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NORM ESTIMATES FOR FUNCTIONS OF TWO
NON-COMMUTING OPERATORS

MICHAEL GIL’

ABSTRACT. Analytic functions of two non-commuting
bounded operators in a Banach space are considered. Sharp
norm estimates are established. Applications to operator
equations and differential equations in a Banach space are
discussed.

1. Introduction and statement of the main result. In the book
[9], Gel’fand and Shilov have established an estimate for the norm of a
regular matrix-valued function in connection with their investigations
of partial differential equations. However, that estimate is not sharp,
and it is not attained for any matrix. The problem of obtaining a sharp
estimate for the norm of a matrix-valued function has been repeatedly
discussed in the literature, cf., [3]. In the paper [10] (see also [11])
the author has derived an estimate for regular matrix-valued functions,
which is attained in the case of normal matrices. In [16], the results
of the paper [10] were extended to functions of two noncommuting
matrices. The aim of this paper is to generalize the main result from
[16] to some classes of functions of two noncommuting operators in a
Banach space. It should be noted that functions of many operators were
investigated by many mathematicians, (cf., [1, 21, 24] and references
therein) however the norm estimates were not considered, but as
it is well-known, operator valued functions give us representations
of solutions of various differential, difference equations and operator
equations. This fact allows us to investigate stability, well-posedness
and perturbations of these equations by norm estimates for operator
valued functions, cf., [3].

Let X be a complex Banach space with a Schauder basis {dk}, the
identity operator I and a norm ∥.∥. For a linear operator A, ∥A∥ is the
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operator norm, σ(A) is the spectrum, Rz(A) = (A− zI)−1 (z /∈ σ(A))
is the resolvent, rs(A) denotes the spectral radius.

Everywhere below, A, Ã and K are bounded linear operators in X.

Let ΩA and ΩÃ be open simple connected supersets of σ(A) and σ(Ã),
respectively, and f be a scalar function analytic on ΩA×ΩÃ. We define
the operator valued function

(1.1) F (f,A,K, Ã) := − 1

4π2

∫
CÃ

∫
CA

f(z, w)Rz(A)KRw(Ã) dw dz,

where CA ⊂ ΩA, CÃ ⊂ ΩÃ are closed contours surrounding σ(A) and

σ(Ã), respectively.

Such functions play an essential role in the theory of operator
equations. More specifically, consider the operator equation

(1.2)

m1∑
j=0

m2∑
k=0

cjkA
jZÃk = K (m1,m2 <∞),

where Z should be found and cjk are complex numbers. Put

p(z, w) =

m1∑
j=0

m2∑
k=0

cjkz
jw̃k.

Then by Theorem 3.1 from [3, Chapter 1] a unique solution of equa-
tion (1.2) is given by the formula

(1.3) Z = F

(
1

p(z, w)
, A,K, Ã

)
,

provided p(z, w) ̸= 0 (z ∈ σ(A), w ∈ σ(B)). Equations of the type (1.2)
naturally arose in various applications, cf., [3, 19, 20], for example,
the Lyapunov equation A∗Z + ZA = K, cf., [3], and the Lyapunov
type equation

(1.4) Z −A∗ZA = K

play important roles in the theories of differential and difference equa-
tions, respectively, cf., [13]. These equations recently attracted the
attention of many mathematicians. Mainly numerical methods for the
solutions of operator and matrix equations were developed, cf., [27].
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In the paper [4], reflexive and anti-reflexive solutions of a linear
equation were explored. Furthermore, suppose that

(1.5) T (t) := − 1

4π2

∫
CÃ

∫
CA

et(z+w)Rz(A)KRw(Ã) dw dz.

Take into account that zRz(A) = ARz(A)−I. Then simple calculations
show that

T ′(t) = − 1

4π2

∫
CÃ

∫
CA

(z + w)et(z+w)Rz(A)KRw(Ã) dw dz

= − 1

4π2

∫
CÃ

∫
CA

et(z+w)[ARz(A)KRw(Ã)

+Rz(A)KRw(Ã)Ã] dw dz.

So

(1.6) T ′(t) = AT (t) + T (t)Ã.

