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A DISCRETE VIEW OF FAÀ DI BRUNO

RAYMOND A. BEAUREGARD AND VLADIMIR A. DOBRUSHKIN

ABSTRACT. It is shown how solving a discrete convolu-
tion problem gives a unique insight into the famous Faà di
Bruno formula for the nth derivative of a composite func-
tion.

1. Introduction. How are the following two problems related?

Problem 1.1. The chain rule for differentiating a composite function
f(g(x)) is familiar. Finding the nth derivative of f(g(x)) is more
problematic but can be achieved using the classic Faà di Bruno formula:

(1.1)
dn

dxn
f(g(x))

=
∑ n!

a1! a2! · · · an!
f (k)(g(x))

(
g′(x)

1!

)a1
(
g′′(x)

2!

)a2

· · ·
(
g(n)(x)

n!

)an

,

where the sum is taken over all nonnegative integer solutions a1, a2, . . . ,
an of the equation a1 + 2a2 + · · · + nan = n, and where k =
a1 + a2 + · · ·+ an. Johnson [5] takes the reader through the historical
journey as this formula found its way into real analysis, combinatorial
analysis, matrix methods and various other applications.

Problem 1.2. Given two sequences of numbers or polynomials k =
{kn}n≥0 and r = {rn}n≥0, the expression

un =
n∑

j=0

kn−j rj =
n∑

j=0

kj rn−j

is called the convolution of these two sequences and is denoted by
u = k ⋆ r. An interesting task presents itself when one attempts to
solve, for the sequence r, the convolution equation u = r ⋆ r, where u
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is a given sequence. That is, we want to find the rj in terms of the ui

in the system of equations

(1.2) un =
n∑

j=0

rn−j rj , n = 0, 1, 2, . . . .

This convolution problem arises naturally in various settings [1, 4, 7].
The most immediate application is illustrated with the sequence of
Legendre polynomials which, when convoluted with itself, results in
the sequence of Chebyshev polynomials of the second kind.

Our goal is twofold: (a) to show how the discrete convolution
solution provides a unique insight into the structure of the Faà formula,
and (b) to see why Problem 1.1 can be used to solve Problem 1.2.

2. The discrete convolution equation. Consider two sequences
{un}n≥0 and {rn}n≥0 satisfying (1.2), where u0 = 1 and r0 = 1. We
want to find the solution sequence {rn}n≥0 when {un}n≥0 is given.
Equation (1.2) can be solved recursively:

u1 = r0 r1 + r1 r0 =⇒ r1 =
1

2
u1,

u2 = 2 r2 + r1 r1 =⇒ r2 =
1

2

(
u2 − r21

)
=

1

2
u2 −

1

23
u2
1,

u3 = 2 r3 + 2 r1 r2 =⇒ r3 =
1

2
u3 −

1

22
u1u2 +

1

24
u3
1,

u4 = 2 r4 + 2 r1r3 + r22 =⇒ r4 =
1

2
u4 −

1

22
u1u3 +

3

24
u2
1u2 −

1

23
u2
2

− 5

27
u4
1.

(2.1)

Similarly, we find

r5 =
1

2
u5 −

1

22
u1 u4 −

1

22
u2 u3 +

3

24
u2
1u3(2.2)

+
3

24
u1 u

2
2 −

5

25
u3
1u2 +

7

28
u5
1,

r6 =
1

2
u6 −

1

22
u1 u5 −

1

22
u2 u4 −

1

23
u2
3
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+
3

24
u2
1u4 +

3

23
u1 u2 u3

+
1

24
u3
2 −

5

25
u3
1u3 −

15

26
u2
1u

2
2 +

35

28
u4
1u2 −

21

210
u6
1,

and so on.

These equations illustrate that each rn is expressed as a sum of
products

ua1
1 ua2

2 · · ·uan
n ,

where ai ≥ 0 and
a1 + 2 a2 + · · ·+ nan = n,

one summand for each partition of n. Recall that a partition of a
positive integer n is a representation of n as a sum of positive integers,
where their order does not matter and the number of summands is
only bounded by n. However, it is common practice to write individual
summands in nondecreasing order:

(2.3) n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
a1

+2 + · · ·+ 2︸ ︷︷ ︸
a2

+ · · ·+ n︸︷︷︸
an

,

where ak, k = 1, 2, . . . , n, is the number of times the integer k appears
in the partition. To illustrate, the 11 summands for r6 in equation(2.2)
reflect all 11 partitions of 6, which we list respectively:

6 = 1 + 5 = 2 + 4 = 3 + 3 = 1 + 1 + 4 = 1 + 2 + 3

= 2 + 2 + 2 = 1 + 1 + 1 + 3 = 1 + 1 + 2 + 2

= 1 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1.

