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INEQUALITIES FOR SUMS OF RANDOM VARIABLES
IN NONCOMMUTATIVE PROBABILITY SPACES

GHADIR SADEGHI AND MOHAMMAD SAL MOSLEHIAN

ABSTRACT. In this paper, we establish an extension
of a noncommutative Bennett inequality with a parameter
1 ≤ r ≤ 2 and use it together with some noncommutative
techniques to establish a Rosenthal inequality. We also
present a noncommutative Hoeffding inequality as follows:
Let (M, τ) be a noncommutative probability space, N be
a von Neumann subalgebra of M with the corresponding
conditional expectation EN and let subalgebras N ⊆ Aj ⊆
M (j = 1, · · · , n) be successively independent over N. Let
xj ∈ Aj be self-adjoint such that aj ≤ xj ≤ bj for some real
numbers aj < bj and EN(xj) = µ for some µ ≥ 0 and all
1 ≤ j ≤ n. Then for any t > o it holds that

Prob

(∣∣∣∣ n∑
j=1

xj − nµ

∣∣∣∣ ≥ t

)
≤ 2 exp

{
−2t2∑n

j=1(bj − aj)2

}
.

1. Introduction. By a noncommutative probability space (M, τ)
we mean a von Neumann algebra M on a Hilbert space H with unit
element 1 equipped with a faithful normal finite trace τ such that
τ(1) = 1. The modules |x| of x ∈ M are defined by continuous
functional calculus as |x| = (x∗x)1/2.

For each self-adjoint operator x ∈ M, there exists a unique spectral
measure E as a σ-additive mapping with respect to the strong operator
topology from the Borel σ-algebra B(R) of R into the set of all orthog-
onal projections such that, for every Borel function f : σ(x) → C, the
operator f(x) is defined by

f(x) =

∫
f(λ) dE(λ),
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in particular,

x =

∫
λ dE(λ)

and

χB(x) =

∫
B

dE(λ) = E(B).

In addition,

(1.1) τ
(
χ[t,∞) (|x|)

)
= τ

(
χ[t,∞) (x)

)
+ τ

(
χ[t,∞) (−x)

)
.

Further, if x ≥ 0 and t > 0, then χ[t,∞)(x)t ≤ x. Hence, we get the
inequality

τ(χ[t,∞)(x)) ≤ t−1τ(x),

which is called the Markov inequality in the literature. For a self-adjoint
element x ∈ M, it follows from the Markov inequality that

τ(χ[t,∞)(x)) = τ(χ[et,∞)(e
x)) ≤ e−tτ(ex),

from where we reach the exponential Chebyshev inequality as follows:

(1.2) τ(χ[t,∞)(x)) ≤ e−tτ(ex).

As in the commutative context, we use the notation Prob (x ≥ t) :=
τ(χ[t,∞)(x)).

For any Borel set A ⊆ R, we define ν(A) = τ(E(A)). Then ν is a
scalar-valued spectral measure for x and ν(R) = 1. In addition,
(1.3)

τ(f(x)) = τ

(∫
f(λ) dE(λ)

)
=

∫
f(λ) dτ (E(λ)) =

∫
f(λ) dν(λ).

By the measurable functional calculus [4] there is a ∗-homomorphism
π : L∞(ν) → M depending on x such that π(f) = f(x) for all
f ∈ L∞(ν).

For 1 ≤ p < ∞, Lp(M, τ) is defined as the completion of M with
respect to the norm ∥x∥p = τ(|x|p)1/p. Important special cases of these
noncommutative spaces are the usual Lp-spaces and the Schatten p-
classes. For further information, we refer the reader to [11, 13, 16, 20].
Let x ∈ M be positive. For p ≥ 1 and positive x ∈ M, from (1.3), we
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have

∥x∥pp = τ(xp) =

∫ ∞

0

λpdν(λ)

=

∫ ∞

0

ptp−1ν([t,∞)) dt

=

∫ ∞

0

ptp−1τ(χ[t,∞)(x)) dt.