Such equations arise in numerous applications, in particular, in the
theory of vector differential equations, cf., [18, page 509], [3, Section
VI.4, equation (4.15) and Section VI.2], [8, Section XV.10]. The
literature on operator equations is rather rich. In particular, the paper
[23] deals with necessary and sufficient conditions for the existence of
solutions to systems of the general solution to a system of adjointable
operator equations over Hilbert C∗ modules.

The paper [6] should be mentioned. In that paper, nonlinear
operator equations of the form ABA = A2 and BAB = B2 are
considered. For other recent results on operator equations see [2, 5].
Certainly, we could not survey the whole object here. In the above-
mentioned papers, no estimates were established for solutions of the
equations considered above. In the present paper, sharp norm estimates
for functions of the type (1.1) are established. They give us estimates
for solutions of equations (1.2) and (1.6).

Let A and Ã be represented in basis {dk} by matrices (ajk)
∞
j,k=1 and

(ãjk)
∞
j,k=1, respectively. So A = S +W where S = diag [a11, a22, . . .]

and W := A − S is the off diagonal matrix. That is, the entries wjk

of W are wjk = ajk (j ̸= k) and wjj = 0 (j, k = 1, 2, . . .). Similarly,

Ã = S̃ + W̃ , where S̃, W̃ are the diagonal and off-diagonal parts of Ã,
respectively. We put |A| = (|ajk|)∞j,l=1, i.e., |A| is the matrix whose



930 MICHAEL GIL’

entries are absolute values of A in basis {dk}. We also write C ≥ 0 if
all the entries of a matrix C are nonnegative. In the same vein, we have
the symbols |h|, h ≥ 0 and h ≤ g for vectors h, g ∈ X. Denote by co (S)

and co (S̃) the closed convex hulls of the diagonal entries a11, a22, . . .
and ã11, ã22, . . ., respectively, and let

ηj,k :=
1

k!j!
sup

z∈co (S)

w∈co (S̃)

∣∣∣∣∂j+kf(z, w)

∂zj∂wk

∣∣∣∣ (j, k = 0, 1, 2, . . .).

Finally, put Ω(r) := {z ∈ C : |z| ≤ r} for an r > 0. Now we are in a
position to formulate our main result.

Theorem 1.1. Let f(z, w) be holomorphic on a neighborhood of

Ω(rA)×Ω(rÃ) for some rA > rs(S)+rs(|W |) and rÃ > rs(S̃)+rs(|W̃ |).
Then

(1.7) |F (A,K, Ã)| ≤
∞∑

j,k=0

ηj,k|W |j |K||W̃ |k.

The proof of this theorem is presented in the next section. Below
we check that the series in (1.7) really strongly converges. Note
that estimates for functions of two commuting infinite matrices were
established in [15].

Theorem 1.1 supplements the recent results on matrix valued func-
tions [7, 14, 25]. About the recent results on infinite matrices and
their applications, see the interesting paper [26].

2. Proof of Theorem 1.1.

Lemma 2.1. Under the hypothesis of Theorem 1.1, let A and Ã have
n-dimensional ranges (n <∞). Then inequality (1.7) is valid.

Proof. We have Rλ(A) = (S +W − Iλ)−1 = (I + Rλ(S)W )Rλ(S).
Consequently,

Rλ(A) =
∞∑
k=0

(−1)k(Rλ(S)W )kRλ(S),
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provided the spectral radius rs(Rλ(S)W ) of the matrix Rλ(S)W is less
than one. The entries of this matrix are

ajk
ajj − λ

(λ ̸= ajj , j ̸= k)

and the diagonal entries are zero. Clearly,

|Rλ(S)W | ≤ |W |
mink |akk − λ|

.

But |akk − λ| ≥ |λ| − |akk| ≥ |λ| − rs(S), provided |λ| > rs(S). So in
this case

|Rλ(S)W | ≤ |W |
|λ| − rs(S)

.

