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LIOUVILLIAN FIRST INTEGRALS FOR QUADRATIC
SYSTEMS WITH AN INTEGRABLE SADDLE

YUDY BOLAÑOS, JAUME LLIBRE AND CLAUDIA VALLS

ABSTRACT. We provide explicit expressions for the Li-
ouvillian first integrals of the quadratic polynomial differen-
tial systems having an integrable saddle.

1. Introduction. Let R[x, y] be the ring of all polynomials in the
variables x and y and with coefficients in R.

A quadratic polynomial differential system or simply a quadratic
system is a polynomial differential system in R2 of the form

(1.1) ẋ = P (x, y), ẏ = Q(x, y),

where P,Q ∈ R[x, y] and the maximum of the degrees of P and Q is 2.

Quadratic differential systems have been widely studied in the last
100 years, and more than 1,000 papers have been published about
them (see, for instance, [12, 16, 17]). These systems are considered
as one of the easiest, but not trivial, families of nonlinear differential
systems, although the problem of classifying all quadratic vector fields
(even integrable ones) still remains open. For more information on the
integrable differential vector fields in dimension 2, see for instance, [3]).

The classification of the centers for the quadratic systems has a long
history which started with the works of Dulac [5], Kapteyn [9, 10],
Bautin [2], Zoladek [18], etc. Schlomiuk, Guckenheimer and Rand in
[13, pages 3, 4 and 13] described a brief history of the problem of the
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center in general, and it includes a list of 30 papers covering the topic
and the turbulent history of the center for the quadratic case.

The weak focus and the quadratic centers are classified using the
Lyapunov constants V1, V2 and V3. Dulac [5] was the first to detect
that the weak focus and the quadratic centers can pass to weak saddles
and integrable saddles through a complex change of variables, see for
details, [8]. Recently, such kinds of saddles have been studied by
several authors Sulin [15], Joyal and Rousseau [8], and Artés, Llibre
and Vulpe [1]. These last authors characterized the phase portraits
of all quadratic systems having an integrable saddle, but they did not
provide their first integrals. This will be the main objective of this
paper.

The polynomial differential system (1.1) is integrable on an open
and dense subset U of R2 if there exists a non-constant C1 function
H : U → R, called a first integral of the system on U , which is
constant on all solution curves (x(t), y(t)) of system (1.1) contained
in U , i.e., H(x(t), y(t)) is constant for all values of t for which the
solution (x(t), y(t)) is defined and contained in U , or, in other words,

P
∂H

∂x
+Q

∂H

∂y
= 0,

for the points of U .

Let W be a simple, connected open and dense subset of R2. A non-
zero C1 function V : W → R is an inverse integrating factor of system
(1.1) on W if it is a solution of linear partial differential equation

(1.2) P
∂V

∂x
+Q

∂V

∂y
= div (P,Q)V,

where div (P,Q) = ∂P/∂x + ∂Q/∂y denotes the divergence of vector
field X = (P,Q) associated to system (1.1).

A weak saddle is a hyperbolic saddle such that the trace of its linear
part is zero. More precisely, from [1, 5, 8, 15], if a quadratic system
possesses a weak saddle via an affine transformation, this system can
be written as

ẋ = x+ ax2 + bxy + cy2,

ẏ = −y − kx2 − lxy −my2,
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with the weak saddle at the origin. Moreover, we say that the origin is
an integrable saddle if

L1 = lm− ab = 0,

L2 = kb(2m− b)(m+ 2b)− cl(2a− l)(a+ 2l) = 0,

L3 = (ck − lb)[acl(2a− l)− bkm(2m− b)] = 0.

