ON ALGEBRAS OF BANACH ALGEBRA-VALUED BOUNDED CONTINUOUS FUNCTIONS

HUGO ARIZMENDI-PEIMBERT, ANGEL CARRILLO-HOYO AND ALEJANDRA GARCÍA-GARCÍA

ABSTRACT. Let X be a completely regular Hausdorff space. We denote by C(X, A) the algebra of all continuous functions on X with values in a complex commutative unital Banach algebra A. Let $C_b(X, A)$ be its subalgebra consisting of all bounded continuous functions and endowed with the uniform norm. In this paper, we give conditions equivalent to the density of a natural continuous image of $X \times \mathcal{M}(A)$ in the maximal ideal space of $C_b(X, A)$.

1. Introduction. Throughout this paper, X will denote a completely regular Hausdorff space, A a complex commutative unital Banach algebra with norm $\|\cdot\|$ and unit element e and G(A) the set of invertible elements of A. We may assume that $\|e\| = 1$. We shall use the following notation for various function spaces:

C(X, A) is the unital algebra of all continuous functions on X with values in A, with pointwise operations and unit element the function on X identically equal to e and which will be denoted simply by e.

 $C_b(X, A)$ is the subalgebra of C(X, A) of all bounded continuous functions, provided with the uniform norm $\|\cdot\|_{\infty}$ given by $\|f\|_{\infty} = \sup_{x \in X} \|f(x)\|$.

When A is the complex field \mathbb{C} , then we shall write C(X) and $C_b(X)$ instead of $C(X, \mathbb{C})$ and $C_b(X, \mathbb{C})$, respectively.

 $C_p(X, A)$ is the subalgebra of $C_b(X, A)$ of all continuous functions f such that the closure of its range in A, namely $\operatorname{cl}(f(X))$, is compact in A.

DOI:10.1216/RMJ-2016-46-2-389 Copyright ©2016 Rocky Mountain Mathematics Consortium

²⁰¹⁰ AMS Mathematics subject classification. Primary 46E40, 46H05, 46J10.

Keywords and phrases. Banach algebras, vector-valued bounded continuous functions, maximal ideal space.

Received by the editors on October 14, 2013, and in revised form on June 4, 2014.

It is easy to see that $C_b(X, A)$ and $C_p(X, A)$ are Banach algebras. In general, $C_p(X, A)$ is a proper subalgebra of $C_b(X, A)$ as the next example shows. Take $X = \mathbb{N}$ endowed with the discrete topology and A = C([0, 1]) with the uniform norm. Let $f: X \to A$ be the function given by f(n)(0) = f(n)(1) = 1, f(n)(1-1/n) = 1/n and f(n) is linear elsewhere in [0, 1]. Then $f \in C_b(X, A) \setminus C_p(X, A)$, since the sequence (f(n)) has no uniformly convergent subsequence in C([0, 1]).

Necessary and sufficient conditions for the equality of the latter algebras are given in the next easily proven result.

Proposition 1.1. The following assertions are equivalent:

- (i) $C_b(X, A) = C_p(X, A).$
- (ii) If $f \in C_b(X, A)$ and $f(X) \subset G(A)$, then cl(f(X)) is compact.
- (iii) For every $f \in C_b(X, A)$, there exist $\lambda_1, \lambda_2 \in \mathbb{C}$, with $\lambda_1 \neq 0$, such that $\lambda_1 f + \lambda_2 e \in C_p(X, A)$.

For every $f \in C_p(X, A)$, there exists a unique extension f_β of f to the Stone-Čech compactification βX of X.

Let *B* be any complex commutative unital algebra. We denote by $\mathfrak{M}^{\#}(B)$ the set of all non-zero multiplicative linear functionals on *B*, provided with the weak star topology w^* . When *B* is a topological algebra, $\mathfrak{M}(B)$ denotes the topological subspace of $\mathfrak{M}^{\#}(B)$ consisting of all non-zero multiplicative continuous linear functionals on *B*. For $b \in B$, its Gelfand transform \hat{b} is given by $\hat{b}(\varphi) = \varphi(b)$, for $\varphi \in \mathfrak{M}^{\#}(B)$. The set $\mathfrak{M}(B)$ is called the maximal ideal space of *B* and it coincides with $\mathfrak{M}^{\#}(B)$ if *B* is a Banach algebra.