Therefore, if |λ| > rs(|W |) + rs(S), then

rs(Rλ(S)W ) ≤ rs(|W |)
|λ| − rs(S)

< 1

and the series
∞∑
k=0

(Rλ(S)W )k(−1)k

converges. Similarly,

Rλ(Ã) =
∞∑
k=0

(−1)k(Rλ(S̃)W̃ )kRλ(S̃),

provided |λ| > rs(|W̃ |) + rs(S̃). So by (1.1) we have

(2.1) F (A,K, Ã) =
∞∑

m,k=0

Cmk

where

Cmk = (−1)k+m+1 1

4π2

∫
|w|=rÃ

∫
|λ|=rA

f(λ,w)(Rλ(S)W )mRλ(S)K

× (Rw(S̃)W̃ )kRw(S̃) dλ dw.
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Since S, S̃ are diagonal matrices with respect to basis {dk}, we can
write out

Rλ(S) =
n∑

j=1

Qj

ajj − λ
, Rλ(S̃) =

n∑
j=1

Qj

ãjj − λ
,

where Qjh = hjdj for a

h =
∞∑
k=1

hkdk ∈ X.

Consequently,

Cmk=

n∑
i1=1

Qi1W

n∑
i2=1

Qi2W · · ·W
n∑

im+1=1

Qim+1K

n∑
j1=1

Qj1W̃

n∑
j2=1

Qj2W̃ · · ·

W̃
n∑

jk+1=1

Qjk+1
Ii1,i2,...,im+1

j1j2...jk+1

Here

Ii1,i2,...,im+1

j1j2...jk+1

=
(−1)k+m+1

4π2∫
|w|=rÃ

∫
|λ|=rA

f(λ,w) dλ
(ai1i1−λ)···(aim+1im+1

−λ)(ãj1j1−w)...(ãjk+1jk+1
−w) .

As it is proved in [12],

|Ii1,i2,...,im+1

j1j2...jk+1

| ≤ ηm,k.

Hence,

|Cmk| ≤ ηmk

n∑
j1=1

Qj1 |W |
n∑

j2=1

Qj2 |W | · · ·

|W |
n∑

jk=1

Qjm |K|
n∑

l1=1

Qll |W̃ | . . . |W̃ |
n∑

lk=1

Qlm .

Thus, |Cmk| ≤ ηmk|W |m|K||W̃ |k. Now (2.1) implies the required
result. �
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Proof of Theorem 1.1. Passing to the limit as n→ ∞ in the previous
lemma we get required result due to the Banach-Steinhaus theorem. �

3. Norm estimates. In this section the norm ∥.∥ in X is a lattice
norm. That is, ∥f∥ ≤ ∥h∥ whenever |f | ≤ |h| and ∥A∥ ≤ ∥|A|∥.
Theorem 1.1 implies

Corollary 3.1. Under the hypothesis of Theorem 1.1, we have

(3.1) ∥F (A,K, Ã)∥ ≤ ∥|K|∥
∞∑

j,k=0

ηj,k∥|W |j∥∥|W̃ |k∥.

If A and Ã are diagonal: W = W̃ = 0, inequality (3.1) takes the
form

∥F (A,K, Ã)∥ ≤ ∥|K|∥ sup
z∈co (S)

w∈co (S̃)

|f(z, w)|.

Furthermore, since |W | ≤ |A|, from (3.1), it follows

∥|F (A,K, Ã)|∥ ≤ ∥|K|∥
∞∑

j,k=0

ηj,k∥|W |∥j∥∥|W̃ |∥k(3.2)

≤ ∥|K|∥
∞∑

j,k=0

ηj,k∥|A|∥j∥|Ã|∥k.(3.3)

For instance, let X = lp for some integer p ≥ 2, and let W and W̃ be
Hille-Tamarkin matrices, cf., [22]. Namely,
(3.4)

Mp(W ) :=

( ∞∑
j=1

[ ∞∑
k=1, k ̸=j

|ajk|q
]p/q)1/p

<∞ and Mp(W̃ ) <∞

with 1/p+1/q = 1. So, under (3.4), A = (ãjk) and Ã = (ãjk) represent

bounded linear operators in lp, provided S and S̃ are bounded. As it
is well-known, ∥|W |∥ ≤Mp(|W |) =Mp(W ), cf., [22]. Now (3.2) yields
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Corollary 3.2. Under the hypothesis of Theorem 1.1, let X = lp, 2 ≤
p <∞, and conditions (3.4) hold. Then

∥F (A,K, Ã)∥ ≤ ∥|K|∥∥
∞∑

j,k=0

ηj,kM
j
p (W )Mk

p (W̃ ),

provided the series converges.