For example, the partition 1+1+1+3 of 6 corresponds to the summand
−5 · 2−5u3

1u3, where a1 = 3, a3 = 1 and all other a’s are zeros.

In order to describe our sum rn for general n, we follow Riordan
[6] and adopt the following notation. For each partition (2.3) of the
integer n, we associate vector p⃗(n) = ⟨a1, a2, . . . , an⟩. For example, the
partition 1 + 1 + 1 + 2 + 2 + 5 of the number 12 is associated with the
12-component vector ⟨3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0⟩, which is shortened
further to ⟨3, 2, 0, 0, 1⟩ = 3e1+2e2+e5, where ej is the unit coordinate
vector whose components are all 0 except for the jth which is 1.

We express the intrinsic connection between two sequences {un} and
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{rn} that are related through the convolution formula (1.2) as follows:

(2.4) rn = rn(u1, u2, . . . , un) =
∑

p⃗(n)∈P(n)

Bp⃗(n) u
p⃗(n),

where summation is taken over the set P(n) of all partitions p⃗(n) of
the integer n, up⃗(n) = ua1

1 ua2
2 · · ·uan

n , and Bp⃗(n) is its coefficient. In

our illustration of the partition of 6 above, u⟨3,0,1⟩ = u3
1u3, and its

coefficient in the sum representation (2.2) of r6 is B⟨3,0,1⟩ = B3e1+e3
=

−5 · 2−5.

To determine the coefficients Bp⃗(n) in (2.4), we rewrite the convolu-
tion equation (1.2) as

un = 2rn +

n−1∑
k=1

rk rn−k,

which leads to the full-history recurrence:

(2.5) rn =
1

2

(
un −

n−1∑
k=1

rk rn−k

)
, r0 = 1, r1 =

u1

2
.

This equation shows that rn depends on un linearly, but the other com-
ponents u1, . . . , un−1 appear in the formula for rn through summation
of their products. Since rn = rn(u1, u2, . . . , un) depends only on the
first n values of the sequence {un}n≥1, u0 = 1, equation (2.5) has a
unique solution which can be found recursively. However, the amount
of work and resources needed to do this grows as a rolling snowball.
We will eventually avoid the full-history recurrence and express the
coefficients Bp⃗(n) in an explicit way.

Let us isolate un in equation (2.4) and write

(2.6) rn =
1

2
un +

∑
p⃗(n)

Bp⃗(n) u
p⃗(n), n = 1, 2, . . . ,

where up⃗(n) = ua1
1 ua2

2 · · ·uan−1

n−1 and summation is taken over all par-
titions p⃗(n) of the number n except n itself. We find from equations
(2.5) and (2.6) that

rn =
∑

p⃗(n)∈P(n)

Bp⃗(n) u
p⃗(n) =

1

2

(
un −

n−1∑
k=1

rk rn−k

)
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=
1

2
un − 1

2

n−1∑
k=1

(∑
p⃗(k)

Bp⃗(k) u
p⃗(k)

)
︸ ︷︷ ︸

rk

( ∑
p⃗(n−k)

Bp⃗(n−k) u
p⃗(n−k)

)
︸ ︷︷ ︸

rn−k

.

Comparing like powers of ui, we obtain

(2.7) Bp⃗(n) = −1

2

n−1∑
k=1

∑
p⃗(k)

Bp⃗(k) Bp⃗(n−k),

where the inner sum is taken over all partitions p⃗(k) of the integer k
(0 < k < n). For example, we know that for r6, B⟨3,0,1⟩ = B3e1+e3 =

−5 · 2−5. This coefficient is evaluated as

B⟨3,0,1⟩ = −1

2

(
B⟨2,0,1⟩ B⟨1⟩ +B⟨1,0,1⟩ B⟨2⟩ +B⟨0,0,1⟩ B⟨3⟩ +B⟨3⟩B⟨0,0,1⟩

+B⟨2⟩B⟨1,0,1⟩ + B⟨1⟩B⟨2,0,1⟩

)
= − 5

25

because, from (2.1),

B⟨2,0,1⟩ =
3

24
, B⟨1⟩ =

1

2
, B⟨1,0,1⟩ = − 1

22
,

B⟨2⟩ = − 1

23
, B⟨0,0,1⟩ =

1

2
, B⟨3⟩ =

1

24
.

