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GRÖBNER-SHIRSHOV BASES
OF SOME WEYL GROUPS

EYLEM GÜZEL KARPUZ, FIRAT ATEŞ AND A. SINAN ÇEVIK

ABSTRACT. In this paper, we obtain Gröbner-Shirshov
(non-commutative) bases for the n-extended affine Weyl

group W̃ of type A1, elliptic Weyl groups of types A
(1,1)
1 ,

A
(1,1)∗

1 and the 2-extended affine Weyl group of type A
(1,1)
2

with a generator system of a 2-toroidal sense. It gives a
new algorithm for getting normal forms of elements of these
groups and hence a new algorithm for solving the word
problem in these groups.

1. Introduction. The Gröbner basis theory for commutative alge-
bras was introduced by Buchberger [8] and provides a solution to the
reduction problem for commutative algebras. In [3], Bergman gener-
alized the Gröbner basis theory to associative algebras by proving the
“Diamond lemma.” On the other hand, the parallel theory of Gröbner
bases was developed for Lie algebras by Shirshov [14]. In [4], Bokut no-
ticed that Shirshov’s method also works for associative algebras. Hence,
for this reason, Shirshov’s theory for Lie algebras and their universal
enveloping algebras is called the Gröbner-Shirshov basis theory. There
are some important studies on this subject related to the groups (see,
for instance, [7, 9]). We may finally refer to the papers [2, 5, 6, 10, 11]
for some other recent studies on Gröbner-Shirshov bases.

Algorithmic problems such as the word, conjugacy and isomorphism
problems have played an important role in group theory since the
work of Dehn in the early 1900’s. These problems are called decision
problems which ask for a yes or no answer to a specific question. Among
these decision problems, the word problem especially has been studied
widely in groups (see [1]). It is well known that the word problem
for finitely presented groups is not solvable in general; that is, given
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any two words obtained by generators of the group, there may be no
algorithm to decide whether these words represent the same element in
this group.

The method of Gröbner-Shirshov bases which is the main theme of
this paper gives a new algorithm for getting normal forms of elements
of groups, and hence a new algorithm for solving the word problem in
these groups. By considering this fact, our aim in this paper is to find
Gröbner-Shirshov bases of the n-extended affine Weyl group of type A1,

elliptic Weyl groups of types A
(1,1)
1 , A

(1,1)∗

1 and the 2-extended affine

Weyl group of type A
(1,1)
2 .

Extended affine root systems and the associated Weyl groups were
introduced and studied by Saito [12]. In particular, 2-extended affine
root systems are also called elliptic root systems from the point of
view of the elliptic singularities. The defining relations of generators
of the elliptic Weyl groups associated to the elliptic root systems were
obtained by Saito and Takebayashi [13].

Throughout this paper, we order words in given alphabet in the
deg-lex way comparing two words first by their lengths and then
lexicographically when the lengths are equal. Additionally, (i)∩(j) and
(i)∪ (j) denote the intersection and inclusion compositions of relations
(i), (j), respectively.

2. Gröbner-Shirshov bases and composition-diamond lem-
ma. Let K be a field and K⟨X⟩ the free associative algebra over K
generated by X. Denote X* as the free monoid generated by X, where
the empty word is the identity denoted by 1. For a word w ∈ X*, we
denote the length of w by |w|. Suppose that X* is a well-ordered set.
Then every nonzero polynomial f ∈ K⟨X⟩ has the leading word f . If
the coefficient of f in f is equal to 1, then f is called monic.

Let f and g be two monic polynomials in K⟨X⟩. We then have two
compositions as follows:

• If w is a word such that w = fb = ag for some a, b ∈ X* with
|f |+ |g| > |w|, then the polynomial (f, g)w = fb− ag is called
the intersection composition of f and g with respect to w. The
word w is called an ambiguity of intersection.

• If w = f = agb for some a, b ∈ X*, then the polynomial
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(f, g)w = f − agb is called the inclusion composition of f and
g with respect to w. The word w is called an ambiguity of
inclusion.

If g is monic, f = agb and α is the coefficient of the leading term f ,
then the transformation f 7→ f − αagb is called elimination (ELW) of
the leading word of g in f .

Let S ⊆ K⟨X⟩ with each s ∈ S monic. Then the composition
(f, g)w is called trivial modulo (S,w) if (f, g)w =

∑
αiaisibi, where

each αi ∈ K, ai, bi ∈ X*, si ∈ S and aisibi < w. If this is the case, then
we write (f, g)w ≡ 0 mod (S,w).