There are several papers in which $\mathfrak{M}^{\#}(B)$ or $\mathfrak{M}(B)$ is characterized when B is a function algebra. Well-known results are: $\mathfrak{M}^{\#}(C(X)) = X$ if X is a realcompact space ([5, page 3609, Theorem 1]) and $\mathfrak{M}(C_b(X)) = \beta(X)$ if X is a completely regular Hausdorff space ([11, page 123, Theorem (3.2.11)]).

Along these lines, Dierolf, Schröder and Wengenroth proved in [3, page 54, Theorem 1], the formula $\mathfrak{M}^{\#}(C(X, E)) = X \times \mathfrak{M}^{\#}(E)$ for a (completely regular Hausdorff) realcompact space X and a metrizable topological algebra E. Under the same assumption on X this formula was previously proved in [8, page 371, Theorem 5 (a)] by Hery

supposing that E is a unital commutative topological Q-algebra with continuous inversion and either $\mathfrak{M}(E)$ is locally equicontinuous or X is discrete.

Concerning the maximal ideal spaces of functions algebras, Hausner in [7, page 248, Theorem], Dietrich in [4, page 207, Theorem 4] and Kahn in ([9, page 89, Theorem 5.2.4]) proved that $\mathfrak{M}(C(X, E)) =$ $X \times \mathfrak{M}(E)$. In the first of these works X is a compact Hausdorff space and E is a unital complex commutative Banach algebra. In the second one, X is any completely regular k-space and E is a unital complete locally convex algebra such that $\mathfrak{M}(E)$ is locally equicontinuous. In Kahn's, X is a completely regular space of finite covering dimension and E is a unital topological algebra with non-trivial dual and such that $\mathfrak{M}(E)$ is locally equicontinuous. In all these papers C(X, E) carries the compact-open topology. Using any of these results or [1, page 314, Corollary 6], the equality $\mathfrak{M}(C_p(X, A)) = \beta X \times \mathfrak{M}(A)$, which is a particular case of [8, page 369, Corollary 2 (a)], is easily obtained in Proposition 2.1 under our general hypothesis on X and A.

In contrast, little is known in general about the maximal ideal space of $C_b(X, A)$. Govaerts showed in [6, page 156, Counterexample 1] that $\mathfrak{M}(C_b(X, A)) = \beta X \times \mathfrak{M}(A)$ is false in general, and Kahn proved in [9, page 89, Corollary 5.2.3] that $\mathfrak{M}(C_b(X, E)) = X \times \mathfrak{M}(E)$, where $C_b(X, E)$ is endowed with the strict topology for any completely regular space X of finite covering dimension and a unital topological algebra E with non-trivial dual for which $\mathfrak{M}(E)$ is locally equicontinuous. The notion of the strict topology on $C_b(X, E)$ was first introduced by Buck in [2, page 97, Definition] in the case of X locally compact and E locally convex.

Here we study $\mathfrak{M}(C_b(X, A))$. We define a natural continuous transformation T from $X \times \mathfrak{M}(A)$, with the product topology, into $\mathfrak{M}(C_b(X, A))$. Therefore, each function $f \in C_b(X, A)$ has its proper Gelfand transform $\widehat{f} \in C(\mathfrak{M}(C_b(X, A)))$ and also another Gelfand transform $\widetilde{f} = \widehat{f} \circ T$ belonging to $C_b(X \times \mathfrak{M}(A))$. We prove that the transformation $f \to \widetilde{f}$ is a continuous homomorphism.