Notice that vector entries in summands cannot exceed corresponding
entries in the original vector, in this case, ⟨3, 0, 1⟩. An interesting
pattern of coefficients is hidden in the full-history recurrence (2.7),
which is empirically obtained (and readily verifiable).

Some particular coefficients can be determined immediately. If n has
a partition p⃗(n) = rej (partitioned into r integers equal to j), then

(2.8) Brej
= c(0)r , n = jr, n = 1, 2, . . . ,

where the sequence {c(0)j }j≥1 is generated by the function

√
1 + z − 1 =

∑
j≥1

c
(0)
j zj

=
z

2
− z2

23
+

z3

24
− 5 z4

27

+
7 z5

28
− 21 z6

210
+

33 z7

211
− 429 z8

215
+ · · · .
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These binomial coefficients c
(0)
n =

(
1/2
n

)
satisfy the full-history recur-

rence

(2.9) c
(0)
n+1 = −1

2

n∑
i=1

c
(0)
i c

(0)
n−i+1, n ≥ 1,

which is a consequence of the Vandermonde convolution [2] of the

sequence {c(0)n } with itself, analogous to (2.7). Applied to the jth entry
of the vector p⃗(n) = rej , this recurrence verifies (2.8). For example,

the coefficient B⟨6⟩ of u6
1 is c

(0)
6 and is computed (using either (2.7) or

(2.9)) as

B⟨6⟩ = −1

2

(
B⟨1⟩B⟨5⟩ +B⟨2⟩B⟨4⟩ +B⟨3⟩B⟨3⟩ +B⟨4⟩B⟨2⟩ +B⟨5⟩B⟨1⟩

)
= −1

2

(
7

28
+

5

210
+

1

28
+

5

210
+

7

29

)
= − 21

210
.

Actually, the coefficients Bp⃗(n) are products of c
(0)
j and various co-

efficients c
(k)
j , where {c(k)j } = {

(
1/2−k

j

)
} is the sequence of binomial

coefficients generated by the function (1 + z)−(2k−1)/2, k = 1, 2, . . . .
We proceed to derive explicit expressions for coefficients Bp⃗(n). Gen-

eralizing the formula Brej
= c

(0)
r , the data that we generated suggest

that for any distinct unit coordinate vectors et and for any positive
integers p, q, r, s, we have

Bqei+rej = c(r)q c(0)r ,

Bpei+qej+rek
= c(q+r)

p c(r)q c(0)r

Bsei+pej+qek+rel
= c(p+q+r)

s c(q+r)
p c(r)q c(0)r .

In general, the coefficients are given by the formula

(2.10) Bp⃗(n) = B∑n
j=1 ajeij

= c
(
∑n−1

j=1 aj)
an · · · c(a1+a2)

a3
c(a1)
a2

c(0)a1
.

For example, if v = 2ei + ej + ek + 3et + el, then

Bv = c
(6)
2 c

(5)
1 c

(4)
1 c

(1)
3 c

(0)
1 =

143

23

(
−9

2

)(
−7

2

)(
−5

24

)
1

2
= −45045

210
.
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This is a very revealing and appealing structural pattern of coeffi-
cients Bp⃗(n). Notice that the coefficient of each unit coordinate vector

serves as a subscript of a term c( ), and the sum of a subscript and
superscript in any term c( ) is equal to the superscript in the preceding
c( ). Since the unit coordinate vectors in equation (2.10) can be per-
muted, we see that the symbols ai in the expression on the right-hand
side of (2.10) can be permuted. We give an independent proof of this.

Theorem 2.1. The symbols ai in the formula

(2.11) c
(
∑n−1

j=1 aj)
an · · · c(a1+a2)

a3
c(a1)
a2

c(0)a1

can be permuted.