4. Functions of operators in a Hilbert space. Let X = H be
a separable Hilbert space with a scalar product (., .) and the norm

∥.∥ =
√
(., .). In this section we improve Theorem 1.1 in the case of

so-called triagonalizable operators acting in H.

Let SNp be the Schatten-von Neumann ideal of operators K in H

with the finite norm Np(K) := [Trace (KK∗)p/2]1/p (1 ≤ p < ∞). So
SN2 is the ideal of Hilbert-Schmidt operators, and SN1 is the ideal of
nuclear operators.

Recall that a linear operator V is called quasinilpotent if σ(V ) = {0}.
A compact quasinilpotent operator will be called a Volterra operator.
Let E(t) be an orthogonal resolution of the identity in H, defined on
a real segment [a, b]. E is called a maximal resolution of the identity
(m.r.i.), if its every gap E(t0 + 0) − E(t0 − 0) (if it exists) is one-
dimensional, cf., [11]. We will say that a bounded linear operator A is
triangularizable, if there are an m.r.i. E(t), a normal operator D and a
Volterra one V , such that

(4.1) A = D + V,

and

(4.2) E(t)V E(t) = V E(t) and DE(t) = E(t)D (t ∈ [a, b]).

A triangularizable operator A has the property

(4.3) σ(A) = σ(D),

cf., [11, Lemma 7.5.1]. Each compact operator is triangularizable, and
each operator having the Schatten-von Neumann Hermitian component
is triangularizable; for more details, see [11, Chapter 7]. We will call
D and V the diagonal part and nilpotent part of A, respectively. We
have V ∈ SN2, provided AI = (A−A∗)/2i ∈ SN2 or AA∗ − I ∈ SN1.
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Indeed, due to [11, Lemma 7.7.2], we have

(4.4) N2(V ) = χ(A),

where

χ(A) :=

[
2N2

2 (AI)− 2
∞∑
k=1

|Imλk(A)|2
]1/2

, if AI ∈ SN2.

Due to [11, Lemma 7.15.2],

(4.5) N2(V ) = θ(A)

where

θ(A) :=

[
Trace (AA∗− I)−

∞∑
k=1

(|λk(A)|2− 1)

]1/2
, if AA∗− I ∈ SN1.

Moreover, due to [11, Lemmas 6.3.6 and 2.3.2], we can write
(4.6)

N2(V ) = g(A), where g(A) :=

[
N2

2 (A)−
∞∑
k=1

|λk(A)|2
]1/2

, if A ∈ SN2.

Obviously, χ(A) ≤
√
2N2(AI) and g2(A) ≤ N2

2 (A) − |TraceA2|. It is

not hard to show also that θ(A) ≤ 2
√

|Trace (AA∗ − I)|.

By co (A), we denote the closed convex hull of σ(A). Let f(z, w)

be regular on a neighborhood of co (A) × co (Ã), and let the numbers

ψjk = ψjk(f,A, Ã) be defined by

ψ00 = sup
z∈σ(A)

w∈σ(Ã)

|f(z, w)|;

ψjk =
1

(j!k!)3/2
sup

z∈co(A)

w∈co(Ã)

∣∣∣∣∂j+kf(z, w)

∂zk∂wj

∣∣∣∣;
ψ0j :=

1

(j!)3/2
sup

z∈σ(A)

w∈co (Ã)

∣∣∣∣∂jf(z, w)∂wj

∣∣∣∣,
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and

ψj0 :=
1

(j!)3/2
sup

z∈co (A)

w∈σ(Ã)

∣∣∣∣∂jf(z, w)∂zj

∣∣∣∣ (j, k ≥ 1).

Theorem 4.1. Let both A and Ã be triangularizable operators whose

nilpotent parts V and Ṽ are nonzero Hilbert-Schmidt operators. If, in

addition, f(z, w) is regular on a neighborhood of co (A)× co (Ã), then

∥F (f,A,K, Ã)∥ ≤ N2(K)
∞∑

j,k=0

ψjkN
j
2 (V )Nk

2 (Ṽ ).