Let A be a complex completely symmetric algebra, i.e., a complex commutative unital Banach algebra with involution * satisfying ||a|| = $||a^*||$ and $F(a^*) = \overline{F(a)}$ (the complex conjugate of F(a)) for all $a \in A$ and $F \in \mathfrak{M}(A)$. We show that property " $f \in C_b(X, A)$ is invertible if \tilde{f} is invertible" is equivalent to " $T(X \times \mathfrak{M}(A))$ is dense in $\mathfrak{M}(C_b(X, A))$."

We do not know if these two properties are still equivalent if A is not assumed as above, but we exhibit an example, orally proposed by V. Müller, in which A is a complex completely symmetric algebra and nevertheless there exists $f \in C_b(X, A)$ such that \tilde{f} is invertible and f is not. Therefore even for completely symmetric algebras, the set $\mathfrak{M}(C_b(X, A))$ is in general larger than the w^* -closure $cl_{w^*}(T(X \times \mathfrak{M}(A)))$ of $T(X \times \mathfrak{M}(A))$.

Any C^* -algebra is an example of a completely symmetric algebra ([10, page 233, Corollary 4]), but here we are not going to assume that the involution on A satisfies $||aa^*|| = ||a||^2$, not even the weaker condition $||aa^*|| = ||a|| ||a^*||$, for $a \in A$.

2. Results. In this section, we define a natural continuous transformation T from $X \times \mathfrak{M}(A)$, with the product topology, into $\mathfrak{M}(C_b(X, A))$ and through it and the classical Gelfand transform \widehat{f} for $f \in C_b(X, A)$, we introduce the Gelfand transform \widetilde{f} with respect to $X \times \mathfrak{M}(A)$. Using T and \widetilde{f} , we shall state and prove almost all the results. In order to avoid confusion on the scope of these, we recall that we are assuming that X is a completely regular Hausdorff space and A is a complex commutative unital Banach algebra. From Lemma 2.5 on, A is a complex completely symmetric algebra with continuous involution.

Proposition 2.1. The function $H : C_p(X, A) \to C(\beta X, A)$, with $H(f) = f_\beta$ is an isometric isomorphism of algebra and $\mathfrak{M}(C_p(X, A)) = \beta X \times \mathfrak{M}(A)$.

Proof. It is readily seen that H is a bijective homomorphism of algebras. We also have that $||f||_{\infty} = ||f_{\beta}||_{\infty}$, since X is dense in βX and then H is an isometry. Thus, $\mathfrak{M}(C_p(X, A)) = \mathfrak{M}(C(\beta X, A))$. Since $\mathfrak{M}(C(\beta X, A)) = \beta X \times \mathfrak{M}(A)$, the result follows. \Box

Proposition 2.2. There exists a continuous mapping T from $X \times \mathfrak{M}(A)$ into $\mathfrak{M}(C_b(X, A))$, given by $T(x, F) = T_{(x,F)}$, where

$$T_{(x,F)}(f) = F(f(x)) = \widehat{f(x)}(F),$$

for every $f \in C_b(X, A)$ and $\widehat{f(x)}$ is the Gelfand transform of f(x). This mapping T has a continuous extension T_β to $\beta(X \times \mathfrak{M}(A))$.

Proof. It is clear that $T_{(x,F)} \in \mathfrak{M}(C_b(X,A))$. Given the w^* -neighborhood $U = V(T_{(x,F)}, f_1, \ldots, f_n, \epsilon)$ of $T_{(x,F)}$ take the w^* - neighborhood $W = V(F, f_1(x), \ldots, f_n(x), \epsilon/2)$ of F and a neighborhood V(x) of x satisfying $||f_i(x) - f_i(y)|| < \epsilon/2$ if $y \in V(x)$ and $1 \le i \le n$. Then, for $(y,G) \in V(x) \times W$, we have that $T_{(y,G)} \in U$.

Since $\mathfrak{M}(C_b(X, A))$ is compact, then T has a continuous extension T_β to $\beta(X \times \mathfrak{M}(A))$.