Taking into account these conditions it is obtained in [1] that the
quadratic systems with an integrable saddle can be reduced to the
following five families of quadratic systems:

ẋ = x− 2ckx2 + xy + cy2,(1.3)

ẏ = −y − kx2 − ckxy + 2y2,

ẋ = x+mx2 + xy + cy2,(1.4)

ẏ = −y − cx2 − xy −my2,

ẋ = x+ lmx2 + xy + cy2,(1.5)

ẏ = −y − cl3x2 − lxy −my2,

ẋ = x+ ax2 + cy2,(1.6)

ẏ = −y − kx2 −my2,

ẋ = x+ ax2 + 2mxy + cy2,(1.7)

ẏ = −y − kx2 − 2axy −my2.

It is known that all quadratic systems with an integrable saddle
possess a Liouvillian first integral, see for instance, [1], or the appendix
where we explain how it is known that all integrable saddles have a
Liouvillian first integral. We recall that a Liouvillian first integral
is a first integral that can be expressed by quadratures of elementary
functions, see for more details, [14]. This is the reason for calling the
weak saddles satisfying L1 = L2 = L3 = 0, integrable saddles. The
objective of this paper is to provide the explicit expressions of these
first integrals for each of the families (1.3)–(1.7).
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2. Statement of the main results. We need to recall that a
polynomial differential system (1.1) with an inverse integrating factor
V = V (x, y) : W → R and a first integral H associated to V satisfies

ẋ =
P

V
=

∂H

∂y
, ẏ =

Q

V
= −∂H

∂x
.

Therefore,

(2.1) H(x, y) =

∫
P (x, y)

V (x, y)
dy + g(x).

We note that the function g(x) depends only on x because it is a
constant of integration with respect to the variable y. Moreover, g(x)
can be computed from the equation

∂H

∂x
= −Q

V
.

Theorem 2.1. The quadratic systems (1.3)–(1.7) possess a polynomial
inverse integrating factor V = V (x, y).

(a) For system (1.3), V = V11V12 with

V11 = kx2 − 2ckxy + c2ky2 + 2ckx+ 2y − 1,

V12 = (1− c2k)(kx3 − 3ckx2y + 3c2kxy2 − c3ky3 + 3ckx2

+ 3(1− c2k)xy − 3cy2) + 6c(ckx+ y)− 2c.

(b) For system (1.4), V = V21V22 with

V21 = (c−m)(x+ y)− 1,

V22 = (2c− 1)(c+m− 1)(cx2 − (c−m− 1)xy + cy2)

+ 2c((c+m− 1)(x+ y) + 1).

(c) For system (1.5), V = V31V32 with

V31 = 1− (cl −m)(lx+ y),

V32 = 2c− (2cl − 1)((cl − 1)2 −m2)xy

+ 2c(cl +m− 1)(lx+ y) + c(2cl − 1)(cl +m− 1)(l2x2 + y2).
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(d) For system (1.6)

V = (ck − am)(kx3 + 3xy + ax2y +mxy2 + cy3)

− (a2 + km)x2 − (ac+m2)y2 − 2ax− 2my − 1.

(e) For system (1.7) V = 1. So, system (1.7) is Hamiltonian.

In 1992, Singer [14] proved that a polynomial differential system has
a Liouvillian first integral if and only if it has an inverse integrating
factor of the form

(2.2) exp

(∫
U1(x, y) dx+

∫
U2(x, y) dy

)
,

where U1 and U2 are rational functions which verify ∂U1/∂y = ∂U2/∂x.
In 1999, Christopher [4] improved the results of Singer showing that
the inverse integrating factor (2.2) can be written in the form

(2.3) exp(g/h)

k∏
i=1

fλi
i ,

where g, h and fi are polynomials and λi ∈ C.
Since all inverse integrating factors of Theorem 2.1 are polynomial,

they are of the form (2.3). Consequently, by the results of Singer and
Christopher we have given a new proof that all the first integrals of
systems (1.3)–(1.7) are Liouvillian. Now we shall give the explicit
expressions of these first integrals.

Theorem 2.2. The following statements hold.

(a) A first integral of system (1.3) is

V 3
11

V 2
12

if 1 + c2k ̸= 0,

4cx+ 6x2 + c2(1− 4y + 6y2)

V 2
11

if 1 + c2k = 0.

