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SOME CHARACTERIZATIONS OF THE
EULER GAMMA FUNCTION

JANUSZ MATKOWSKI

ABSTRACT. Assume that f : (0,∞) → (0,∞) is bounded
from above on a set of positive Lebesgue measures or on
a set of the second category with the Baire property and
satisfies the functional equation f(x + 1) = xf(x) for x > 0
and f(1) = 1. We prove that, if there is a positive sequence
(pn), limn→∞ pn = ∞, such that for every n ∈ N, the
function x 7→ log(xpn ) is Jensen convex in the interval
(1,∞); or there are two positive sequences (pn) and (qn),
limn→∞ pn = ∞, limn→∞ qn = 0 such that, for every n ∈ N,
the function x 7→ [f(xpn )]qn is Jensen convex in the interval
(1,∞), then f is the Euler gamma function.

1. Introduction. In 1922, Bohr and Mollerup [3] proved that if a
function f : (0,∞) → (0,∞) satisfies the functional equation

(1) f (x+ 1) = xf (x) , x > 0; f (1) = 1,

and log ◦f is convex, then f is the Euler gamma function Γ (cf., also
Artin [2]).

Gronau and Matkowski [4] in 1993 gave an improvement of this
result, showing, in particular, that (under weak regularity of f) it
remains true if the convexity of log ◦ f is replaced by the much weaker
condition of the geometrical convexity of f in some interval (b,∞), that
is,

f (
√
xy) ≤

√
f (x) f (y), x, y > b,

and equivalent to the Jensen convexity of the function log ◦f ◦ exp.
In a recent paper, Alzer and Matkowski [1] have obtained a char-

acterization of the Gamma function, making use of some properties of
the composition of the power functions with the function Γ◦ exp which
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reads as follows. Assume that f : (0,∞) → (0,∞) satisfies (1). If f
is bounded on a set of positive Lebesgue measure (or on a set of the
second category with the Baire property) and there are a > 0 and a
sequence of positive numbers qn with limn→∞ qn = 0 such that, for
every n the function (f ◦ exp)qn is Jensen convex, then f is the gamma
function.

The characterization of the gamma function presented in this note
is also based on equation (1). The main result, Theorem 2 in Section 3,
reads as follows. Assume that f : (0,∞) → (0,∞) is bounded from
above on a set of positive Lebesgue measures or on a set of the second
Baire category with the Baire property and satisfies the functional
equation (1). If there is a positive sequence (pn), limn→∞ pn = ∞ such
that, for every n ∈ N, the function x 7→ log f(xpn) is Jensen convex
in the interval (1,∞); or there are two positive sequences (pn) and
(qn), limn→∞ pn = ∞, limn→∞ qn = 0 such that, for every n ∈ N, the
function x 7→ [f(xpn)]qn is Jensen convex in the interval (1,∞), then f
is the Euler gamma function. In Section 1 we present a simple argument
assuming that f is a twice differentiable function (Theorem 1). In
Section 2, we present the counterparts of these results under a little
stronger assumption that can be regarded as a motivation of the main
results.

As an immediate corollary, we obtain the following. If f : (0,∞) →
(0,∞) satisfies (1) and, for every positive integer n, the function
x 7→ [f(xn)]1/n is convex, then f is the Gamma function.

2. A characterization for regular functions. Let us note that
the following is easy to verify

Remark 2.1. Let I ⊂ (0,∞) be an open interval, and let f : I →
(0,∞)be twice differentiable. The following conditions are pairwise
equivalent:

(i) the function f is geometrically convex, that is,

f(xty1−t) ≤ f(x)tf(y)1−t, x, y ∈ I, t ∈ (0, 1);

(ii) the function log ◦f ◦ exp is convex in the interval J := log(I);
(iii) the function f : I → (0,∞) satisfies the inequality

f (x) f ′′ (x)x+ f (x) f ′ (x) ≥ [f ′ (x)]
2
x, x ∈ I.
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We prove the following:

Theorem 2.2. Suppose that a function f : (0,∞) → (0,∞) is
twice differentiable and satisfies equation (1). If f satisfies one of the
following two conditions:

(i) there is a sequence (pn), pn → ∞, such that for every n ∈ N, the
function x 7→ log f(xpn) is convex in (1,∞);

(ii) there exist some sequences of positive numbers (pn), (qn); pn →
∞, qn → 0, such that, for every n ∈ N, the function x 7→
[f(xqn)]px is convex in (1,∞),

then f is the Euler gamma function.

