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ZEROS OF HIGH DERIVATIVES OF
THE RIEMANN ZETA FUNCTION

THOMAS BINDER, SEBASTIAN PAULI AND FILIP SAIDAK

ABSTRACT. We describe new zero-free regions for the
derivatives ζ(k)(s) of the Riemann zeta function, which take
the form of vertical strips in the right half-plane. We show
that the zeros located in the narrow complements of these
zero-free regions are simple and exhibit vertical periodicities
that enable one to give exact formulas for their number.

1. Introduction. In this paper, we investigate the distribution of
zeros of higher derivatives of the Riemann zeta function. In order to
put our main results in perspective, we first give a brief summary of
some of the most important results and outstanding conjectures in this
area.

Let s = σ+ it. For all k ∈ N, the kth derivative of the Riemann zeta
function ζ(k)(s) is

(1) ζ(k)(s) = (−1)k
∞∑

n=2

logk n

ns
, for σ > 1,

and can be extended to a meromorphic function on C, with a single
pole (of order k) at the point s = 1. However, unlike ζ(s) itself, the
functions ζ(k)(s) have neither Euler products nor functional equations.
Thus, their nontrivial zeros do not lie on a line but appear to be
distributed (seemingly at random) to the right of the critical line
σ = 1

2 . Speiser [8] was the first to show, in 1934, that the Riemann
hypothesis (RH) is equivalent to the fact that ζ ′(s) has no zeros with
0 < σ < 1

2 . Levinson and Montgomery [5] gave a simpler and more
instructive proof of this and also showed that ζ ′(s) can vanish on the
critical line only at a multiple zero of ζ(s), if ever such a zero exists.
They also showed, assuming the RH, that ζ(k)(s) has at most a finite
number of non-real zeros with σ < 1

2 , for k ≥ 1. For k = 1, they
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proved unconditionally that ζ ′(s) has only real zeros in the closed
half-plane σ ≤ 0. For k = 2 and k = 3, Yıldırım [14] established,
assuming the RH, that ζ(k)(s) has no zeros with 0 ≤ σ < 1

2 , and,
unconditionally, that both ζ ′′(s) and ζ ′′′(s) have exactly one pair of
nontrivial zeros with σ < 0. Namely, ζ ′′(s) has zeros at approximately
s = −0.35508433021 ± 3.590839324398i and ζ ′′′(s) at approximately
s = −2.110145792653± 2.58422477204i.

M=2
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Figure 1. Zeros of ζ′(s) in C, with the zero-free region.

In regions to the right of the critical line, i.e., for σ ≥ 1
2 , the total

number of zeros of ζ(k)(s) does not differ by much from the number of
zeros of ζ(s). In fact, if we let N(T ) and Nk(T ) denote the number of
such zeros ρ, with 0 ≤ ℑ(ρ) ≤ T , of ζ(s) and ζ(k)(s), respectively, then
according to a theorem of Berndt [1]

(2) Nk(T ) = N(T )− T

2π
log 2 +Ok(log T ),

for all k ≥ 1, where, by the classical Riemann-von Mangoldt formula
(see Landau [4]),

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).
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It should also be noted that most nontrivial zeros of ζ(k)(s) are
located relatively close to the line s = 1

2 + it. In fact, in recent years, in
a series of improvements, Soundararajan [7], Zhang [15] and Feng [2]
succeeded in showing (conditionally) that, for k = 1, a positive portion
of the zeros ρ of ζ ′(s) satisfies ℜ(ρ) < 1

2 + c/ log T . Nevertheless, for

all k ∈ N, many of the zeros of ζ(k)(s) lie much farther to the right,
even though their real parts can still be effectively bounded from above
by absolute constants (see Figure 1 for illustration of the bound in the
case k = 1). For k ≥ 3, such general upper bounds were first given by
Spira [9] in 1965, and they were later improved by Verma and Kaur
[13] (see Table 1):

ζ(k)(σ + it) ̸= 0 for σ > (1.13588 . . .)k + 2.

Table 1. Lower real bounds for zero-free regions in the right half-plane.