Corollary 2.3. $T_{\beta}(\beta(X \times \mathfrak{M}(A))) = \operatorname{cl}_{w^*}(T(X \times \mathfrak{M}(A))).$

Proof. Since T_{β} is continuous and $X \times \mathfrak{M}(A)$ is dense in $\beta(X \times \mathfrak{M}(A))$, we get that $T_{\beta}(\beta(X \times \mathfrak{M}(A))) \subset \operatorname{cl}_{w^*}(T(X \times \mathfrak{M}(A)))$. But $T_{\beta}(\beta(X \times \mathfrak{M}(A)))$, being weak*- compact, contains the weak*-closure of $T(X \times \mathfrak{M}(A))$.

Taking $f \in C_b(X, A)$, we define its Gelfand's transform \tilde{f} with respect to $X \times \mathfrak{M}(A)$ as $\tilde{f} = \hat{f} \circ T$, i.e.,

$$\widetilde{f}\left(x,F\right) = F\left(f\left(x\right)\right),$$

for $(x,F) \in X \times \mathfrak{M}(A)$. Therefore, $\tilde{f} \in C_b(X \times \mathfrak{M}(A))$ and $\|\tilde{f}\|_{\infty} \leq \|f\|_{\infty}$.

The mapping $f \to \tilde{f}$ is a continuous homomorphism from $C_b(X, A)$ into $C_b(X \times \mathfrak{M}(A))$. Thus, if f is invertible in $C_b(X, A)$, then \tilde{f} is invertible in $C_b(X \times \mathfrak{M}(A))$.

The function \tilde{f} is invertible in the algebra $C_b(X \times \mathfrak{M}(A))$ if and only if \tilde{f} is bounded away from zero, i.e., $|F(f(x))| > \epsilon$ for some $\epsilon > 0$ and all $(x, F) \in X \times \mathfrak{M}(A)$. In particular, f is invertible in C(X, A) if \tilde{f} is invertible.

Theorem 2.4. For the following four assertions we have that: (i) implies (ii); (ii) implies (iv); and (ii) and (iii) are equivalent to each other.

- (i) If $f_1, \ldots, f_n \in C_b(X, A)$ and $\epsilon > 0$ are such that, for every $(x, F) \in X \times \mathfrak{M}(A)$, there exist $1 \leq i \leq n$ for which $|\tilde{f}_i(x, F)| > \epsilon$, then there exist $g_1, \ldots, g_n \in C_b(X, A)$ satisfying $f_1g_1 + \cdots + f_ng_n = e$.
- (ii) If $f \in C_b(X, A)$ and \tilde{f} is invertible, then f is invertible.
- (iii) If $f \in C_b(X, A)$ and there exists $\epsilon > 0$ such that $||f(x) y|| > \epsilon$ for all $x \in X$ and $y \in A \setminus G(A)$, then f is invertible.
- (iv) If $f \in C_b(X, A)$ and

$$\sup\left\{\left|\widetilde{f}\left(x,F\right)\right|:\left(x,F\right)\in X\times\mathfrak{M}\left(A\right)\right\}<1,$$

then e - f is invertible.

Proof. Obviously, (i) implies (ii) and (ii) implies (iv).

(ii) \Rightarrow (iii). Assume that there exists $\epsilon > 0$ such that $||f(x) - y|| > \epsilon$ for all $x \in X$ and $y \in A \setminus G(A)$. Put y = f(x) - F(f(x))e for $x \in X$ and $F \in \mathfrak{M}(A)$. We have that $y \notin G(A)$ and $|\tilde{f}(x,F)| = |F(f(x))| =$ $||f(x) - y|| > \epsilon$, then \tilde{f} is invertible and, by (ii), f is invertible.

(iii) \Rightarrow (ii). Take $f \in C_b(X, A)$, and suppose \tilde{f} is invertible. There exists an $\epsilon > 0$ such that $|\tilde{f}(x, F)| > \epsilon$ for all $(x, F) \in X \times \mathfrak{M}(A)$. Given $x \in X$ and $y \in A \setminus G(A)$, choose $F \in \mathfrak{M}(A)$ such that F(y) = 0 and put y = f(x) - F(f(x))e. Then, $||f(x) - y|| = |\tilde{f}(x, F)| > \epsilon$; hence by (iii), f is invertible.