Proof. To prove the first result, take p > 0. Since f is twice
differentiable, the function x 7→ log f(xp) is convex in (1,∞) if, and
only if,

(log f (xp))
′′
=

p2xp−2

[f (xp)]
2

{
p− 1

p
f (xp) f ′ (xp)

+ xpf (xp) f ′′ (xp)− xp [f ′ (xp)]
2
}

≥ 0,

for all x ∈ (1,∞). Since, for p > 0, the function x 7→ xp maps the
interval (1,∞) onto itself, this inequality is satisfied if, and only if,

p− 1

p
f (x) f ′ (x) + xf (x) f ′′ (x)− x [f ′ (x)]

2 ≥ 0, x ∈ (1,∞) .

Replacing here p by pn such that pn → ∞, and then letting n → ∞,
we obtain

f (x) f ′ (x) + xf (x) f ′′ (x)− x [f ′ (x)]
2 ≥ 0, x ∈ (1,∞) .

In view of Remark 2.1, the function f is geometrically convex in (1,∞).
Since f satisfies (1), in view of the Gonau-Matkowski result [4], the
function f must be the Euler gamma function.

To prove the second result take arbitrary positive real numbers p
and q. The function x 7→ [f(xp)]q is convex in the interval (1,∞) if,
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and only if,

([f (xp)]
q
)
′′

p2qxp−2 [f (xp)]
q−2

= (q − 1)xp [f ′ (xp)]
2
+ xpf (xp) f ′′ (xp) +

p− 1

p
f (xp) f ′ (xp) ≥ 0,

for all x ∈ (1,∞). Since p and q are positive, and the function x 7→ xp

maps the interval (1,∞) onto itself, we see that this inequality is
satisfied if, and only if,

(q − 1)x [f ′ (x)]
2
+ xf (x) f ′′ (x) +

p− 1

p
f (x) f ′ (x) ≥ 0, x ∈ (1,∞) .

Setting here p = pn, q = qn, pn → ∞ and qn → 0, and letting n → ∞,
we obtain

−x [f ′ (x)]
2
+ xf (x) f ′′ (x) + f (x) f ′ (x) ≥ 0, x ∈ (1,∞) ,

whence, by Remark 2.1, the function f is geometrically convex. Now
the result follows from the main result of [4]. �

3. Main results. Let D ⊂ Rk be convex and open, and let A ⊂ D
be of positive Lebesgue measure. We need the following result of
Ostrowski [8] (see also [6, page 210]).

If f : D → R is Jensen convex, that is,

f

(
x+ y

2

)
≤ f (x) + f (y)

2
, x, y ∈ D,

and bounded from above on A, then f is convex.

A subset A of a topological spaceX is said to have the Baire property
if A = (D ∪ P )\R, where the set D is open, and the sets P,R are of
the first category. (The family of sets having the Baire property is a
σ-algebra.)

Let D ⊂ Rk be convex and open, and let A ⊂ D be of the second
category with the Baire property. We shall also need the following
result, which is due to Mehdi [7] (see also [6, page 210]).

If f : D → R is Jensen convex and bounded from above on A, then
f is convex.



GAMMA FUNCTION 1229

The main result of the present paper reads as follows:

Theorem 3.1. Assume that f : (0,∞) → (0,∞) is bounded from above
on a set of positive Lebesgue measure or on a set of the second category
with Baire property, and satisfies equation (1):

f (x+ 1) = xf (x) , x > 0; f (1) = 1.