ζ ζ′ ζ′′ ζ(k) for k ≥ 3

Hadamard [3],
de la Vallée-Poussin [12] 1
Titchmarsh [11] E < 3
Spira [9] 7

4
k + 2

Verma and Kaur [13] (1.13588 . . .)k + 2
Skorokhodov [6] 2.93938 4.02853

In this work, we prove the existence of a sequence of zero-free regions
for ζ(k)(s), between the critical line ℜ(s) = 1

2 and the previously known
far-right zero-free region ℜ(s) > (1.13588 . . .)k + 2 (due to Verma
and Kaur [13], a bound that happens to be close to best possible).
Furthermore, we show that the zeros found in the strips between the
new zero free regions are simple and exhibit a vertical periodicity, which
also enables us to give exact formulas for their number.

2. Statement of main results. In what follows, we restrict our
treatment to the case k ≥ 3. To state our results precisely, we introduce
some notation and definitions. Let

Qk
n(s) := (log n)k/ns

denote the nth term of the Dirichlet series (1) for (−1)kζ(k)(s). All the
previously known zero-free regions for ζ(k)(s) have been obtained by
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Figure 2. Zeros of ζ(38)(s) in C, with zero-free regions (characterized by
the dominance of Q38

M (s) for M = 2 and 3).

finding solutions to∣∣∣ζ(k)(s)∣∣∣ = ∣∣∣∣ ∞∑
n=2

Qk
n(s)

∣∣∣∣ ≥ Qk
2(σ)−

∞∑
n=3

Qk
n(σ) > 0,

or some variation thereof (see [6, 11, 13]); that is, by finding the
regions of the complex plane where the term Qk

2(s) dominates all the
other terms of the expansion (1) of ζ(k)(s) (i.e., Qk

2(s) is greater in
modulus than the rest of the terms combined), because then, evidently,
ζ(k)(s) ̸= 0. However, Qk

2(s) is not always the dominant term; any other
term can not only be the largest in modulus, but takes the dominant
role as well. This is clear from the fact that |Qk

n(s)| = Qk
n(σ), viewed as

a function of n, has its global maximum at n = ek/σ. Using this simple
property, one can show the existence of regions where Qk

n(s) (for any
n ≥ 2) becomes the dominant term of (1), which then provides us with
a new zero-free region of ζ(k)(s), for each n ∈ N, for every sufficiently
large k.

Let us denote by Qk
M (s) the term of (1) which has the largest

modulus. If we fix some such M , then the moduli of the terms of (1)
will increase for m < M and decrease for m > M , in monotone fashion
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(see Section 3). Since no term Qk
M (s) can attain dominance on a line

where its absolute value is equal to that of another term (and by the
aforesaid property this can only happen when Qk

M (σ) = Qk
M+1(σ) or

Qk
M (σ) = Qk

M−1(σ)), it is reasonable to expect that the zeros of ζ(k)(s)
will be located close to the lines where this equality occurs. Thus, we
define

(3) qM :=
log

(
logM

log(M+1)

)
log

(
M

M+1

) ,

so that Qk
M (σ) = Qk

M+1(σ) whenever σ = qMk. (Note that q2 =
1.13588 . . ., q3 = 0.808484 . . ., q4 = 0.668855 . . ., where q2 is the
constant that appears in Table 1.) In the kσ-plane, σ = qMk defines a
line of slope qM .

Our first main result describes zero-free regions between these lines
for sufficiently large k:

Theorem 2.1. Let k ∈ N and u ∈ R>0 be a solution of

1− 1

eu − 1
− 1

eu

(
1 +

1

u

)
≥ 0.

(a) If q3k + 4 log 3 < q2k − 2, then ζ(k)(s) ̸= 0 for

q3k + 4 log 3 ≤ σ ≤ q2k − 2.

(b) If M ∈ N, M > 3 and qMk + (M + 1)u ≤ qM−1k − Mu, then
ζ(k)(s) ̸= 0 for

qMk + (M + 1)u ≤ σ ≤ qM−1k −Mu.

Remark 2.2. We have u = 1.1879426249 . . . .

