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ON SINGLETONS AND ADJACENCIES
OF SET PARTITIONS

AUGUSTINE O. MUNAGI

ABSTRACT. The number of singleton blocks in all par-
titions of a set {a1, . . . , an} is known to be equal to the
number adjacencies, that is, pairs of consecutively numbered
elements (ai, ai+1) in a block. We give a generalization of
this relation by introducing the d-adjacency which is a pair
of elements (ai, aj) satisfying j − i = d > 0. It is proved that
the number of d-adjacencies in all partitions is independent
of d. Then we show that the number of d-adjacencies in non-
crossing partitions is a function of d by means of an exact
formula.

1. Adjacencies and singletons. A partition of a set of n distin-
guishable objects, An = {a1, a2, . . . , an}, is a decomposition of An into
nonempty subsets called blocks. The blocks are usually arranged in
standard order, that is, in increasing order of least label-numbers.

The number of partitions of An into k blocks is the Stirling number
of the second kind, S(n, k), while the Bell numbers Bn are defined by
Bn =

∑
k S(n, k). These numbers may be computed using the formula

(see for example [3]),

S(n, k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn.

For any positive integer d, a (circular) d-adjacency is the occurrence
of an ordered pair of elements (ai, aj) in a block such that j − i ≡ d
(mod n). We define a 0-adjacency to be a singleton, that is, a block
containing one element.
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Callan [2] has proved that the number of singletons in all partitions
of An equals the number of 1-adjacencies, by giving a bijection in terms
of an algorithm that interchanges singletons and 1-adjacencies.

We remark that the number of singletons in all partitions of An is
nBn−1. This may be proved by fixing an index j ∈ {1, . . . , n}, and
noting that the number of partitions containing the singleton {aj} is
Bn−1, which is the number of ways of inserting the block {aj} into a
partition of An \ {aj}.

The purpose of this note is to prove the following general result
and establish a formula for the number of d-adjacencies in noncrossing
partitions (for the latter, see Section 2).

Theorem 1.1. Let n, d be integers, 0 ≤ d < n. Then the number of
d-adjacencies in all partitions of An is independent of d and equal to
nBn−1.

The proof of Theorem 1.1 is a consequence of either of the following
lemmas.

We will identify An with the label set [n] = {1, 2, . . . , n}. Clearly,
(ai, aj) is a d-adjacency in a partition of An if and only if (i, j) is a
d-adjacency in a partition of [n].

Lemma 1.2. The number of d-adjacencies in all partitions of [n] is
nBn−1 for all integers 0 ≤ d ≤ n− 1.

Proof. Since the number of singletons, or 0-adjacencies, is known to
be nBn−1, we consider the case d > 0. There are precisely n distinct
d-adjacencies for each d ∈ [n− 1], namely,

(a, a+ d), 1 ≤ a ≤ n− d with (n− d+ c, c), 1 ≤ c ≤ d.

Fix a d-adjacency (a, a + d) (mod n), a ∈ [n]. Note that the range
of a implies that a + d ̸≡ 0 (mod n). Then the number of partitions
in which a and a + d (mod n) belong to the same block is given by
Bn−1, which is obtained as the number of ways of partitioning the set
[n]\{a+d (mod n)}, followed by putting a+d (mod n) into the block
containing a. Hence, the result. �
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The proof of the second lemma contains a solution to the problem,
raised in [1, 4], of finding a bijection between 1-adjacencies and
singletons.

Lemma 1.3. The multi-set of d-adjacencies in all partitions of [n] is
in one-to-one correspondence with the set of singletons in all partitions
of [n], for all integers n, d, 1 ≤ d < n.

Proof. The type of bijection described below was popularized by
Richard Stanley (see [5]). Here, “adjacency” means “d-adjacency.”

We associate a partition of [n] containing m adjacencies with m
different partitions of [n] containing singletons so that the number of
times a given partition π of [n] appears is the same as the number of
adjacencies in π.

Let π be a partition of [n] containing m > 0 adjacencies. Write
down π a total of m times, each corresponding to an adjacency.
Then, for a fixed adjacency x, x + d (mod n) the image of π is ob-
tained by creating a new singleton block containing x + d (mod n),
and then rearranging the blocks in standard order. For example,
consider the partition π = 129/368/45/7. When d = 1, π maps to
19/2/368/45/7, 129/368/4/5/7 and 1/29/368/45/7, corresponding to
the adjacencies (1, 2), (4, 5) and (9, 1), respectively; when d = 2, π
maps to 129/36/45/7/8 and 19/2/368/45/7, corresponding to the ad-
jacencies (6, 8) and (9, 2), and so forth.

Conversely, delete each singleton {x}, and put x into the block
containing x − d if x > d, or into the block containing x + n − d if
x ≤ d. This gives the inverse image of a partition with respect to the
singleton. For example, since it contains a singleton, the inverse image
of π = 129/368/45/7 is 129/3678/45 when d = 1, and 129/368/457
when d = 2.

This gives the desired bijection.