Proof. Any permutation of symbols ai in formula (2.11) can be
achieved by repeatedly transposing pairs of adjacent symbols. It can
be shown (see proof below) that

(2.12) c(ai+b)
aj

c(b)ai
= c(aj+b)

ai
c(b)aj

,

from which the theorem follows. �

Proof of equation (2.12). The equation c
(a+b)
d c

(b)
a = c

(b+d)
a c

(b)
d can be

rewritten using binomial coefficients:

(2.13)

(
1/2 − a− b

d

)(
1/2 − b

a

)
=

(
1/2 − b− d

a

)(
1/2 − b

d

)
.

We will show that each side of (2.13) is equal to(
a+ d

a

)(
1/2 − b

a+ d

)
.

Recall the notation

ab = a(a− 1) · · · (a− b+ 1)

for bth falling factorial and the definition of the binomial coefficient(
a

b

)
=

ab

b!
.
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Looking at the left-hand side of (2.13), we compute

d!

(
1/2 − a− b

d

)
=

(
1

2
− a− b

)
·
(
1

2
− a− b− 1

)
· · ·(

1

2
− a− b− d+ 1

)
,

a!

(
1/2 − b

a

)
=

(
1

2
− b

)
·
(
1

2
− b− 1

)
· · ·

(
1

2
− a− b+ 1

)
.

Therefore,(
1/2 − a− b

d

)(
1/2 − b

a

)
=

1

a! d!

(
1

2
− b

)
·
(
1

2
− b− 1

)
· · ·(

1

2
− a− b+ 1

)
×
(
1

2
− a− b

)
·
(
1

2
− a− b− 1

)
· · ·

(
1

2
− a− b− d+ 1

)
=

(a+ d)!

a! d!

1

(a+ d)!

(
1

2
− b

)a+d

=

(
a+ d

a

)(
1/2 − b

a+ d

)
.

The reasoning for the right-hand side of (2.13) is similar. This com-
pletes the proof. �

The identity we have established can be written as

c
(a+b)
d c(b)a =

(
a+ d

a

)
c
(b)
a+d.

We apply this identity successively to formula (2.11) working from left
to right. The first two applications result in

Bp⃗(n) =

(
an + an−1

an

)
c
(
∑n−2

i=1 ai)
an+an−1

c
(
∑n−3

i=1 ai)
an−2 · · · c(a1)

a2
c(0)a1

=

(
an + an−1

an

)(
an + an−1 + an−2

an + an−1

)
c
(
∑n−4

i=1 ai)
an+an−1+an−2

. . . c(a1)
a2

c(0)a1

=

(
an + an−1 + an−2

an, an−1, an−2

)
c
(
∑n−4

i=1 ai)
an+an−1+an−2

· · · c(a1)
a2

c(0)a1
.
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Continuing this process, we obtain a product of n−1 (integer) binomial
coefficients, which simplifies to a multinomial expression, multiplied by

the last factor c
(0)∑n

i=1 ai
=

(
1/2∑n
i=1 ai

)
. We summarize our work as follows.

Theorem 2.2. The coefficients (2.10) in the solution (2.4) of the
convolution problem are given by

(2.14) Bp⃗(n) = B∑n
i=1 aiei

=

( ∑n
i=1 ai

a1, a2, . . . , an

)(
1/2∑n
i=1 ai

)
,

where
∑n

i=1 aiei is associated with a partition of the integer n as
described previously.

Proof. Equation (2.8) gives the coefficient
(
1/2
aj

)
of uai

j when the

partition of n = jaj involves aj copies of a single integer j. If the
partition of n involves only two integers k and j, used ak and aj
times respectively, then we can think of uak

k u
aj

j as a single entity

(containing ak+aj factors), which, by (2.8), has coefficient
(

1/2
ak+aj

)
, and

there are
(
ak+aj

ak, aj

)
such expressions. This results in the total coefficient(

ak+aj

ak, aj

)(
1/2

ak+aj

)
for uak

k u
aj

j . Using this reasoning, we arrive at (2.14).