Thus, the Mth zero-free region Sk
M of ζ(k)(s) is the open set

Sk
2 :=

{
σ + it | q2k + 2 < σ < q2k − 2

}
,

Sk
3 :=

{
σ + it | q3k − 4u < σ < q3k + 4 log 3

}
,

Sk
M :=

{
σ + it | qMk − (M + 1)u < σ < qMk + (M + 1)u

}
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Figure 3. Zero-free regions and horizontal zero-free line segments for ζ(100),
ζ(200), ζ(400) and ζ(800).

for M > 3. So the zero-free regions are the connected components that
remain after one removes Sk

M from the right half-plane.

Another way to visualize the strips Sk
M is to consider them in the

kσ-plane (see Figure 4). In this representation, the wedges correspond
to the zero-free regions, i.e., the regions of dominance of the terms
logk M
Ms (for M = 2 this is treated by Verma and Kaur [13], for M ≥ 3

it is new), while the strips Sk
M are the narrow regions centered around

the lines that separate the wedges. For M ≥ 3, the k-coordinates of
the tips of the wedges in the kσ-plane are

(4) k3 =
4 log 3 + 2

q2 − q3
and kM =

(2M + 1)u

qM−1 − qM
for M ≥ 4,

which immediately implies that the first strips Sk
2 can be observed for

all k ≥ 20, the second Sk
2 for all k ≥ 77 and the third Sk

3 for all k ≥ 163,
and so on. With some extra work, these values can be improved to
k ≥ 19 for Sk

2 , k ≥ 58 for Sk
3 , and k ≥ 123 for Sk

4 (see Remark 4.5).
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Figure 4. Zero-free regions of ζ(k)(σ + it), for M = 2, . . . , 9.

Moreover, if one also considers the imaginary parts of the solutions
of Qk

M (qMk + it) +Qk
M+1(qMk + it) = 0, then one obtains

(5) t =
π(2j + 1)

log(M + 1)− log(M)

for j ∈ Z, showing that the location of the zeros ρ inside Sk
M is close to

(6) k · qM +
π(2j + 1)i

log
(
M+1
M

)
for some j ∈ N. This suggests a vertical periodicity in the limit of
the zeros of ζ(k)(s). (The computational data confirms that the Mth
period equals π/(log(M + 1) − log(M)).) With the help of Rouché’s
theorem, we are able to show that, between every two consecutive lines
s = σ + 2πji

log(M+1)−logM , which horizontally partition the strip Sk
M (see

Figure 3), there is exactly one zero of ζ(k)(s).

That is our second main result:

Theorem 2.3. Let u ∈ R>0 be a solution of

1− 1

eu − 1
− 1

eu

(
1 +

1

u

)
≥ 0.
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Let M ∈ N, M > 3 and j ∈ N. If there is k ∈ N with

qM+1k + (M + 2)u ≤ qMk − (M + 1)u,

then each rectangle Rj ⊂ Sk
M , consisting of all s = σ + it with

qMk − (M + 1)u < σ < qMk + (M + 1)u

and
2πj

log(M + 1)− log(M)
< t <

2π(j + 1)

log(M + 1)− log(M)
,

contains exactly one zero of ζ(k)(s). This zero is simple.

Remark 2.4. The corresponding result also holds for the strips Sk
2

and Sk
3 .

Clearly, Theorem 2.3 can be converted into an exact formula for the
number of zeros of ζ(k)(s) (for carefully chosen values of T ) inside any
given strip.

Corollary 2.5. Let Nk
M (T ) denote the number of zeros ρ of ζ(k)(s)

which are inside Sk
M and satisfy ℑ(ρ) ≤ T . Then, for all j ≥ 1,

Nk
M

(
2πj

log(M + 1)− log(M)

)
= j.

Remark 2.6. An immediate consequence is that, for k ≥ 3 and T > 0,

Nk
M (T ) =

log(M + 1)− log(M)

2π
T +O(1).

This, of course, implies that the total number of zeros contained within
any fixed strip is O(T ) = o(Nk(T )).

Spira [9] had already noticed that the zeros of ζ ′(s) and ζ ′′(s)
seem to come in pairs, where the zero of ζ ′′(s) is always located
to the right of the zero of ζ ′(s). More recently, with the help of
extensive computations, Skorokhodov [6] observed this behavior for
higher derivatives as well. Our observations support a straightforward
one-to-one correspondence between the zeros of ζ(k)(s) and ζ(m)(s) for
all k,m ≥ 1 (Figure 5).
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Figure 5. The consecutive zeros •(k) of the derivatives of ζ(k)(σ + it) in
the region 40 < σ < 49, 20 < t < 60.

