
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 45, Number 4, 2015

ALL FINITE AUTOMORPHIC LOOPS HAVE THE
ELEMENTWISE LAGRANGE PROPERTY

PIROSKA CSÖRGŐ

ABSTRACT. An automorphic loop (or A-loop) is a loop
whose inner mappings are automorphisms. An open problem
was: Does every finite automorphic loop have the element-
wise Lagrange property? We give a positive answer to this
problem.

1. Introduction. A quasigroup Q that possesses an element 1 sat-
isfying 1x = x1 = x for every x ∈ Q is called a loop with neutral ele-
ment 1. The mappings La(x) = ax (left translation) and Ra(x) = xa
(right translation) are permutations of Q for every a ∈ Q. The per-
mutation group generated by left and right translations Mlt (Q) =
⟨La, Ra | a ∈ Q⟩ is called the multiplication group of Q. The inner
mapping group, Inn (Q) is defined as the stabilizer of 1 in Mlt (Q). A
loop Q is commutative if Lx = Rx for every x ∈ Q.

A loop Q is an automorphic loop (or A-loop) if every inner mapping
of Q is an automorphism of Q, that is, Inn (Q) ≤ Aut (Q). Thus, the
class of A-loops, which is certainly not the class of all loops, includes
for example groups, commutative Moufang loops [2].

The study of A-loops was initiated by Bruck and Paige [3]. Further
remarkable results concerning A-loops can be found in [7, 9]. In [6],
Jedlička, Kinyon and Vojtěchovský studied the structural properties
of commutative A-loops. Among other results, they examined the
commutative A-loops of odd order. One of their main results is the
odd order theorem: every commutative A-loop of odd order is solvable
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([6, Theorem 3.12]). They showed the Lagrange and Cauchy theorems
for commutative A-loops of odd order ([6, Propositions 3.6 and 3.7]).

In [4, 8], the authors showed the nilpotency of commutative auto-
morphic p-loops of odd order and that their multiplication groups are
p-groups. A new result is the solvability of all automorphic loops of
odd order (see [10]).

Bruck and Paige [3] established the power associativity of A-loops,
that is, each 1-generated subloop ⟨a⟩ is, in fact, a cyclic group. This
makes sense to study the following open problem: Does every finite
automorphic loop have the elementwise Lagrange property?

We give a positive answer to this problem. We are working in the
multiplication group of the automorphic loop. Our proof is completely
group theoretical. We prove our result by applying the theory of con-
nected transversals. This concept was introduced by Niemenmaa and
Kepka [11]. Using their characterization theorem, we can transform
loop theoretical problems into group theoretical problems.

2. Basic definitions and results. For the basic concepts of loop
theory we refer to Bruck [1]. Here we review some definitions, notations
and results.

Let Q be a loop. Set A = {Lc | c ∈ Q} and B = {Rd | d ∈ Q}.
Then A and B are left transversals to Inn (Q) in Mlt (Q), ⟨A,B⟩ =
Mlt (Q), [A,B] ≤ Inn (Q) and coreMlt (Q)Inn (Q) = 1 (i.e., the largest

normal subgroup of Mlt (Q) in Inn (Q) is trivial). As a consequence,
A ∩ Inn (Q) = B ∩ Inn (Q) = 1 holds.

Conversely, consider a group G with the following properties: H is
a subgroup of G, A and B are left transversals to H in G. A and B
are H-connected transversals by definition, if [A,B] ≤ H.

By a result of Kepka and Niemenmaa [11], the above two situations
are equivalent:

Theorem 2.1. A group G is isomorphic to the multiplication group of
a loop if and only if there is a subgroup H, for which there exist H-
connected transversals A and B such that ⟨A,B⟩ = G and coreGH = 1.

Let Q be a loop and S a normal subloop of Q. By [5, Proposition
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1.2] we have Inn (Q) acts on S. Using Mlt (Q) = A · Inn (Q), it follows
that S is a block of Mlt (Q) which contains the neutral element. Hence,
S corresponds to the subgroup M(S)Inn (Q) where M(S) = ⟨Ls, Rs |
s ∈ S⟩. Put K(S) = coreMlt (Q)

(M(S)Inn (Q)). Denote by f the

natural homomorphism of Mlt (Q) onto Mlt (Q)/K(S). Then f(A)
and f(B) are f(Inn (Q))-connected transversals in Mlt (Q)/K(S) (see
[11, Lemma 2.5 and Lemma 2.8]) and for the multiplication group of
the factorloop Q/S the following is true: Mlt (Q/S) ∼= Mlt (Q)/K(S).

The permutation group generated by all left translations is called the
left multiplication group, and we shall denote it by L = L(Q) = ⟨A⟩.
In a similar way, the right multiplication group R = R(Q) = ⟨B⟩
is generated by all right translations. Let L1 = L ∩ Inn (Q), and
R1 = R∩ Inn (Q).