In the rest of this section we shall assume that A is a complex completely symmetric algebra with continuous involution *.

Lemma 2.5. For every $f \in C_b(X, A)$, there exists a $g \in C_b(X, A)$ such that $\tilde{g}(x, F)$ is the complex conjugate $\overline{\tilde{f}(x, F)}$ of $\tilde{f}(x, F)$ for each $(x, F) \in X \times \mathfrak{M}(A)$. Furthermore, we have $|\tilde{f}|^2 = \tilde{fg}$.

Proof. If $f \in C_b(X, A)$, then the function g defined by $g(x) = f(x)^*$ belongs to $C_b(X, A)$ because the involution is a continuous function. Then, we have

$$\widetilde{g}(x,F) = F(f(x)^*) = \overline{\widetilde{f}(x,F)}$$

and

$$\widetilde{fg}(x,F) = F(f(x)f(x)^*) = |\widetilde{f}(x,F)|^2,$$

for all $(x, F) \in X \times \mathfrak{M}(A)$.

Theorem 2.6. Assertions (i)-(iv) in Theorem 2.4 are all equivalent.

Proof.

(iv) \Rightarrow (ii). Take $f \in C_b(X, A)$, and suppose that \tilde{f} is invertible. Then, \tilde{f} is bounded away from zero. Take g as in Lemma 2.5, and set $M = \sup |\tilde{f}(x, F)|^2$ and $N = \sup |\tilde{e} - (1/M)fg(x, F)|$, where the suprema are taken over all points (x, F) in $X \times \mathfrak{M}(A)$. Since $N = \sup |1 - (1/M)|\tilde{f}(x, F)|^2| < 1$, we have by (iv) that (1/M)fgis invertible and then (ii) holds.

(ii) \Rightarrow (i). Suppose $f_1, \ldots, f_n \in C_b(X, A)$ and $\epsilon > 0$ are as in (i). Let $g_i \in C_b(X, A)$ be such that $|\tilde{f}_i|^2 = \widetilde{f_ig_i}$ for every $i = 1, 2, \ldots, n$. For $(x, F) \in X \times \mathfrak{M}(A)$ we have that $\sum_{i=1}^n |\tilde{f}_i(x, F)|^2 = \sum_{i=1}^n \widetilde{f_ig_i}(x, F) = \sum_{i=1}^n f_i g_i(x, F) > \epsilon$. Thus, $\sum_{i=1}^n f_i g_i$ is invertible in $C_b(X \times \mathfrak{M}(A))$. By (ii), $\sum_{i=1}^n f_i g_i$ is invertible; therefore, there exists $h \in C_b(X, A)$ such that $\sum_{i=1}^n f_i g_i h = e$, that is, (i) holds.

Proposition 2.7. If $T(X \times \mathfrak{M}(A))$ is not dense in $\mathfrak{M}(C_b(X, A))$, then there exists an $f \in C_b(X, A)$ such that \tilde{f} is invertible and f is not.

Proof. Let us assume that $T(X \times \mathfrak{M}(A))$ is not dense in $\mathfrak{M}(C_b(X, A))$, and take $G \in \mathfrak{M}(C_b(X, A)) \setminus \operatorname{cl}_{w^*}(T(X \times \mathfrak{M}(A)))$. Then, there exist $f_1, \ldots, f_n \in C_b(X, A)$ and $\epsilon > 0$ such that, for each $(x, F) \in X \times \mathfrak{M}(A)$, there is a $1 \leq i \leq n$ such that $|G(f_i) - F(f_i(x))| > \epsilon$. Put $g_i =$ $f_i - G(f_i)e$, and take $h_i \in C_b(X, A)$ such that $\tilde{h}_i(x, F) = \overline{\tilde{g}_i(x, F)}$ for $1 \leq i \leq n$ and $(x, F) \in X \times \mathfrak{M}(A)$. Then, for each $(x, F) \in X \times \mathfrak{M}(A)$, $|\tilde{g}_i(x, F)| > \epsilon$ for some $1 \leq i \leq n$ and $G(g_i) = 0$ for all $1 \leq i \leq n$.