Let P be the lattice of projections of M. Set p⊥ = 1 − p for
p ∈ P. Given a family of projections (pλ)λ∈Λ ⊆ P, we denote
by ∨λ∈Λpλ (respectively, ∧λ∈Λpλ) the projection from H onto the
closed subspace generated by pλ(H) (respectively, onto the subspace
∩λ∈Λp(H)). Consequently, (∨λ∈Λpλ)

⊥ = ∧λ∈Λp
⊥
λ . Two projections p

and q are said to be equivalent if there exists a partial isometry u ∈ M
such that u∗u = p and uu∗ = q. In this case, we write p ∼ q. If p is
equivalent to a projection q1 ≤ q, we write p ≺ q.

We need the following elementary properties of projections (see
[12]).

Lemma 1.1. Let p and q be two projections of M. Then:

(i) p ∨ q − q ∼ p− p ∧ q.
(ii) If p ∧ q = 0 then p ≺ q⊥.
(iii) If p and q are equivalent projections in M, then τ(p) = τ(q).
(iv) If (pλ)λ∈Λ is a family of projections in M, then τ(∨λ∈Λpλ) ≤∑

λ∈Λ τ(pλ).

Let N be a von Neumann subalgebra of M. Then there exists a map
EN : M → N satisfying the following properties:

(i) EN is a normal contraction positive map projecting M onto N;
(ii) EN(axb) = aEN(x)b for any x ∈ M and a, b ∈ N;
(iii) τ ◦ EN = τ .

Moreover, EN is the unique map satisfying (i) and (ii). The map EN
is called the conditional expectation of M with respect to N. We
say that two subalgebras N ⊆ A,B ⊆ M are independent over N if
EN(xy) = EN(x)EN(y) for all x ∈ A, y ∈ B. In particular, two random
variables X and Y of a commutative von Neumann algebra L∞(µ)
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in which µ is a probability measure are independent if the algebras
they generate are independent over the complex field C. A sequence of
subalgebras N ⊆ A1, . . . ,An ⊆ M is called successively independent
over N if Ak+1 is independent of the algebra M(k) generated by
A1, . . . ,Ak. For further information the reader is referred to [18, 19].

In 1970, Rosenthal [14] presented an inequality to describe isomor-
phic types of some subspaces in Lp-spaces. It indeed gives a bound for
the p-norm of independent mean 0 random variables. More precisely,
it says that, for any p ≥ 2, there exists a constant c(p) such that, for
any n ∈ N and any independent mean 0 random variables f1, · · · , fn,
it holds that

(1.4) E
∣∣∣∣ n∑
k=1

fk

∣∣∣∣p ≤ c(p)

(( n∑
k=1

E|fk|2
)p/2

+

n∑
k=1

E|fk|p
)
.

Burkholder [3] generalized Rosenthal’s inequality in the context of
martingales. Since then, this inequality has been generalized and
applied by many mathematicians; see, e.g., [8, 9] and references
therein. Recently, Junge and Zeng [10] extended the Bennett and
Bernstein inequalities to the noncommutative setting and derive a
version of the Rosenthal inequality from Bernstein’s inequality by using
the properties of Gamma function. In probability theory, the Bennett
inequality (Bernstein inequality, respectively) gives an upper bound on
the probability that the sum of independent random variables deviates
from its expected value (deviates from its mean, respectively) by more
than a fixed amount, see [1].

In this paper, we establish an extension of the noncommutative
Bennett inequality due to Junge and Zeng [10] and use it together with
some noncommutative techniques to prove the Rosenthal inequality
with a parameter 1 ≤ r ≤ 2. We also prove a noncommutative
Hoeffding inequality. The Hoeffding inequality [6] gives a probability
bound for the deviation between the average of n independent bounded
random variables and its mean (see Corollary 3.4). There have been
several generalizations and applications of this significant inequality,
see [2, 17].

2. Bennet inequality. We provide an improved version of the
noncommutative Bennett inequality based on the arguments of [10,
Theorem 01].
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Theorem 2.1 (Noncommutative Bennett inequality). Let N ⊆ Aj ⊆
M be successively independent over N, and let xj ∈ Aj be self-adjoint
and 1 ≤ r ≤ 2 such that

• EN(xj) ≤ 0,
• EN(|xj |r) ≤ brj ,
• ∥xj∥ ≤ M ,

for some M > 0 and all 1 ≤ j ≤ n. Then, for each t ≥ 0,
(2.1)

Prob

( n∑
j=1

xj ≥ t

)
= τ

(
χ[t,∞)

( n∑
j=1

xj

))
≤ exp

(
−b

Mr
Φ

(
tMr−1

b

))
,

where Φ(α) = (1 + α) log(1 + α)− α and b =
∑n

j=1 b
r
j .