(b) A first integral of system (1.4) is:

V c+m−1
21 V c−m

22 if m ̸= c, 1− c, 3c− 1, c ̸= 1/2,

(2c− 1)(x+ y)− log |V22| if m = c ̸= 1/2,
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(2c− 1)(c(2c− 1)(x2 + y2)

+ (−4c2 + 6c− 2)xy + 2c(x+ y))

+ 2c log |V21| if m = 1− c ̸= 1/2,

1

V 2
21

(2(2c− 1)(2c+ (1− 2c)2x)y + c(3 + 4(2c− 1)x))

+ 2c log |V21| if m = 3c− 1 ̸= 1/2,

1

V22
(4V22 − 8 + (2m− 1)2(x2 + (2m+ 1)xy + y2)

− 8V22 log |2V22|) if c = 1/2, m ̸= 1/2;

moreover, if m = c = 1/2, system (1.4) coincides with system (1.7)
with a = k = 1/2.

(c) A first integral of system (1.5) is:

V m−cl
32

V m+cl−1
31

if m ̸= cl, 1− cl, 3cl − 1, 2cl ̸= 1,

1

V32
(4c(2V32 − 8c) + (2m− 1)2(x2 + 2c(2m+ 1)xy + 4c2y2)

− 16cV32 log |2V32|) if 2cl = 1, m ̸= 1/2,

(2cl − 1)(lx+ y)− log |V32| if m = cl, 2cl ̸= 1,

(2cl − 1)((−2 + 2cl(3− 2cl))xy

+ 2c(lx+ y) + c(2cl − 1)(l2x2 + y2))

2c log |V31| if m = 1− cl, 2cl ̸= 1,

1

V 2
31

[−16c3l4x2 + 2x(lx− 1)

+ 8c2l2x(3lx− 1 + c(−12l2x2 + 8lx− 1))]

+
2

V31
(x+ 4c2l2x+ c(2− 4lx))

+ 2c log |V31| if m = 3cl − 1, 2cl ̸= 1;

moreover, if m = 1/2 and 2cl = 1, system (1.5) coincides with
system (1.7) with a = 1/(4c) and k = 1/(8c2).

(d) A first integral of system (1.6) is

3∑
i=1

(x+ ax2 + cr2i ) log |y − ri|
f(ri)

,
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where f(r) = 3c(am−ck)r2+2(ac+m2−ckmx+am2x)r+a(am−
ck)x2 + 3(am− ck)x+ 2m and r1, r2 and r3 are the three roots of
the following polynomial in the variable r:

(−c2k + acm)r3 + (ac+m2 − ckmx+ am2x)r2

+ (2m− 3ckx+ 3amx− ackx2 + a2mx2)r

+ (2ax+ a2x2 + kmx2 − ck2x3 + akmx3 + 1).

(e) A first integral of Hamiltonian system (1.7) is

kx3 + 3ax2y + 3mxy2 + cy3 + 3xy.

3. Proof of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. For each of the statements of the theorem,
the formula for V is obtained by looking for a polynomial solution of
the linear partial differential equation (1.2).

For quadratic system (1.3), the equation (1.2) is

(x− 2ckx2 + xy + cy2)
∂V

∂x
(3.1)

+ (−y − kx2 − ckxy + 2y2)
∂V

∂y
− (5(y − ckx))V = 0.

Once we look for a polynomial solution of (3.1) given by V = V (x, y)
of degree 5, we get

V = − 1

5c4k2(c2k − 1)
(kx2 − 2ckxy + c2ky2 + 2ckx+ 2y − 1)

[(1− c2k)(kx3 − 3ckx2y + 3c2kxy2 − c3ky3

+ 3ckx2 + 3(1− c2k)xy − 3cy2) + 6c(ckx+ y)− 2c].

So this V is an inverse integrating factor of system (1.3). Therefore,
this proves statement (a) of the theorem.