If one of the following two conditions is fulfilled,

(i) there is a positive sequence (pn), limn→∞ pn = ∞ such that, for
every n ∈ N, the function

x 7−→ log f (xpn)

is Jensen convex in the interval (1,∞);
(ii) there are two positive sequences (pn) and (qn), limn→∞ pn = ∞,

limn→∞ qn = 0 such that, for every n ∈ N, the function

x 7−→ [f (xpn)]
qn

is Jensen convex in the interval (1,∞),

then f is the Euler gamma function.

Proof. If condition (i) is satisfied, then

log f

((
x+ y

2

)pn
)

≤ log f (xpn) + log f (ypn)

2
, x, y > 1; n ∈ N,

whence, replacing x and y, respectively, by x1/pn and y1/pn , we obtain

f

((
x1/pn + y1/pn

2

)pn
)

≤
√

f (x) f (y), x, y > 1; n ∈ N.

Since

(3.1) lim
r→∞

(
u1/r + v1/r

2

)r

=
√
uv, u, v > 0,

letting n → ∞, we hence get

f (
√
xy) ≤

√
f (x) f (y), x, y > 1,

that is, f is Jensen geometrically convex in (1,∞) (or, equivalently, the
function log ◦f ◦ exp is Jensen convex in the interval (0,∞)).
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If condition (ii) is satisfied, then[
f

((
x+ y

2

)pn
)]qn

≤ [f (xpn)]
qn + [f (ypn)]

qn

2
, x, y > 1; n ∈ N.

Replacing here x and y by x1/pn and y1/pn , respectively, we get

f

((
x1/pn + y1/pn

2

)pn
)

≤
(
[f (x)]

qn + [f (y)]
qn

2

)1/qn

, x, y > 1; n ∈ N.

Since limn→∞ pn = ∞, limn→∞ qn = 0, letting here n → ∞ and
applying (3.1), we obtain

f (
√
xy) ≤

√
f (x) f (y), x, y > 1,

that is, f is Jensen geometrically convex in (1,∞).

By the assumption there are a set A ⊂ (0,∞) of positive Lebesgue
measure or of the second Baire category and M > 0 such that

f (x) ≤ M, x ∈ A.

Since there is n ∈ N such that A ∩ (0,∞) is also of positive Lebesgue
measure or of the second Baire category, we may assume that A is
bounded, that is, m := supA < ∞. For sufficiently large k, we have
k + A ⊂ (a,∞) and k + A is of positive Lebesgue measure or of the
second Baire category. From (1), by induction, we have

f (x+ k) = x (x+ 1) · . . . · (x+ k − 1) f (x) , x > 0.

Hence,

f (x+ k) ≤ m (m+ 1) · . . . · (m+ k − 1)M, x ∈ (k +A) ,

that is, f is bounded from above on the set k + A ⊂ (a,∞). By the
theorem of Ostrowski and the theorem of Mehdi (cf., Kuczma [6, page
210], the function log ◦f ◦ exp is convex in the interval (log a,∞), that
is,

log ◦f ◦ exp (tu+ (1− t) v) ≤ t log ◦f ◦ exp (u)+ (1− t) log ◦f ◦ exp (v) ,

for all t ∈ (0, 1) and u, v ∈ (log a,∞), or equivalently,

f
(
xty1−t

)
≤ [f (x)]

t
[f (y)]

1−t
, t ∈ (0, 1) , x, y ∈ (a,∞) .
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Thus, f is geometrically convex, and the result follows from [4]. �

Remark 3.2. The function f satisfies the assumed regularity condi-
tions in Theorem 3.1 if it is Lebesgue measurable or continuous at a
point (cf., Kuczma [6]).

Remark 3.3. The assumption of the convexity. From Theorem 3.1,
we immediately obtain the following:

Corollary 3.4. Assume that f : (0,∞) → (0,∞) is bounded from
above on a set of positive Lebesgue measure or on a set of the second
Baire category and satisfies (1). If, for every positive integer n, the
function x 7→ [f(xn)]1/n is Jensen convex in the interval (1,∞), then
f is the Euler gamma function.
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