Proof. Let λ ≥ 0. We have

EN
(
eλxn

)
= EN

( ∞∑
k=0

(λxn)
k

k!

)
=

∞∑
k=0

λk

k!
EN(xk

n)

= 1 + EN(xn) +

∞∑
k=2

λk

k!
EN(xk

n)

≤ 1 +
∞∑
k=2

λk

k!
EN(xk

n) (by EN(xn) ≤ 0)

≤ 1 +
∞∑
k=2

λk

k!
EN(|xn|k) (by xk

n ≤ |xn|k)

= 1 +

∞∑
k=2

λk

k!
EN(|xn|r|xn|k−r)

≤ 1 +
∞∑
k=2

λk

k!
∥xn∥k−rEN(|xn|r)

(by |xn|r|xn|k−r ≤ ∥xn∥k−r|xn|r)

≤ 1 +
∞∑
k=2

λk

k!
∥xn∥k−rbrn

= 1 +
brn

∥xn∥r
(eλ∥xn∥ − 1− λ∥xn∥)
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≤ exp

(
brn

∥xn∥r
(eλ∥xn∥ − 1− λ∥xn∥)

)
.

Note that the function f(s) := exp(eλs − 1− λs/sr) is increasing for
s > 0. It follows that

(2.2) EN
(
eλxn

)
≤ exp

(
brn
Mr

(eλM − 1− λM)

)
.

It follows from (1.2) that

τ

(
χ[t,∞)

( n∑
j=1

xj

))
= τ

(
χ[λt,∞)

( n∑
j=1

λxj

))
(2.3)

≤ exp(−λt)τ

(
e
∑n

j=1 λxj

)
.

Recall that the Golden-Thompson inequality [15] states that, for all
self-adjoint elements z1, z2 ∈ M,

(2.4) τ(ez1+z2) ≤ τ(ez1ez2).

Hence,

τ
(
e
∑n

j=1 λxj

)
≤ τ

(
e
∑n−1

j=1 λxjeλxn

)
(by (2.4))

= τ
(
EN

(
e
∑n−1

j=1 λxjeλxn

))
= τ

(
EN

(
e
∑n−1

j=1 λxj

)
EN

(
eλxn

))
≤ exp

(
brn
Mr

(eλM − 1− λM)

)
τ
(
EN

(
e
∑n−1

j=1 λxj

))
(by (2.2) and traciality of τ)

≤ exp

(∑n
j=1 b

r
j

Mr
(eλM − 1− λM)

)
(by iterating n− 2 times)

We infer from the latter inequality together with (2.3) that

τ

(
χ[t,∞)

( n∑
j=1

xj

))
≤ exp

(
− λt+

∑n
j=1 b

r
j

Mr
(eλM − 1− λM)

)
.
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By the basic calculus method we find the minimizing value

λ =
1

M
log

(
1 +

tMr−1∑n
j=1 b

r
j

)
,

which yields (2.1). �

Since both inequalities Φ(t) ≥ t2/2 + 2t/3 and Φ(t) ≥ t/2arcsinh(t/2)
are valid for all t ≥ 0, one can get the Bernstein and Prohorov inequal-
ities from Bennett’s inequality as follows.

Corollary 2.2. Under the same hypothesis as Theorem 2.1,

(2.5) τ

(
χ[t,∞)

( n∑
j=1

xj

))
≤ exp

(
− t2Mr−2

2b+ 2/3tMr−1

)
and

τ

(
χ[t,∞)

( n∑
j=1

xj

))
≤ exp

(
− t

2M
arcsinh

(
tM

2b

))
.

We can immediately deduce the following commutative Bernstein’s
inequality.

Corollary 2.3. Let X1, . . . , Xn be independent Bernoulli random vari-
ables taking values 1 and −1 with probability 1/2. Then

Prob

(∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣ ≥ ε

)
≤ 2e−nε2/2+(2ε/3).