Proceeding in a similar way, we obtain the inverse polynomial
integrating factors of the quadratic systems (1.4)–(1.6). For quadratic
system (1.7), we have div (P,Q) = 0 and, therefore, the system is
Hamiltonian and its inverse integrating factor is 1. �
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Proof of Theorem 2.2. Since system (1.3) has a polynomial inverse
integrating factor V given by Theorem 2.1 (a), the first integral asso-
ciated to V , see equation (2.1), is

H(x, y) =

∫
x− 2ckx2 + xy + cy2

V (x, y)
dy + g(x),

satisfying
∂H

∂x
= −−y − kx2 − ckxy + 2y2

V
.

Hence, we obtain g(x) = 0, and

H =
1

6(1 + c2k)2
(3 log | − 1 + kx2 + 2y + c2ky2 + x(2ck − 2cky)|

− 2 log |(1− c2k)(kx3 − 3ckx2y + 3c2kxy2 − c3ky3

+ 3ckx2 + 3(1− c2k)xy − 3cy2) + 6c(ckx+ y)− 2c|),

if 1 + c2k ̸= 0. Ignoring the constant appearing in H we can write the
first integral of the form

3 log |V11| − 2 log |V12| = log

∣∣∣∣V 3
11

V 2
12

∣∣∣∣,
where V11 and V12 are the functions defined in Theorem 2.1 (a). Finally,
applying the exponential function to the above expression, we get the
rational first integral of the quadratic system (1.3), so statement (a) if
1 + c2k ̸= 0 is proved.

If 1 + c2k = 0, quadratic system (1.3) becomes

ẋ = x+
2x2

c
+ xy + cy2, ẏ = −y +

1

c2
x2 +

1

c
xy + 2y2.

Again, by Theorem 2.1 (a), V11 = −(c + x − cy)2/c2 and V12 =
−2(c + x − cy)3/c2. We calculate the first integral associated to
V = V11V12 computing (2.1) for this system, which is

c2(4cx+ 6x2 + c2(1− 4y + 6y2))

24(c+ x− cy)4
=

4cx+ 6x2 + c2(1− 4y + 6y2)

24c2V 2
11

;

removing the constant in the denominator we prove the rest of state-
ment (a) of the theorem.
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Furthermore, by Theorem 2.1 (b), we have the inverse polynomial
integration factor V of system (1.4), and a first integral associated a
V for this system is obtained computing (2.1). Thus, we have the first
integral

H =
1

(2c− 1)(c−m)(3c−m− 1)(c+m− 1)
[(c+m− 1)

log |(c−m)(x+ y)− 1|+ (c−m) log |(2c− 1)(c+m− 1)

(cx2 − (c−m− 1)xy + cy2) + 2c((c+m− 1)(x+ y) + 1)|],

whenever m ̸= c, 1 − c, 3c − 1 and c ̸= 1/2. Removing the constant
which appears in the denominator, we write the remaining expression
as

(c+m− 1) log |V21|+ (c−m) log |V22| = log |V c+m−1
21 V c−m

22 |,

where V21 and V22 are the functions defined in Theorem 2.1 (b), and
hence we obtain the first integral of statement (b) of the theorem for
all m ̸= c, 1− c, 3c− 1 and c ̸= 1/2.

Calculating the first integral associated to the inverse integrating
factor provided by Theorem 2.1 (b), for each of the remaining cases,
we find that, if m = c, V21 = −1 and V22 = (2c− 1)2(cx2 + xy+ cy2)+
2c((2c− 1)(x+ y) + 1), a first integral of the system is

− (2c− 1)(x+ y)− log |V22|
(2c− 1)3

,

for all c ̸= 1/2. Although we can ignore the constant that appears in
the denominator, it is easy to verify that the remaining expression is
constant at c = 1/2; therefore, it would not be a first integral of the
system for this value of c. So the function obtained is a first integral
whenever m = c ̸= 1/2 as stated in statement (b) of the theorem.