Take

$$f = \sum_{i=1}^{n} g_i h_i.$$

Then G(f) = 0 and

$$\left|\widetilde{f}(x,F)\right| = \sum_{i=1}^{n} \left|\widetilde{g}_{i}(x,F)\right|^{2} > \epsilon$$

for all $(X, F) \in X \times \mathfrak{M}(A)$. Therefore, f is not invertible and \tilde{f} is invertible.

Theorem 2.8. Assertions (i)–(iv) of Theorem 2.4 are all equivalent to the following:

(v) $T(X \times \mathfrak{M}(A))$ is dense in $\mathfrak{M}(C_b(X, A))$.

Proof. From Proposition 2.7, (ii) implies (v). On the other hand, let us assume that $T (X \times \mathfrak{M}(A))$ is dense in $\mathfrak{M}(C_b(X, A))$ and take $f \in C_b(X, A)$ such that \tilde{f} is invertible. Then there exists an $\epsilon > 0$ such that $|\tilde{f}(x, F)| > \epsilon$ for every $(x, F) \in X \times \mathfrak{M}(A)$; hence, $\hat{f}(G) \neq 0$ for all $G \in \mathfrak{M}(C_b(X, A))$. Therefore, f is invertible. \Box

Corollary 2.9. If X is a pseudocompact space, then $T(X \times \mathfrak{M}(A))$ is dense in $\mathfrak{M}(C_b(X, A))$.

Proof. Suppose $f \in C_b(X, A)$ and \tilde{f} is invertible. Then, f is invertible in C(X, A). Since the function $x \to ||f(x)^{-1}||$ is continuous in X, then it is bounded. Therefore, f is invertible in $C_b(X, A)$.

3. The example. We thank Vladimir Müller who orally communicated the next example to us that enables us to show that there is a completely symmetric algebra A for which $T(\mathbb{N} \times \mathfrak{M}(A))$ is not dense in $\mathfrak{M}(C_b(\mathbb{N}, A))$.

Let S be the free commutative group with countably many generators a_1, a_2, \ldots Define a function $p: S \to (0, \infty)$ by $p(a_j^k) = 1$ for $k \ge 0$, $p(a_j^k) = j$ for k < 0 and $p(a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n}) = p(a_1^{k_1})p(a_2^{k_2})\cdots p(a_n^{k_n})$. Then, p is a positive multiplicative function.

Let A be the weighted group algebra over S, i.e., A is the set of functions $x: S \to \mathbb{C}$ satisfying that

$$||x|| = \sum_{s \in S} |x(s)| p(s) < \infty,$$

provided with the usual linear structure and the convolution product

$$(xy)(s) = \sum_{t \in S} x(t) y(t^{-1}s).$$

For each $s \in S$, let χ_s be the characteristic function of the singleton $\{s\}$. Then, $x = \sum_{s \in S} \alpha_s \chi_s$, with $\alpha_s = x(s)$, for $x \in A$. Identifying χ_s with s in this expansion, we have

$$\begin{aligned} x &= \sum_{s \in S} \alpha_s s, \\ \|x\| &= \sum_{s \in S} |\alpha_s| \, p\left(s\right), \\ xy &= \sum_{s \in S} \sum_{t \in S} \alpha_t \beta_{t^{-1}s} s, \end{aligned}$$

if

$$x = \sum_{s \in S} \alpha_s s$$
 and $y = \sum_{s \in S} \beta_s s$,

and

$$F(x) = \sum_{s \in S} \alpha_s F(s)$$
 for every $F \in \mathfrak{M}(A)$.