We call the set S endowed with the well ordering < a Gröbner-
Shirshov basis for K⟨X | S⟩ if any composition (f, g)w of polynomials
in S is trivial modulo S and corresponding w.

The following lemma was proved by Shirshov [14] for free Lie
algebras with deg-lex ordering.

Lemma 2.1. (Composition-Diamond lemma). Let K be a field, let
A = K⟨X | S⟩ = K⟨X⟩/Id (S), and let < be a monomial ordering
on X*, where Id (S) is the ideal of K⟨X⟩ generated by S. Then the
following statements are equivalent :

(i) S is a Gröbner-Shirshov basis.
(ii) f ∈ Id (S) ⇒ f = asb for some s ∈ S and a, b ∈ X*.
(iii) Irr (S) = {u ∈ X* | u ̸= asb, s ∈ S, a, b ∈ X*} is a basis for the

algebra A = K⟨X | S⟩.

If a subset S of K⟨X⟩ is not a Gröbner-Shirshov basis, then we
can add to S all nontrivial compositions of polynomials of S, and by
continuing this process (maybe infinitely) many times, we eventually
obtain a Gröbner-Shirshov basis Scomp. Such a process is called the
Shirshov algorithm.

2.1. Gröbner-Shirshov basis for the n-extended affine Weyl

group W̃ of type A1. In [17], the author calculated the growth series

of the n-extended affine Weyl group W̃ of type A1 with a generator
system of an n-toroidal sense. To do that the author had the following
result.
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Proposition 2.2. [17]. The n-extended affine Weyl group W̃ of type
A1 is presented as follows:
Generators: wi (0 ≤ i ≤ n),
Relations: w2

i = 1 (0 ≤ i ≤ n), (wiw1wj)
2 = 1 (i, j ̸= 1, 0 ≤ i ̸= j ≤

n).
Let us order the generators as in the following:

• for i < j, we have wi > wj , i.e., w0 > w1 > w2 > · · · > wn.

Now we give the first main result of this section.

Theorem 2.3. A Gröbner-Shirshov basis of the n-extended affine Weyl

group W̃ of type A1 consists of the following polynomials:

(1) w2
i − 1 (0 ≤ i ≤ n),

(2) wiw1wj − wjw1wi (i, j ̸= 1, 0 ≤ i ̸= j ≤ n),

relative to the deg-lex order of words in the generators.

Proof. We need to prove that all compositions of polynomials (1)–(2)
are trivial. To do that, firstly, we consider the intersection compositions
of these polynomials. Hence, we have the following ambiguities w:

(1) ∩ (1) : w = w3
i (0 ≤ i ≤ n),

(1) ∩ (2) : w = w2
iw1wj (i, j ̸= 1, 0 ≤ i ̸= j ≤ n),

(2) ∩ (1) : w = wiw1w
2
j (i, j ̸= 1, 0 ≤ i ̸= j ≤ n),

(2) ∩ (2) : w = wiw1wjw1wk (i, j, k ̸= 1, 0 ≤ i < j < k ≤ n).

All these ambiguities are trivial. Let us show one of them.

(2) ∩ (2) : w = wiw1wjw1wk (i, j, k ̸= 1, 0 ≤ i < j < k ≤ n),

(f, g)w = (wiw1wj − wjw1wi)w1wk − wiw1(wjw1wk − wkw1wj)

= wiw1wjw1wk − wjw1wiw1wk − wiw1wjw1wk

+ wiw1wkw1wj

= wiw1wkw1wj − wjw1wiw1wk

(for i < k we have wiw1wk − wkw1wi)

≡ wkw1wiw1wj − wjw1wkw1wi

(for j < k we have wjw1wk − wkw1wj)
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≡ wkw1wjw1wi − wkw1wjw1wi ≡ 0.

It is seen that there are no inclusion compositions of polynomials
(1)–(2). Hence, the proof. �

By considering Lemma 2.1 and Theorem 2.3, we have the following
result.

Corollary 2.4. Let C(u) be a normal form of a word u ∈ A1. Then
C(u) has a form

w
ϵi1
i1

w
ϵi2
i2

· · ·wϵik
ik

w1w
ϵj1
j1

w
ϵj2
j2

· · ·wϵjt
jt

w1w
ϵs1
s1 w

ϵs2
s2 · · ·wϵsr

sr w1

· · ·w1w
ϵm1
m1 w

ϵm2
m2 · · ·wϵmp

mp w1w
ϵn1
n1 w

ϵn2
n2 · · ·wϵnl

nl ,

where ik<j1, jt<s1, mp<n1 and ϵq=0, 1 for q∈{i1, . . . , ik, j1, . . . , jt,
s1, . . . , sr,m1, . . . ,mp, n1, . . . , nl}.