3. Hoeffding inequality. In this section, we provide a noncommu-
tative version of Hoeffding’s inequality and present some consequences.

Theorem 3.1 (Noncommutative Hoeffding inequality). Let N ⊆ Aj ⊆
M be successively independent over N, and let xj ∈ Aj be self-adjoint
such that aj ≤ xj ≤ bj for some real numbers aj < bj and EN(xj) = µ
for some µ ≥ 0 and all 1 ≤ j ≤ n. Then

(3.1) Prob (|Sn − nµ| ≥ t) ≤ 2 exp

(
−2t2∑n

j=1(bj − aj)2

)
,
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for any t > 0, where Sn =
∑n

j=1 xj.

Proof. First we show that, if x ∈ Aj is self-adjoint such that
a ≤ x ≤ b and EN(x) = 0, then

(3.2) EN(esx) ≤ exp

(
s2(b− a)2

8

)
for any s > 0.

Let s > 0. Note that t 7→ ets is convex; therefore, for any a ≤ α ≤ b,

esα ≤ esb
α− a

b− a
+ esa

b− α

b− a
.

By functional calculus, we have

esx ≤ esb
x− a

b− a
+ esa

b− x

b− a
.

Since EN is a positive map and EN(x) = 0, we reach

EN(esx) ≤ −a

b− a
esb +

b

b− a
esa = eh(α),

where α = s(b−a), h(α) = −γα+log(1−γ+γeα) and γ = −a/(b−a).
In addition, h(0) = h′(0) = 0 and h′′(α) ≤ 1/4 for all α > 0. By
Taylor’s theorem, there exists a real number ξ ∈ (0, α) such that

h(α) = h(0) + αh′(0) +
α2

2
h′′(ξ) ≤ α2

8
=

s2(b− a)2

8
.

Hence,

EN(esx) ≤ exp

(
s2(b− a)2

8

)
.

Second, for arbitrary values of EN(x), setting y := x − µ, we get
a− µ ≤ y ≤ b− µ and EN(y) = 0. Employing (3.2), we reach

(3.3) EN
(
es(x−µ)

)
≤ exp

(
s2(b− a)2

8

)
.

Next, by the same reasoning as in the proof of Theorem 2.1, we get
from (3.3) that

τ

(
eλ

∑n
j=1(xj−µ)

)
≤ τ

(
EN

(
eλ

∑n−1
j=1 (xj−µ)

)
EN

(
eλ(xn−µ)

))
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≤ eλ
2(bn−an)

2/8τ
(
EN

(
eλ

∑n−1
j=1 (xj−µ)

))
≤ · · ·

≤ exp

(
λ2

∑n
j=1(bj − aj)

2

8

)
.

Therefore, (1.1) and the exponential Chebyshev inequality (1.2) yield
that

Prob (|Sn − nµ| ≥ t) = 2Prob (Sn − nµ ≥ t)

≤ 2e−λt exp

(
λ2

∑n
j=1(bj − aj)

2

8

)
.

This is minimized when λ = 4t/
∑n

j=1(bj − aj)
2. Thus,

Prob (|Sn − nµ| ≤ 2 exp

(
−2t2∑n

j=1(bj − aj)2

)
,

which is the desired inequality. �

Remark 3.2. Under the same hypothesis as Theorem 3.1 we can
show that the bound in the Hoeffding inequality (3.1) is sharper than
that in the Bernstein inequality (2.5) for r = 2. Let us assume that
EN(xj) = 0 and −1 ≤ xj ≤ 1. By the functional calculus |xj | ≤ 1 so
EN(|xj |2) ≤ 1 and ∥xj∥ ≤ 1, therefore b = n and M = 1 in the notation
of Theorem 2.1. Then the Heoffding inequality gives rise to

Prob

( n∑
j=1

xj ≥ t

)
≤ exp

(
−t2

2n

)
,

and, from the Bernstein inequality, we have

Prob

( n∑
j=1

xj ≥ t

)
≤ exp

(
−t2

2n+ (2t/3)

)
.

The next result is the classical (commutative) version of the Hoeffd-
ing inequality.