If V = 0, Ṽ ̸= 0 is in SN2, and f(z, w) is regular on a neighborhood of

σ(A)× co (Ã), then

∥F (f,A,K, Ã)∥ ≤ N2(K)
∞∑
j=0

ψ0jN
j
2 (Ṽ ).

If both A and Ã are normal and f(z, w) is regular on a neighborhood

of σ(A)× σ(Ã), then

∥F (f,A,K, Ã)∥ ≤ N2(K) sup
z∈σ(A)

w∈σ(Ã)

|f(z, w)|.

For example, consider the equation

(4.7) AX −XÃ = K,

assuming that AI , ÃI = (Ã − Ã∗)/(2i) and K are Hilbert-Schmidt
operators, and

δ := dist (co (A), co (Ã)) > 0.

Take f(z, w) = 1
z−w . Then

ψjk ≤ (k + j)!

δj+k+1(k!j!)3/2
(j, k = 0, 1, . . . , n− 1).
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Hence, by Theorem 4.1 and (4.4), a solution of (4.7) satisfies the
inequality

∥X∥ ≤ N2(K)

∞∑
j,k=0

(k + j)!

δj+k+1(k!j!)3/2
χj(A)χk(Ã).

5. Proof of Theorem 4.1. First, let A and Ã have n-dimensional
ranges, n < ∞. Let e = {ek}nk=1 and ẽ = {ẽk}nk=1 be the orthogonal
normal bases of the triangular representation (Schur’s bases) to A and

Ã, respectively. So

Aek =
k∑

j=1

ajkej , Ãẽk =
k∑

j=1

ãjkẽj .

We can write

(5.1) A = D + V, Ã = D̃ + Ṽ ,

where D, D̃ are the diagonal parts, V and Ṽ are the nilpotent parts of

A and Ã, respectively. Namely,

Dek = λkek; V ek =
k−1∑
j=1

ajkej (λj ∈ σ(A)).

Similarly, D̃ and Ṽ are defined. Furthermore, let |V |e be the operator
whose entries in e = {ek} are the absolute values of the entries of the
matrix V . That is, (|V |eej , ek) = |(Vj , ek)| and

|V |e =
n∑

k=1

k−1∑
j=1

|ajk|(., ek)ej .

Similarly |Ṽ |ẽ is defined with respect to ẽ = {ẽk}. In addition, |K| is
defined by

|K|ẽj =
n∑

k=1

|(Kẽj , ek)|ek.

We need the following result proved in [16, Lemma 2.2].
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Lemma 5.1. Let A and Ã have range n <∞, and let f(z, w) be regular

on a neighborhood of co (A)× co (Ã). Then

∥F (f,A,K, Ã)∥ ≤ ∥|K|∥
n−1∑
j,k=0

√
k!j!ψjk∥|V |je∥∥ |Ṽ |kẽ∥.

Theorem 2.5.1 from [11] implies

(5.2) ∥V̂ k ∥ ≤ 1√
k!
Nk

2 (V̂ )

for any nilpotent matrix V̂ . Take into account that N2(|V |e) = N2(V ),
then

∥|V |ke∥ ≤ 1√
k!
N2(V ) (k = 1, . . . , n− 1).

A similar inequality holds for Ṽ . In addition,

N2
2 (|K|) =

n∑
j=1

∥|K|ẽj∥2 =
n∑

j=1

n∑
k=1

|(Kẽj , ek)|2

=

n∑
j=1

n∑
k=1

∥Kẽj∥2 = N2
2 (K).

Now the previous lemma yields the inequality

(5.3) ∥F (f,A,K, Ã)∥ ≤ N2(K)
n−1∑
j,k=0

ψjkN
j
2 (V )Nk

2 (Ṽ ).

Proof of Theorem 4.1. We need the following result proved in [17,
Lemma 2.2].

Lemma 5.2. Let A be a triangularizable operator. Then there is
a sequence of m-dimensional operators Bm (m = 1, 2, . . .) strongly
converging to A, such that σ(Bm) ⊆ σ(A). Moreover, the nilpotent
parts of Bm tend to the nilpotent part V of A in the operator norm.

This lemma and (5.3) prove the theorem. �
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