricci soliton
with positive Ricci curvature, we have

0 < δg ≤ Rc = −
(
∇∇f +

ε

2
g

)
,

which is equivalent to

∇∇f ≤ −
(
δ +

ε

2

)
g.

By the definition of µ, we have µ ≤ −(δ + ε/2). Then

(4.3) Rc = −∇∇f − ε

2
g ≥ −

(
µ+

ε

2

)
g ≥ δg > 0.
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Thus, for the space form (Mn
K , gK) with constant sectional curvature

K = −[µ+ ε/2]/n− 1, we have

Rc (gK) = −
(
µ+

ε

2

)
g > 0.

Then, by the equality condition in Theorem 1.1, we have

λ1 (M
n
K) = − 1

(1− 1/n)

(
µ+

ε

2

)
.

Furthermore, by Theorem 1.2, it follows from equation (4.3) that

(4.4) λD
1 (B(p, r)) ≤ λD

1 (BK(p′, r)) ,

where BK(p′, r) is a geodesic ball in the space form Mn
K with K =

−[µ+ ε/2]/n− 1. Note that Theorem 1.5 implies that

(4.5) λD
1 (BK(p′, r)) ≤ λ1 (M

n
K) = − 1

(1− 1/n)

(
µ+

ε

2

)
,

where λ1(M
n
K) denote the first eigenvalue of the Laplacian operator for

the space form Mn
K .

Thus, by equations (4.2) and (4.5), it follows that

(4.6) λD
1 (B(p, r)) ≥ − 1

(1− 1/n)

(
µ+

ε

2

)
≥ λD

1 (BK(p′, r)) ,

Together with equation (4.4), we have

λD
1 (B(p, r)) = λD

1 (BK(p′, r)) .

Then, by the equality condition in Theorem 1.2, we derive that B(p, r)
is isometric to BK(p′, r). �

Proof of Theorem 1.12. As in the proof of Theorem 1.11, for the
geodesic ball B(p, r), we can derive that

λD
1 (B(p, r)) ≥ − 1

(1− 1/n)

(
µ+

ε

2

)
.

Then, together with the assumption

λD
1 (BK(p′, r)) ≤ − 1

(1− 1/n)

(
µ+

ε

2

)
,
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we can also obtain that

λD
1 (B(p, r)) ≥ λD

1 (BK(p′, r)) ,

and the rest of the proof is similar to the proof of Theorem 1.11. �

5. Compactness of complete manifolds with Ricci pinching.
In this section, we prove Theorem 1.14.

Proof of Theorem 1.14. As the proof of Theorem 1.11, we can also
derive

0 = 2
∑
i

|∇∇φi|2 − 2λ2
1 (M

n)
∑
i

φ2
i + 2

∑
i

Rc (∇ϕi,∇ϕi)

≥ 2

n

∑
i

|∆φi|2 − 2λ2
1 (M

n)
∑
i

φ2
i + 2εR

∑
i

|∇φi|2

= −2

(
1− 1

n

)
λ2
1 (M

n)C + 2CεRλ1 (M
n) .

If λ1(M
n) is equal to 0, then by Li and Yau’s gradient estimate (see

[9]), we derive that φi ≡ Ci, where Ci is a constant for each 1 ≤ i ≤ N .
Thus, without loss of generality, we can assume that λ1(M

n) > 0, and
consequently,

λ1 (M
n) ≥ nε

n− 1
R.

Then we consider the geodesic ball B(p, r) with center p and radius
r, and, by Corollary 1.3, we have

λD
1 (B(p, r)) ≤ Cn

d2B(p,r)

,

where Cn = 2n(n+ 4) and dB(p,r) is the diameter of B(p, r).

On the other hand, let φ be the first Dirichlet eigenfunction of the
Laplacian operator for B(p, r1) such that∫

B(p,r1)

φ2dµ = 1.
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Then, for a larger geodesic ball B(p, r2), it is easy to see that

φ̃(x) =

{
φ(x) x ∈ B(p, r1)

0 x ∈ B(p, r2)\B(p, r1)

is a function defined on B(p, r2) such that∫
B(p,r2)

φ̃ 2dµ = 1.

Then, by the definition of the first Dirichlet eigenvalue of the Laplacian
operator, we have

λ1 (B (p, r1)) =

∫
B(p,r1)

|∇φ|2dµ =

∫
B(p,r2)

|∇φ̃|2dµ

≥ inf
∥ϕ∥2=1

∫
B(p,r2)

|∇ϕ|2dµ = λ1 (B (p, r2)) .

Thus, if the first eigenvalue of the Laplacian operator for Mn

λ1(M
n) = lim

r→∞
λD
1 (B(p, r))

exists, then actually λD
1 (B(p, r)) tends to λ1(M

n) monotone decreas-
ingly. Hence,

Cn

d2B(p,r)

≥ λD
1 (B(p, r)) ≥ λ1(M

n) ≥ nε

n− 1
R (p) ,

for any r, that is to say, that

dB(p,r) ≤

√
2(n+ 4)(n− 1)

εR(p)
< ∞,

for any r, where we use R(p) > 0. This implies that the manifold Mn

is compact. �
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