Indeed, for given M and sufficiently large k it follows from Theo-
rem 2.3 that for each zero of ζ(k)(s) contained in Sk

M there is a corre-

sponding zero of ζ(k+1)(s) contained in Sk+1
M . An approximation of the

location of a zero in Sk
M is given by (6).

Remark 2.7. Due to growing density of zeros near the critical line s =
1/2, it is difficult to translate this surprising property into quantitative
asymptotics with vanishing error terms. However, for a positive integer
k, in the right half-plane we observe a certain “dynamical” exactness
between the numbers of zeros of different derivatives of the Riemann
zeta function; in other words, we find a one-to-one correspondence
between the non-trivial zeros of ζ(k)(s) with ζ(k+1)(s), for all k, such
that the index M for two such corresponding zeros is the same, and
their difference is approximately qM . This correspondence could be
established by finding unique, continuous paths which the zeros of
fractional derivatives ζ(k)(s) undergo, as k ∈ R runs through the
interval [1,∞).
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Remark 2.8. The zero-free regions obtained in Theorem 2.1 may be
generalized to a large class of Dirichlet series. Since we only consider
the absolute values of the coefficients, it follows that if

L(s) =
∞∑

n=1

an
ns

,

and |aM | ≥ |an| for some M ≥ 3 and all n ≥ 2, then L(k)(s) ̸= 0 for
qMk + cM ≤ σ ≤ qM−1k − c(M − 1), for a suitable constant c ≥ 0.
There are technical rather than theoretical obstacles that prevent us
from making these general results explicit.

3. An auxiliary lemma. In this section, we prove a technical
lemma which will be used in the proof of Theorem 2.1. Let us consider
the function z : R>0 → R,

x 7−→ logk x

xσ

for fixed σ > 1 and k ∈ N. We have

z′(x) =

((
log x

xσ

)k)′

= k

(
xσ−1 − σ(log x)xσ−1

x2σ

)(
log x

xσ

)k−1

.

Hence, z′(x) = 0 if xσ−1(1 − σ log x) = 0, that is, x = e1/σ. Since
z′(x) > 0 for 0 < x < e1/σ and z′(x) < 0 for x > e1/σ, the function
z(x) has its maximum at x = e1/σ.

As we have chosen qM such that Qk
M (σ) = Qk

M+1(σ) for σ = qMk,
the maximum of z(x) (again for σ = qMk) lies between x = M and
x = M + 1. As the maximum of z(x) is at x = e1/σ, the maximum of
z(x) for σ > qMk is to the left of the maximum of z(x) for σ = qMk.
So the value of σ for which Qk

M (σ) is the largest term in the Dirichlet

series representation of ζ(k)(σ) is between σ = qMk and σ = qM−1k.
Thus, Qk

M (σ) can dominate ζ(k)(σ) only there.

We will use these monotonicity and dominance considerations im-
plicitly in the proofs of our theorems.

Now, we consider the kσ-plane interpretation of Theorem 2.1. In
general, the wedges in Figure 4 are the sets containing all points (k, σ)
that satisfy

qMk + b1 < σ < qM−1k + b2
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for some M ∈ N and b1, b2 ∈ R. Thus,

(7) k ≥ b1 − b2
qM−1 − qM

,

with equality holding exactly if k = kM .

The growth properties of qM play an important role in understanding
the strips Sk

M .

Lemma 3.1. For all n ≥ 3, we have

1

log n
< qn−1 <

1

log(n− 1)
.

Proof. In order to prove the lower bound, we write

αn−1 :=
log(n− 1)

log n
= 1 +

log(n− 1)− log n

log n
= 1 +

log(n−1
n )

log n
,

βn−1 := log(αn−1)

= log

(
1 +

log(n−1
n )

log n

)
<

log(n−1
n )

log n
,

where the last inequality holds because log(1 + x) < x whenever
x > −1. The desired lower bound now immediately follows from
qn−1 = βn−1/ log((n− 1)/n).