2.2. Gröbner-Shirshov basis for the elliptic Weyl groups of

types A
(1,1)
1 and A

(1,1)∗
1 . The generators and relations of the elliptic

Weyl group W of type A
(1,1)
1 are given as follows ([13], [16]):

Generators: wi, w
∗
i (i = 0, 1),

Relations: w2
i = w∗

i
2 = 1 (i = 0, 1), w0w

∗
0w1w

∗
1 = 1.

The relation w0w
∗
0w1w

∗
1 = 1 is also written as w∗

0w1 = w0w
∗
1(⇔

w∗
1w0 = w1w

∗
0).

Now we order the generators as w∗
0 > w0 > w∗

1 > w1. Therefore, we
have the following result.

Theorem 2.5. A Gröbner-Shirshov basis of the elliptic Weyl group W

of type A
(1,1)
1 consists of the following polynomials:

(1) w2
0 − 1, (2) w2

1 − 1, (3) w∗
0
2 − 1,

(4) w∗
1
2 − 1, (5) w∗

0w1 − w0w
∗
1 , (6) w∗

0w0 − w1w
∗
1 ,

relative to deg-lex order of words in the generators.

Proof. We need to prove that all compositions of polynomials (1)–(6)
are trivial. To do that, firstly, we consider the intersection compositions
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of these polynomials. Thus we have the following ambiguities:

(1) ∩ (1) : w = w3
0, (2) ∩ (2) : w = w3

1, (3) ∩ (3) : w = w∗
0
3,

(4) ∩ (4) : w = w∗
1
3, (3) ∩ (5) : w = w∗

0
2w1, (5) ∩ (2) : w = w∗

0w
2
1,

(3) ∩ (6) : w = w∗
0
2w0, (6) ∩ (1) : w = w∗

0w
2
0.

All of these ambiguities are trivial. Let us show some of them.

(1) ∩ (1) : w = w3
0,

(f, g)w = (w2
0 − 1)w0 − w0(w

2
0 − 1)

= w3
0 − w0 − w3

0 + w0 ≡ 0.

(3) ∩ (5) : w = w∗
0
2w1,

(f, g)w = (w∗
0
2 − 1)w1 − w∗

0(w
∗
0w1 − w0w

∗
1)

= w∗
0
2w1 − w1 − w∗

0
2w1 + w∗

0w0w
∗
1

= w∗
0w0w

∗
1 − w1 ≡ w1w

∗
1
2 − w1 ≡ 0.

It is seen that there are no inclusion compositions of polynomials
(1)–(6). Hence, the proof. �

By Lemma 2.1 and Theorem 2.5, we have the following result.

Corollary 2.6. Let C(u) be a normal form of a word u ∈ A
(1,1)
1 . Then

C(u) has a form U1(w
∗
0)

n1(w∗
1)

n1
′
U2(w

∗
0)

n2(w∗
1)

n2
′

· · ·Uk(w
∗
0)

nk(w∗
1)

nk
′

,

where ni, ni
′
= 0, 1 and Ui = w

ϵi1
0 w

δi1
1 w

ϵi2
0 w

δi2
1 · · ·wϵis

0 w
δis
1 , where

ϵij , δij = 0, 1 for 1 ≤ i ≤ k and 1 ≤ j ≤ s.

Another elliptic Weyl group A
(1,1)∗
1 has the following generators and

relations:
Generators: w0, w1 w∗

1 ,
Relations: w2

0 = w2
1 = w∗

1
2 = (w0w1w

∗
1)

2 = 1.

This Weyl group is obtained from the Weyl group of type A
(1,1)
1 by

removing one generator w∗
0 .

Now we order the generators as w0 > w∗
1 > w1. According to this

order, we have the following result, the proof of which can be done
easily and similarly to the proof of Theorem 2.5.
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Theorem 2.7. A Gröbner-Shirshov basis of the elliptic Weyl group W

of type A
(1,1)∗
1 consists of the following polynomials:

(1) w2
0−1, (2) w2

1−1, (3) w∗
1
2−1, (4) w0w1w

∗
1−w∗

1w1w0,

relative to deg-lex order of words in the generators.