Now, if m = 1− c, we have V21 = (2c− 1)(x+ y)− 1 and V22 = 2c,
and a first integral is

1

4c(2c− 1)3
((2c− 1)(c(2c− 1)(x2 + y2) + (−4c2 + 6c− 2)xy

+ 2c(x+ y)) + 2c log |V21|).

We observe that this function is not defined at c = 0, 1/2; however,
eliminating the multiplicative constant, the first integral obtained is
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defined and it is not constant at c = 0, but it is a complex constant
if c = 1/2. So, this last function is a first integral of the system if
m = 1− c ̸= 1/2; thus, statement (b) for this case is proved.

Considering m = 3c − 1, we have V21 = (1 − 2c)(x + y) − 1,
V22 = 2c(1 + (2c− 1)(x+ y))2, and the first integral is

1

4c(2c− 1)3

[
c(3 + 4(2c− 1)x) + 2(2c− 1)(2c+ (2c− 1)2x)y

V 2
21

+ 2c log |V21|
]

with c ̸= 0, 1/2. Here also, we remark that the function obtained
removing the multiplicative constant in the previous expression is
defined, and it is not constant at c = 0, whereas, in c = 1/2, it is
constant,; therefore, this function is the first integral of the system
given in statement (b) of the theorem in the case m = 3c− 1 ̸= 1/2.

If c = 1/2, then V22 = (m − 1/2)(x + y) + 1 = −V21, and the first
integral is
(3.2)

(4V22 + (2m− 1)2(x2 + (2m+ 1)xy + y2)− 8V22 log |2V22| − 8)

(2m− 1)3V22

for all m ̸= 1/2. It is easy to verify that, eliminating the constant that
appears in the denominator, the function

(4V22 + (2m− 1)2(x2 + (2m+ 1)xy + y2)− 8V22 log |2V22| − 8)

V22

is constant if m = 1/2. So the function (3.2) is a first integral whenever
c = 1/2 and m ̸= 1/2, and so we have proved statement (b) of the
theorem for this case.

If m = c = 1/2, the system is

ẋ = x+ x2/2 + xy + y2/2, ẏ = −x2/2− y − xy − y2/2,

with inverse integrating factor V = 1, so system (1.4) in this case is
Hamiltonian, and it belongs to family (1.7) with a = c = m = k = 1/2.
Thus, we have completed the proof of statement (b) of the theorem.

For the quadratic system (1.5) the first integral associated to its
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polynomial inverse integrating factor provided by Theorem 2.1 (c) is:

1

(2cl − 1)(cl −m)(3cl −m− 1)(cl +m− 1)
[(m− cl) log |2c

− (2cl − 1)((cl − 1)2 −m2)xy

+ 2c(cl +m− 1)(lx+ y) + c(2cl − 1)

(cl +m− 1)(l2x2 + y2)| − (cl +m− 1) log |1
− (cl −m)(lx+ y)|]

for all 2cl ̸= 1 and m ̸= cl, 1− cl, 3cl − 1, which becomes

(m− cl) log |V32| − (cl +m− 1) log |V31|,

or equivalently, V m−cl
32 /V m+cl−1

31 being V31 and V32, the functions
defined in Theorem 2.1 (c).

If 2cl = 1, then V31 = (4c + (2m − 1)(x + 2cy))/(4c), V32 =
(m − 1/2)x + c(2 + (2m − 1)y), and the first integral of the system
is

1

2c(2m− 1)3V32
[(2m− 1)2(x2 + 2c(1 + 2m)xy + 4c2y2)

+ 4c(2V32 − 8c)− 16cV32 log |2V32|],

whenever c ̸= 0 and m ̸= 1/2. However, without taking into account
the constant in the denominator of the previous expression, it is defined
at c = 0 and it is not constant, but it is constant if m = 1/2. So, we
obtain the first integral of statement (c) of the theorem if 2cl = 1 and
m ̸= 1/2.