Lemma 2.2. Aut (Q) ∩ Inn (Q) = Inn (Q) ∩NMlt (Q)(A) = Inn (Q) ∩
NMlt (Q)

(B), i.e.,

Inn (Q) ≤ Aut (Q) if and only if

Inn (Q) ≤ NMlt (Q)(A) ∩NMlt (Q)(B).

Proof. See [4, Lemma 2.3]. �

3. A-loops. Let Q be an A-loop. A = {Lx | x ∈ Q}, B =
{Rx | x ∈ Q}. Denote G = Mlt (Q), H = Inn (Q). We have
G = ⟨A,B⟩, [A,B] ≤ H, coreGH = 1 (see Theorem 2.1). As
H ≤ Aut (Q),H ≤ NG(A) ∩NG(B) by Lemma 2.2.

Lemma 3.1. Let h ∈ H, α ∈ A be such that hα ∈ H. Then α ∈ CG(h).
(Similarly, if h ∈ H, β ∈ B such that hβ ∈ H. Then β ∈ CG(h).)

Proof. h ∈ NG(A) implies αh = α1 with α1 ∈ A. Hence, hα =
hα−1

1 α ∈ H. As A is a left transversal to H, α = α1 follows, i.e.,
α ∈ CG(h).

(In a similar way β ∈ CG(h).) �

Lemma 3.2. H ∩ CG(A) = H ∩ CG(B).

Proof. From Lemma 3.1, it is obvious. �
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Proof. Denote a = Lx and b = Rx. We have b = ah with h ∈ H.
As [a, b] ∈ H, ah ∈ aH holds, whence ha ∈ H. By using Lemma 3.1, it
follows that a ∈ CG(h); consequently, a ∈ CG(b) is true. �

Theorem 3.3. Let Q be a finite automorphic loop. Then Q has the
elementwise Lagrange property, i.e., the order of any element of Q is
the divisor of the order of Q.

Proof. Assume there is an element x of Q \ {1} such that o(x) = t
and t is not the divisor of |Q|.

Let G = MltQ, H = InnQ. We have |Q| = |G : H|.
Let a = Lx, b = Rx. As o(x) = t, t is the minimal natural number

that at ∈ H and bt ∈ H. We have that t is not the divisor of |Q|,
whence it follows that there exists a prime divisor p of t such that
t = rpl with (r, p) = 1, and pl is not the divisor of |Q|.

Let P0 ∈ Sylp(H) and P ∈ Sylp(G) such that P ≥ P0. We have

|P : P0| = pk with k ≥ 0; hence, pk is the divisor of |G : H|.
Consequently, k < l.

Clearly, there exists a natural number j such that aj ∈ G \H, aj is

a p-element and pl is the minimal power of p with ajp
l ∈ H. By using

Sylow’s theorems, we get that there exists g0 ∈ G such that (aj)g0 ∈ P .
As |P : P ∩ H| = |P : P0| = pk, we have (ajp

m

)g0 ∈ P ∩ H for some
0 ≤ m ≤ k. Since G = BH, then g0 = b0h0 with b0 ∈ B, h0 ∈ H.
Hence, (ajp

m

)b0 ∈ H.

Obviously ab0 ∈ CG(a
jpm

)b0 . [A,B] ≤ H implies ab0 = ah with

h ∈ H, and (ajp
m

)b0a = (ajp
m

)b0h
−1 ∈ H follows. Applying Lemma 3.1,

we get a ∈ CG(a
jpm

)b0 .

As 0 ≤ m ≤ k < l and pl is the minimal power of p such that

ajp
l ∈ H, we get (ajp

m

)b0 ̸= e; consequently, CG(a) ∩ H has a p-
element.

Let P ∗ be an abelian p-subgroup of maximal order in H such that
a∈CG(P

∗). Since aj ∈ CG(P
∗) and aj is a p-element it follows that

T = ⟨P ∗, aj⟩ is an abelian p-subgroup. By using the properties of aj

we can conclude |T : T ∩H| = pl. Sylow’s theorem implies that there
exists g1 ∈ G such that T g1 ≤ P .
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Clearly, ag1 ∈ CG(T
g1). Since |P : P ∩H| = pk and P ∩H = P0 ∈

Sylp(H) it follows that |T g1 : T g1 ∩ H| is a divisor of pk. G = BH
implies g1 = b1h1 with b1 ∈ B, h1 ∈ H. We have ag1 ∈ CG(T

g1 ∩H),

whence ab1 ∈ CG(T
g1 ∩ H)h

−1
1 . Using ab1 = ah∗ and h∗ ∈ H, we get

(T g1 ∩H)h
−1
1 a = (T g1 ∩H)h

−1
1 (h∗)−1 ≤ H. Again applying Lemma 3.1,

it follows that a ∈ CG(T
g1 ∩H)h

−1
1 .

As |T : T∩H| = pl and |T g1 : T g1∩H| is a divisor of pk, k < l implies

|T g1 ∩H| 	 |T ∩H|. Hence, |(T g1 ∩H)h
−1
1 | 	 |T ∩H| ≥ |P ∗|. We have

a ∈ CG(T
g1 ∩H)h

−1
1 , which contradicts the maximality of |P ∗|. �
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