Corollary 3.3 (Hoeffding’s inequality [6]). Let a ≤ X1, . . . , Xn ≤ b
be independent random variables with the expectation E(Xi) = µ,
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i = 1, . . . , n. If Xn = (
∑n

i=1 Xi)/n, then

Prob (
∣∣Xn − µ

∣∣ ≥ t) ≤ 2e−2nt2/(b−a)2 .

In the special case, we immediately get

Corollary 3.4. Let 0 ≤ X1, . . . , Xn ≤ 1 be independent random
variables with common mean µ. Then with probability at least 1− ε,∣∣∣∣ 1n

n∑
i=1

Xi − µ

∣∣∣∣ ≤
√

log(2/ε)

2n
.

4. Rosenthal inequality. In this section, we intend to prove a
noncommutative Rosenthal inequality by using our noncommutative
Bennet inequality. Our argument seems to be simpler than that of
[7] for the case of usual random variables. We note that there is a
refinement of it in the literature in which various approaches are used,
see [10, Theorem 0.4] and [5].

Theorem 4.1. Let 1 ≤ r ≤ 2 ≤ p < ∞, N ⊆ Aj ⊆ M be
successively independent over N, and let xj ∈ Aj be self-adjoint such
that EN(xj) = 0. Then there exists a constant C(p, r) such that∥∥∥∥ n∑

j=1

xj

∥∥∥∥p
p

≤ C(p, r)

{ n∑
j=1

∥xj∥pp +
( n∑

j=1

∥xr
j∥
)p/r}

.

Proof. We use the noncommutative Bennett inequality, but, for this
end, we replace Φ(α) by α log(1+α)−α, which is clearly smaller than
Φ(α) for any α ≥ 0.

Let us fix an arbitrary number s ≥ 0, and consider yj = xjχ(−∞,s](xj)
∈ Aj . It follows from yj ≤ xj and the positivity of EN that EN(yj) ≤
EN(xj) = 0. In addition, EN is norm decreasing, so

n∑
j=1

EN(|xj |r) ≤
n∑

j=1

∥xr
j∥ := B



INEQUALITIES IN PROBABILITY SPACES 319

and

b :=
n∑

j=1

∥yrj∥ ≥
n∑

j=1

EN(|yj |r).

Further, b ≤ B since ∥yj∥ ≤ ∥xj∥ ≤ M , where M := max1≤j≤n ∥xj∥.
It follows from the noncommutative Bennett inequality (2.1) that

τ

(
χ[t,∞)

n∑
j=1

yj

)
≤ exp

(
−b

Mr
Φ

(
tMr−1

b

))(4.1)

≤ exp

(
−b

Mr

[
tMr−1

b
log

(
1 +

tMr−1

b

)
− tMr−1

b

])
≤ exp

(
− t

M

(
log

(
1 +

tMr−1

B

)
− 1

))
for all t > 0. We have

(4.2) χ[t,∞)

( n∑
j=1

xj

)
≺ χ[t,∞)

( n∑
j=1

yj

)
∨
(
∨n
j=1χ[s,∞)(xj)

)
for all t > 0. To show this, we have to prove that

χ[t,∞)

( n∑
j=1

xj

)
∧
(
χ[0,t)

( n∑
j=1

yj

)
∧
(
∧n
j=1 χ(−∞,s)(xj)

))
= 0.

Let

ξ ∈ χ[t,∞)

( n∑
j=1

xj

)
(H)

∩(
χ[0,t)

( n∑
j=1

yj

)

(H)
∩(

∩n
j=1 χ(−∞,s)(xj)(H)

))
.

Then ⟨( n∑
j=1

xj

)
ξ, ξ

⟩
≥ t

and

t >

⟨( n∑
j=1

yj

)
ξ, ξ

⟩
=

⟨( n∑
j=1

xjχ(−∞,s)(xj)

)
ξ, ξ

⟩
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=

⟨( n∑
j=1

xj

)
ξ, ξ

⟩
≥ t

since ξ ∈ ∩n
j=1χ(−∞,s)(xj)(H). Therefore,

χ[t,∞)

( n∑
j=1

xj

)
∧
(
χ[0,t)

( n∑
j=1

yj

)
∧
(
∧n
j=1 χ(−∞,s)(xj)

))
= 0.