Now we consider cl = m. In this case, V31 = 1, V32 = 2c + (2cl −
1)(2cy+x(2cl+(2cl−1)y)+c(2cl−1)(l2x2+y2)), and the first integral
is

1

(2cl − 1)3
((2cl − 1)(lx+ y)− log |V32|),

with 2cl ̸= 1. Here also we can prove that eliminating the constant
of the above expression, the remaining function is constant if 2cl = 1;
therefore, the first integral is defined whenever cl = m and 2cl ̸= 1 as
appears in statement (c) of the theorem in this case.
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If m = 1− cl, we have V31 = 1− (2cl− 1)(lx+ y), V32 = 2c and the
first integral is:

−1

4c(2cl − 1)3
[(2cl − 1)((−2− 2cl(−3 + 2cl))xy

+ 2c(lx+ y) + c(2cl − 1)(l2x2 + y2)) + 2c log |V31|],

for all c ̸= 0 and 2cl ̸= 1. From this previous function, we obtain the
first integral of statement (c) of the theorem in the cases m = 1 − cl
and 2cl ̸= 1. If c = 0, the first integral is defined, and it is not constant.

If m = 3cl−1, then V31 = 1− (1−2cl)(lx+y), V32 = 2c(l(x−2clx−
2cy) + y − 1)2, and the first integral is

1

4c(2cl − 1)3[
2c(c(3 + 4l(2cl − 1)x) + 2(2cl − 1)(2c+ (1− 2cl)2x)y)

V32
+2c log |V31|

]
whenever c ̸= 0 and 2cl ̸= 1. The first integral obtained excluding the
constant factor is defined, and it is not constant at c = 0, but it is
constant if 2cl ̸= 1. So we get the first integral of statement (c) of the
theorem in the cases m = 3cl − 1 and 2cl ̸= 1.

Finally, if m = 1/2 and 2cl = 1, the system (1.5) becomes

ẋ = x+
x2

4c
+ xy + cy2, ẏ = −y − x2

8c2
− xy

2c
− y2

2
,

which is a Hamiltonian system, and it coincides with system (1.7) with
a = 1/(4c) and k = 1/(8c2). In consequence, we have proved statement
(c) of the theorem.

For system (1.6), we find the first integral associated with its inte-
grating factor V , given in Theorem 2.1 (d), through the equation (2.1)
obtaining ∫

x+ ax2 + cy2

V
dy,

and hence the first integral of statement (d) of the theorem results.

By Theorem 2.1 (e), we know that the quadratic system (1.7) is
Hamiltonian, and so its inverse integrating factor is 1. So, from
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equation (2.1), a first integral for this system is∫
(ax2 + 2mxy + cy2 + x) dy +

kx3

3
,

which is provided in statement (e) of the theorem. �

APPENDIX

On the existence of Liouvillian first integrals for the inte-
grable saddles. Doing a linear change of coordinates and a rescaling
of the independent variable, any real polynomial differential system
having a weak saddle at the origin can be written as

(A.1) ẋ = y + p(x, y), ẏ = x+ q(x, y),

where p and q are real polynomials without constant and linear terms.
Doing a change of variables,

(A.2) x = (w + w)/2, y = (w − w)i/2,

and of the independent variable T = it, the differential system (A.1)
becomes the complex differential system

(A.3) ẇ = w + P (w,w), ẇ = −w +Q(w,w),

where P and Q are complex polynomials. Then the focus quantities Vj

of system (A.3) coincide with the saddle quantities Lj of system (A.1).
Due to this duality between focus quantities and saddle quantities it
follows that an integrable saddle has an analytic first integral defined
in a neighborhood of it. This is the reason to call such a saddle an
integrable saddle. The complex change (A.2) is introduced just to show
the duality of weak focus and weak saddles. We must mention that the
complex system (A.3) has a local complex analytic first integral in a
neighborhood of the origin; see, for more details, [11, 6] or [7, Section
12]. And, going back through the change of variables, we get a local
complex analytic first integral in a neighborhood of the real integrable
saddle. Consequently, the real and imaginary parts of this complex
analytic first integral are local analytic first integrals of the integrable
saddle.
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