The full correspondence is illustrated for n = 4 when d = 2 in
Table 1. As a verification of the inverse mapping observe that the
number of occurrences of a partition in the third column is equal to
the number of singletons the partition contains. �
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Table 1. Bijection between 2-adjacencies and singletons for n = 4.

partition 2-adjacency image

1234 13 124/3
1234 24 123/4
1234 31 1/234
1234 42 134/2
123/4 13 12/3/4
123/4 31 1/23/4
124/3 24 12/3/4
124/3 42 14/2/3
134/2 13 14/2/3
134/2 31 1/2/34
13/24 13 1/24/3
13/24 24 13/2/4
13/24 31 1/24/3
13/24 42 13/2/4
1/234 24 1/23/4
1/234 42 1/2/34
1/24/3 24 1/2/3/4
1/24/3 42 1/2/3/4
13/2/4 13 1/2/3/4
13/2/4 31 1/2/3/4

2. Noncrossing partitions. A noncrossing partition of [n] forbids
the occurrence of four elements w < x < y < z such that w, y belong
to one block and x, z belong to another. Equivalently, a noncrossing
partition is a partition of the vertices of a regular n-gon (labeled by
[n] and arranged clockwise on a circle) such that the convex hulls of its
blocks are pairwise disjoint.

Denote the set of noncrossing partitions of [n] by NC(n). It is well
known that

(2.1) |NC(n)| = Cn =
1

n+ 1

(
2n

n

)
,

where Cn is the nth Catalan number.

We consider NC(n) in the light of the correspondence established
in Lemma 1.3.

It is not hard to see that 1-adjacencies and singletons are equidis-
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tributed in NC(n), as already observed in [2]. This follows from the
simple fact that connecting or disconnecting a pair of consecutive points
on a circle cannot create a crossing.

However, the situation is different for d-adjacencies when d > 1:
the (re-) connection of the member of a singleton {a} to (the block
containing) a − d, may create a crossing. For example, consider the
inverse image of the noncrossing partition π = 129/368/45/7, when
d = 2. The resulting partition is 129/368/457 which is not noncrossing
because of the integers 5, 6, 7, 8 with 5, 7 in the third block and 6, 8 in
the second.

Denote by yn(d) the number of d-adjacencies in all noncrossing
partitions of [n]. The following rotational symmetry relation obviously
holds

(2.2) yn(d) = yn(n− d).

It is also easy to show, as with unrestricted partitions, that

yn(0) = yn(1) = nCn−1 =

(
2n− 2

n− 1

)
.

The full formula is stated below.

Theorem 2.1.

yn(d) = nCdCn−d, 1 ≤ d ≤ n− 1.

Proof. We first count how many noncrossing partitions π contain a
certain d-adjacency (a, a+ d), for any a ∈ [n], d ∈ [n− 1].

The restriction of π to {a + 1, . . . , a + d} (mod n) is a noncrossing
partition for which there are Cd possibilities. Similarly, the restriction
to {a + d + 1, . . . , n, 1, . . . , a} (mod n) is a noncrossing partition with
Cn−d possibilities.

This procedure can be reversed uniquely. Given a noncrossing
partition of the set {a + 1, a + 2, . . . , a + d} and another noncrossing
partition of the set {a + d + 1, . . . , a}, combine them by merging the
blocks containing a and a + d. By construction this merging process
cannot create a crossing.
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Hence, there are precisely CdCn−d noncrossing partitions containing
the d-adjacency (a, a+ d). Since there are n possible choices for a, this
gives a total of nCdCn−d d-adjacencies. �

It follows from the Catalan-number recurrence

(2.3) C0 = 1, Cn+1 =
n∑

j=0

CjCn−j ,

that
n−1∑
d=1

yn(d) = nCn+1 − 2nCn = 2

(
2n

n− 2

)
.

We remark that Theorem 2.1 gives a seemingly new interpretation of
the jth summand in (2.3) as the number of j-adjacencies (a, a + j) in
all noncrossing partitions of [n], for each a ∈ [n].

Lastly, we recall Stirling’s asymptotic approximation of the factorial
function:

(2.4) n! ∼
√
2πne−nnn,

where the standard notation ∼ is defined by u ∼ v if and only if
limn→∞ u/v = 1. Using (2.4) and the Catalan-number formula (2.1)
one can show that

(2.5) Cn ∼ 4n√
πn3

.

Consequently,

(2.6) yn(d) ∼
4n

π
√
d3n

.

We can now state:

Theorem 2.2. Given positive integers n and d, 0 < d < n, the average
number of d-adjacencies in a random noncrossing partition of [n] is
given by

nCdCn−d

Cn
=

n(n+ 1)

(d+ 1)(n− d+ 1)

(
2d

d

)(
2(n− d)

n− d

)(
2n

n

)−1

∼ n√
πd3

.
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Proof. The first equality follows from (2.1). The asymptotic part
may be obtained by using the exact formula in the theorem together
with (2.4):

nCdCn−d

Cn
∼ n4d√

πd3
4n−d√

π(n− d)3

√
πn3

4n
=

n
√
πn3√

π2d3(n− d)3
,

which, for large n, is the same as

n
√
πn3

√
π2d3n3

. �
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