Although the partition of n includes all of the integers 1, . . . , n, the
frequency values ai are allowed to be zero. Indeed, if a1 = n or if
an = 1, then ai = 0 for all other i. �

Example 2.3. Consider a coefficient Bp⃗ corresponding to the vector
p⃗ = 2ei1 + 5ei2 + 4ei3 + 2ei4 . Then

Bp⃗ = c
(11)
2 c

(6)
5 c

(2)
4 c

(0)
2 =

483

23

(
−46189

28

)
315

27

(
−1

23

)
=

(
13

2, 5, 4, 2

)(
1/2
13

)
= 540540

52003

8388608
=

7027425405

221
.

Example 2.4. Let us compute r7 using the coefficient formula (2.14):

r7 =

(
1/2
1

)
u7 +

(
2

1, 1

)(
1/2
2

)
(u1 u6 + u2 u5 + u3 u4)

+

(
3

1, 1, 1

)(
1/2
3

)
u1 u2 u4 +

(
3

1, 2

)(
1/2
3

)(
u2
1u5 + u1 u

2
3 + u2

2u3

)
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+

(
4

1, 3

)(
1/2
4

)(
u3
1 u4 + u1 u

3
2

)
+

(
4

1, 1, 2

)(
1/2
4

)
u2
1u2 u3

+

(
5

2, 3

)(
1/2
5

)
u3
1u

2
2 +

(
5

1, 4

)(
1/2
5

)
u4
1u3

+

(
6

1, 5

)(
1/2
6

)
u5
1u2 +

(
1/2
7

)
u7
1.

Each summand corresponds to exactly 1 of the 15 partitions of n = 7.

For example, the summand
(

5
2,3

)(
1/2
5

)
u3
1u

2
2 corresponds to the partition

1+1+1+2+2. Evaluating the coefficients, we obtain

r7 =
1

2
u7 −

1

22
(u1 u6 + u2 u5 + u3 u4)

+
3

23
u1 u2 u4 +

3

24
(
u2
1u5 + u1 u

2
3 + u2

2u3

)
− 5

25
(
u3
1 u4 + u1 u

3
2

)
− 15

25
u2
1u2 u3

+
35

27
u3
1u

2
2 +

35

28
u4
1u3 −

63

29
u5
1u2 +

33

211
u7
1.

3. The nexus. We reconcile the convolution solution (2.4),

rn = rn(u1, u2, . . . , un) =
∑

p⃗(n)∈P(n)

Bp⃗(n) u
p⃗(n),

with the Faà di Bruno formula (1.1). The coefficient formula (2.14) in
Theorem 2.2 may be written as

Bp⃗(n) = B∑n
i=1 aiei

=

(
k

a1, a2, . . . , an

)(
1/2
k

)
,

where k =
∑n

i=1 ai. The binomial factor
(
1/2
k

)
is the kth coefficient,

equal to f (k)(0)/k!, in the Maclaurin expansion of f(x) =
√
1 + x.

Letting U(z) =
∑

n≥0 un z
n, we see that uk = U (k)(0)/k! for k ≥ 1.

Since
up⃗(n) = ua1

1 ua2
2 · · ·uan

n ,

equation (2.4) becomes
(3.1)

rn =
∑

p⃗(n)∈P(n)

(
k

a1,a2,...,an

) f(k)(0)
k!

(
U ′(0)
1!

)a1
(

U ′′(0)
2!

)a2

· · ·
(

U(n)(0)
n!

)an

,
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where f(U(z)− 1) =
√
U(z). This matches the Faà di Bruno formula

(1.1) evaluated at x = 0 and divided by n!. Thus, we see how the sum
in the Faà formula varies over all partitions of n when viewed through
the discrete convolution solution rn in (3.1). See also the treatment by
Flanders [3].

The aforementioned function U(z) =
∑

n≥0 un z
n is a generating

function for the sequence u = {un}n≥0. Letting R(z) =
∑

n≥0 rn z
n

be the generating function for the sequence r = {rn}n≥0, we have
U(z) = R(z)2, which corresponds to the convolution equation u = r⋆r.
Hence, rn is the coefficient of zn in the Maclaurin expansion of U(z)1/2.
For example, the generating function for the sequence {Pn(x)}n≥0 of
Legendre polynomials is

P (x, z) = (1− 2xz + z2)−1/2 =
∑
n≥0

Pn(x)z
n,

and P (x, z)2 generates the Chebyshev polynomials of the second kind
[2].
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