In order to prove the upper bound, we write θn := − log(n−1
n ). Then

we have

qn−1 =
log

(
log(n−1)

logn

)
log

(
n−1
n

) =
log

(
1− − log(n−1

n )
logn

)
log

(
n−1
n

) =
log

(
1− θn

logn

)
log

(
n−1
n

)
=

1

log n
+

θn
2(log n)2

+
θ2n

3(logn)3
+

θ3n
4(logn)4

+ · · ·

<
1

log n
+

1

2 log n

(
θn

log n
+

(
θn

log n

)2

+

(
θn

log n

)3

+ · · ·
)

=
1

log n
+

1

2 log n

θn
log n− θn

=
1

log n
+

1

2 log n

log(1 + 1
n−1 )

log(n− 1)
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<
1

log n
+

1

2(log n)(log(n− 1))(n− 1)
<

1

log(n− 1)
,

where the last inequality holds if and only if

logn− log(n− 1) >
1

2(n− 1)
,

which is true by the mean value theorem. �

How many distinct strips of ζ(k)(s) that contain nontrivial zeros are
there inside the region 1/2 ≤ σ < q2k+2? Let c(k) denote that number.
Then, in view of Lemma 3.1, it seems reasonable to expect that, for all
k ≥ 2, there exist positive constants A and B, such that

A

√
k

log k
< c(k) < B

√
k

log k
.

Upper bounds of the desired order are easier to prove than lower
bounds: obviously, one can just count the number of wedges, with their
tips located at points described in (4), and then invert the relation.
Since the difference qM−1 − qM in the denominator of this fraction can
be nicely bounded from above (but not from below), using the estimates
in our lemma, effective upper bounds can be obtained.

4. Proof of Theorem 2.1. Now we are ready to prove our first
main result. We will show that ζ(k)(s) has no zeros if (k, σ) in the
kσ-plane lies in one of the wedges given by an inequality of the form

qMk + b1 ≤ σ ≤ qM−1k + b2

for suitably chosen b1, b2 ∈ R. We choose b1, b2 such that these wedges

are the regions where Qk
M (s) = logk M

Ms is the dominant term (in the

modulus) of ζ(k)(s). Everywhere hereafter we write Hk
M (s) for the

“head” and T k
M (s) for the “tail” of the series ζ(k)(s) split by Qk

M (s):

Hk
M (s) :=

M−1∑
n=2

Qk
n(s) =

M−1∑
n=2

logk n

ns

and

T k
M (s) :=

∞∑
n=M+1

Qk
n(s) =

∞∑
n=M+1

logk n

ns
.
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Our goal will be to show that

|ζ(k)(s)| ≥ Qk
M (σ)−Hk

M (σ)− T k
M (σ)

= Qk
M (σ)

(
1− Hk

M

Qk
M

(σ)− T k
M

Qk
M

(σ)

)
> 0

for our choice of b1 and b2, keeping in mind that

Qk
M+1

Qk
M

(qMk + b1) =

(
M

M + 1

)b1

and

Qk
M−1

Qk
M

(qM−1k + b2) =

(
M

M − 1

)b2

,

as one can easily verify.

The tails. We first find an upper bound for the tails T k
M (σ).

Lemma 4.1. Fix some integer M ≥ 2, and assume k − 1 <
(σ − 1) logM . Then

(8) T k
M (σ) =

∞∑
n=M+1

logk n

nσ
≤

∫ ∞

M

logk x

xσ
dx < Qk

M (σ)Rk
M (σ),

where

Rk
M (σ) =

M

σ − 1

(
1 +

k

(σ − 1) logM − k + 1

)
.

Proof. For k ∈ Z, the integral in (8) can be written in a closed form.
Applying recursively the general formula (for all b ̸= 1)∫

(log x)a

xb
dx = − (log x)a

(b− 1)xb−1
+

a

b− 1

∫
(log x)a−1

xb
dx,

we obtain∫ ∞

M

logk x

xσ
dx =

logk M

Mσ

M

σ − 1

k∑
r=0

k!