The algebra A under the involution defined by

$$\left(\sum_{s\in S}\alpha_s s\right)^* = \sum_{s\in S}\overline{\alpha_t}s$$

becomes a completely symmetric algebra.

If $B = \{a_1, a_2, \ldots\}$, then clearly $B \subset G(A)$ and B is a bounded set, keeping in mind that $||a_n|| = 1$ for each n. Since A is a unital commutative Banach algebra, we have that $\sigma(x) = \{F(x) : F \in \mathfrak{M}(A)\}$ for each $x \in A$. From this and applying the spectral radius formula to a_n and a_n^{-1} , we have $|F(a_n)| = 1$ for each $n \in \mathbb{N}$ and $F \in \mathfrak{M}(A)$. Therefore, we have that $\mathfrak{M}(A) = S_1^{\mathbb{N}}$, associating each $F \in \mathfrak{M}(A)$ with the unique sequence $(e^{i\theta_1}, e^{i\theta_2}, \ldots)$ in the complex unit sphere S_1 such that $F(a_j) = e^{i\theta_j}$ for each $j = 1, 2, \ldots$.

Let us consider the algebra $C_b(\mathbb{N}, A)$ and the function $f \in C_b(\mathbb{N}, A)$ defined by $f(n) = a_n$ for all $n \ge 1$. Since $|\tilde{f}(n, F)| = 1$ for every $(n, F) \in \mathbb{N} \times \mathfrak{M}(A)$, the function \tilde{f} is invertible. Nevertheless, f is not invertible because $(f(\mathbb{N}))^{-1} = B^{-1}$ is not bounded. Therefore, we have that $T(\mathbb{N} \times \mathfrak{M}(A))$ is not dense in $\mathfrak{M}(C_b(\mathbb{N}, A))$. We point out that it can be shown that $\sigma(f) = \{z : |z| \le 1\}$.

REFERENCES

1. J. Arhippainen, On the ideal structure of algebras of LMC-algebras valued functions, Stud. Math. 101 (1992), 311–318.

R.C. Buck, Continuous functions on a locally compact space, Michigan Math.
J. 5 (1958), 95–104.

3. S. Dierolf, K.H. Schröder and J. Wengenroth, *Characters on certain function algebras*, Funct. Approx. Comm. Math. **26** (1998), 53–58.

4. W.E. Dietrich, Jr., The maximal ideal space of the topological algebra C(X, E), Math. Ann. **183** (1969), 201–212.

5. Z. Ercan and S. Onal, A remark on the homomorphism on C(X), Proc. Amer. Math. Soc. 133 (12) (2005), 3609–3611.

6. W. Govaerts, Homomorphisms of weighted algebras of continuous functions, Ann. Mat. Pura Appl. **116** (1978), 151–158.

7. A. Hausner, Ideals in a certain Banach algebra, Proc. Amer. Math. Soc. 8 (1957), 246–259.

8. W.J. Hery, Maximal ideal in algebras of topological algebra valued functions, Pac. J. Math. 65 (1976), 365–373.

9. L.A Kahn, Linear topological spaces of continuous vector-valued functions, Academic Publ., Ltd., 2013-DOI: 10.12732/acadpubl.201301.

10. M.A. Naimark, *Normed algebras*, 1972, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1972.

11. C.E. Rickart, *General theory of Banach algebras*, R.E. Krieger Publishing Company, Huntington, NY, 1974 (original edition, D. Van Nostrand Reinhold, 1960).

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, INSTITUTO DE MATEMÁTICAS, CIUDAD UNIVERSITARIA, MÉXICO D.F. 04510, MÉXICO Email address: hpeimbert@gmail.com

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, INSTITUTO DE MATEMÁTICAS, CIUDAD UNIVERSITARIA, MÉXICO D.F. 04510, MÉXICO Email address: angel@unam.mx

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, FACULTAD DE CIENCIAS, CIUDAD UNIVERSITARIA, MÉXICO D.F. 04510, MÉXICO Email address: alexgg577@hotmail.com