By Lemma 2.1 and Theorem 2.7, we have the following result.

Corollary 2.8. Let C(u) be a normal form of a word u ∈ A
(1,1)∗
1 . Then

C(u) has a form U1(w
∗
1)

n1U2(w
∗
1)

n2 · · ·Ut(w
∗
1)

nt , where ni = 0, 1 and

Ui = w
ϵi1
0 w

δi1
1 w

ϵi2
0 w

δi2
1 · · ·wϵip

0 w
δip
1 , where ϵij , δij = 0, 1, for 1 ≤ i ≤ t

and 1 ≤ j ≤ p.

2.3. Gröbner-Shirshov basis for the 2-extended affine Weyl

group W̃ of type A
(1,1)
2 . The Weyl groups, the elliptic Weyl group of

type A
(1,1)
2 in [18] and the 2-extended affine Weyl group of type A

(1,1)
2

in this paper are isomorphic, but their generator systems are different,
and the latter is obtained by removing two generators from the former.

Proposition 2.9. [15]. The 2-extended affine Weyl group W̃ of type

A
(1,1)
2 is presented as follows:

Generators: wi (0 ≤ i ≤ 3),
Relations: w2

i = 1 (0 ≤ i ≤ 3),

w0w1w0 = w1w0w1, w0w2w0 = w2w0w2,

w1w2w1 = w2w1w2, w1w3w1 = w3w1w3,

w2w3w2 = w3w2w3, w0w1w0w2w3 = w3w1w0w2w0.

Let us order the generators as w0 > w1 > w2 > w3. Now we have
the following result.
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Theorem 2.10. A Gröbner-Shirshov basis of the 2-extended affine

Weyl group W̃ of type A
(1,1)
2 consists of the following polynomials:

(1) w2
0 − 1, (2) w2

1 − 1, (3) w2
2 − 1, (4) w2

3 − 1,

(5) w0w1w0 − w1w0w1, (6) w0w2w0 − w2w0w2,

(7) w1w2w1 − w2w1w2, (8) w1w3w1 − w3w1w3,

(9) w2w3w2 − w3w2w3, (10) w0w1w0w2w3 − w3w1w0w2w0,

(11) w0w3w1w3w2 − w1w3w2w3w0,

(12) w1w0w1w3w2 − w3w1w2w0w3,

relative to deg-lex order of words in the generators.

Proof. We need to prove that all compositions of polynomials (1)–
(12) are trivial. To do that, firstly, we consider the intersection compo-
sitions of these polynomials. Thus we have the following ambiguities:

(1) ∩ (1) : w = w3
0, (1) ∩ (5) : w = w2

0w1w0,

(1) ∩ (6) : w = w2
0w2w0,

(1) ∩ (10) : w = w2
0w1w0w2w3, (1) ∩ (11) : w = w2

0w3w1w3w2,

(2) ∩ (2) : w = w3
1, (2) ∩ (7) : w = w2

1w2w1,

(2) ∩ (8) : w = w2
1w3w1, (2) ∩ (12) : w = w2

1w0w1w3w2,

(3) ∩ (3) : w = w3
2, (3) ∩ (9) : w = w2

2w3w2,

(4) ∩ (4) : w = w3
3, (5) ∩ (1) : w = w0w1w

2
0,

(5) ∩ (5) : w = w0w1w0w1w0, (5) ∩ (6) : w = w0w1w0w2w0,

(5) ∩ (10) : w = w0w1w0w1w0w2w3,

(5) ∩ (11) : w = w0w1w0w3w1w3w2,

(6) ∩ (1) : w = w0w2w
2
0, (6) ∩ (5) : w = w0w2w0w1w0,

(6) ∩ (6) : w = w0w2w0w2w0, (6) ∩ (10) : w = w0w2w0w1w0w2w3,

(6) ∩ (11) : w = w0w2w0w3w1w3w2, (7) ∩ (2) : w = w1w2w
2
1,

(7) ∩ (7) : w = w1w2w1w2w1, (7) ∩ (8) : w = w1w2w1w3w1,

(7) ∩ (12) : w = w1w2w1w0w1w3w2, (8) ∩ (2) : w = w1w3w
2
1,

(8) ∩ (7) : w = w1w3w1w2w1, (8) ∩ (8) : w = w1w3w1w3w1,

(8) ∩ (12) : w = w1w3w1w0w1w3w2, (9) ∩ (3) : w = w2w3w
2
2,
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(9) ∩ (9) : w = w2w3w2w3w2, (10) ∩ (4) : w = w0w1w0w2w
2
3,

(11) ∩ (3) : w = w0w3w1w3w
2
2, (11) ∩ (9) : w = w0w3w1w3w2w3w2,

(12) ∩ (3) : w = w1w0w1w3w
2
2, (12) ∩ (9) : w = w1w0w1w3w2w3w2.