We deduce from Lemma 1.1 (ii) that

χ[t,∞)

( n∑
j=1

xj

)
≺

(
χ[0,t)

( n∑
j=1

yj

)
∧
(
∧n
j=1χ(−∞,s)(xj)

))⊥

,

and this gives us inequality (4.2). Using (4.2), we get

τ

(
χ[t,∞)

( n∑
j=1

xj

))
≤ τ

(
χ[t,∞)

( n∑
j=1

yj

))
+ τ

(
∨n
j=1χ[s,∞)(xj)

)
(by Lemma 1.1 (ii)–(iii))

≤ exp

(
− t

M

(
log

(
1 +

tMr−1

B

)
− 1

))
+

n∑
j=1

τ
(
χ[s,∞)(xj)

)
(by Lemma 1.1 (iv), (4.1))

for any t > 0. An easy investigation shows that the latter inequality
holds if we replace M by any number L with L ≥ M . In addition, it
holds for all 0 < L ≤ M since the function

f(α) = exp

(
− t

α

(
log

(
1 +

tαr−1

B

)
− 1

))
is decreasing for any α > 0. Thus

τ

(
χ[t,∞)

( n∑
j=1

xj

))
≤ exp

(
− t

L

(
log

(
1 +

tLr−1

B

)
− 1

))
(4.3)

+
n∑

j=1

τ
(
χ[s,∞)(xj)

)
for all t > 0, s > 0, L > 0.
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Next, we deal with the modulus of
∑n

j=1 xj . Inequality (4.3)

together with (1.1) imply that

τ

(
χ[t,∞)

(∣∣∣∣ n∑
j=1

xj

∣∣∣∣)) ≤ 2 exp

(
− t

L

(
log

(
1 +

tLr−1

B

)
− 1

))

+
n∑

j=1

τ
(
χ[s,∞)(|xj |)

)
.

Now, by putting first L = s and s = t/γ, where γ > 0 we obtain that

τ

(
χ[t,∞)

(∣∣∣∣ n∑
j=1

xj

∣∣∣∣)) ≤ 2 exp

(
− γ

(
log

(
1 +

tr

γr−1B

)
− 1

))

+
n∑

j=1

τ

(
χ[t,∞)

(
γ|xj |

))
.

For p ≥ 2, we have

∥∥∥∥ n∑
j=1

xj

∥∥∥∥p
p

=

∫ ∞

0

ptp−1τ

(
χ[t,∞)

(∣∣∣∣ n∑
j=1

xj

∣∣∣∣)) dt

(4.4)

≤
n∑

j=1

∫ ∞

0

ptp−1τ
(
χ[t,∞)(γ |xj |)

)
dt

+ 2p

∫ ∞

0

tp−1 exp

(
− γ

(
log

(
1 +

tr

γr−1B

)
− 1

))
dt

≤ γp
n∑

j=1

∥xj∥pp +
2p

r
(γr−1B)p/reγ

∫ ∞

0

β(p−r)/r(1 + β)−γdβ,

where we use the change of variables β = tr/γr−1B. Next let γ be
such that the last integral of the above inequality is convergent, i.e., let
us choose γ > p/r. With this choice of γ, inequality (4.4) implies the
Rosenthal inequality with

C(p, r) = max

{
γp,

2p

r
γ

p(r−1)
r eγ

∫ ∞

0

βp−r/r(1 + β)−γdβ

}
. �

In the commutative setting, we have
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Corollary 4.2. Let 1 ≤ r ≤ 2 ≤ p < ∞ and X1, . . . , Xn be independent
real random variables with expected values E(Xj) = 0, j = 1, . . . , n.
Then

E
(∣∣∣∣ n∑

j=1

Xj

∣∣∣∣p) ≤ C(p)

{ n∑
j=1

E (|Xj |p) +
( n∑

j=1

E (|Xj |r)
)p/r}

,

where

C(p) = min
γ>p/2

max

{
γp,

2p

r
γp(r−1)/reγ

∫ ∞

0

βp−r/r(1 + β)−γdβ

}
.
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