All of these ambiguities are trivial. Let us show some of them.

(2) ∩ (7) : w = w2
1w2w1,

(f, g)w = (w2
1 − 1)w2w1 − w1(w1w2w1 − w2w1w2)

= w2
1w2w1 − w2w1 − w2

1w2w1 + w1w2w1w2

= w1w2w1w2 − w2w1 ≡ w2w1w
2
2 − w2w1 ≡ 0.

(12) ∩ (9) : w = w1w0w1w3w2w3w2,

(f, g)w = (w1w0w1w3w2 − w3w1w2w0w3)w3w2

− w1w0w1w3(w2w3w2 − w3w2w3)

= w1w0w1w3w2w3w2 − w3w1w2w0w
2
3w2

− w1w0w1w3w2w3w2 + w1w0w1w
2
3w2w3

≡ w1w0w1w2w3 − w3w1w2w0w2 ≡ w3w1w2w0w2

− w3w1w2w0w2 ≡ 0.

Now we consider the ambiguity (5)∩ (6) : w = w0w1w0w2w0. Then we
get

(f, g)w = (w0w1w0 − w1w0w1)w2w0 − w0w1(w0w2w0 − w2w0w2)

= w0w1w0w2w0−w1w0w1w2w0−w0w1w0w2w0+w0w1w2w0w2

= w0w1w2w0w2 − w1w0w1w2w0.

The polynomial w0w1w2w0w2 −w1w0w1w2w0 is written as the relator
w0w1w2w0w2 = w1w0w1w2w0. Since we have studied group structure
and we have the relator w2

0 = 1, we can multiply both sides of this
relation by w0. Hence, we obtain the relation w0w1w2w0w2w0 =
w1w0w1w2, and thus the polynomial w0w1w2w0w2w0 − w1w0w1w2.
Then we get

w0w1w2w0w2w0 − w1w0w1w2 ≡ w0w1w
2
2w0w2 − w1w0w1w2

≡ w0w1w0w2 − w1w0w1w2

≡ w1w0w1w2 − w1w0w1w2 ≡ 0.
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The ambiguities (5)∩ (11), (6)∩ (5), (6)∩ (10), (6)∩ (11), (7)∩ (8), (7)∩
(12), (8)∩ (7), (8)∩ (12), (11)∩ (3), (11)∩ (9), (12)∩ (3) are also trivial
by the same process.

Now we check inclusion compositions of polynomials (1)–(12). In
this case, we have one inclusion composition (5) ∪ (10) : w =
w0w1w0w2w3 which is trivial. Let us show it.

(5) ∪ (10) : w = w0w1w0w2w3,

(f, g)w = (w0w1w0 − w1w0w1)w2w3

− 1(w0w1w0w2w3 − w3w1w0w2w0)

= w0w1w0w2w3 − w1w0w1w2w3

− w0w1w0w2w3 + w3w1w0w2w0

= w3w1w0w2w0 − w1w0w1w2w3

≡ w3w1w0w2w0 − w3w1w0w2w0 ≡ 0.

Hence, the proof. �

By considering Theorems 2.3, 2.5, 2.7 and 2.10, we have the following
result.

Corollary 2.11. The word problem for the n-extended affine Weyl

group of type A1, elliptic Weyl groups of types A
(1,1)
1 , A

(1,1)∗

1 and the

2-extended affine Weyl group of type A
(1,1)
2 is solvable.

Acknowledgments. The authors would like to thank the referee
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7. L.A. Bokut and A. Vesnin, Gröbner-Shirshov bases for some Braid groups,

J. Symb. Comp. 41 (2006), 357–371.

8. B. Buchberger, An algorithm for finding a basis for the residue class ring of

a zero-dimensional ideal, Ph.D. thesis, University of Innsbruck, Innsbruck, Austria,
1965.

9. Y. Chen and C. Zhong, Gröbner-Shirshov bases for HNN extentions of groups

and for the alternating group, Comm. Alg. 36 (2008), 94–103.
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