(k − r)!

log−r M

(σ − 1)r

≤ Qk
M (σ)

M

σ − 1

(
1 +

k∑
r=1

k(k − 1)r−1

(
1

(σ − 1) logM

)r)
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< Qk
M (σ)

M

σ − 1

(
1 +

k

(σ − 1) logM

∞∑
r=0

(
k − 1

(σ − 1) logM

)r)
= Qk

M (σ)
M

σ − 1

(
1 +

k

(σ − 1) logM − k + 1

)
,

where the convergence of the geometric series is implied by k − 1 <
(σ − 1) logM . �

It is clear why estimating Rk
M (σ) will be vital for the proofs of our

theorems. We note:

Lemma 4.2. If a1k + b1 ≤ σ and K ≤ k, then

(9) Rk
M (σ) ≤ Rk

M (a1k + b1) ≤ RK
M (a1K + b1),

as long as the following two conditions are satisfied :

a1 >
1

logM
and (a1 logM − 1)K + 1 + (b1 − 1) logM > 0,

and, in the case of b1 < 1− 1/ logM also

K ≥ 1

a1 logM

(
− (b1 − 1) logM − 1 +

√
|(b1 − 1) logM + 1|

a1 logM − 1

)
.

Proof. The left-hand inequality of (9) is evident from the fact that
Rk

M (σ) is decreasing when viewed as a function of σ alone. The right-
hand inequality of (9) is equivalent to saying that Rk

M (σ) is decreasing
as a function of k. To see this, we rewrite

1

M logM
Rk

M (a1k + b1)

in the form

y(k) =
1

(c+ 1)k + d− 1

(c+ 1)k + d

ck + d
,

where c := a1 logM − 1 > 0 and d := 1+ (b1 − 1) logM . Then, clearly,

y′(k) = −c(1 + c)2k2 + 2cdk(1 + c) + d(1 + cd)

((c+ 1)k + d− 1)2(ck + d)2
,

from which it is easy to see that y′(k) can change sign only if d < 0
(otherwise it remains non-positive). However, the condition d < 0
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translates to b1 < 1 − 1/ logM , in which case one requires K ≥ z0,
where

z0 := − d

1 + c
+

1

1 + c

√
|d|
c

is the right zero of the numerator of the above expression for y′(k). �

We will use the estimate for T k
M (σ) from Lemma 4.1 in the proof of

Theorem 2.1 via the separation

T k
M (σ) = Qk

M+1(σ) + T k
M+1(σ)

≤ Qk
M+1(σ)(1 +Rk

M+1(σ))

≤ Qk
M (qMk + b1)(1 +Rk

M+1(qMk + b1)),

since Qk
M+1(σ) ≤ Qk

M (σ). The series with the remainder Rk
M+1(qMk+

b1) will converge because qM > 1/ log(M + 1) by Lemma 3.1, if b1 is
suitably chosen. Verma and Kaur’s bound (see Table 1) follows directly
from Lemma 4.1 and Lemma 4.2. We include a proof of their result
because it exemplifies several of the important ideas and illustrates
key workings of our general method, being the special case of M = 2
(representing the dominance of the term Qk

2(σ)).

Theorem 4.3 ([13, Theorem (A)]). For all σ ≥ q2k + 2, we have
ζ(k)(s) ̸= 0.

Proof. First, write

|ζ(k)(s)| ≥ logk 2

sσ
− T k

2 (σ)

≥ Qk
2(σ)

(
1− Qk

3

Qk
2

(σ)− Qk
4

Qk
2

(σ)
(
1 +Rk

4(σ)
))

.

By Lemma 4.2, we have Rk
4(σ) ≤ Rk

4(q2k + 2) < 1.57, for k ≥ 3.
Furthermore,

Qk
4

Qk
2

(σ) = 2k−σ ≤ 2k−q2k+2 ≤ 23(1−q2)+2 ≤ 0.19.
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The quotient
Qk

3

Qk
2
(σ) is decreasing in σ, and hence

Qk
3

Qk
2

(σ) ≤ Qk
3

Qk
2

(q2k + 2) =
4

9
.

So, we obtain

1− Qk
3

Qk
2

(σ)− Qk
4

Qk
2

(σ)
(
1 +Rk

4(σ)
)
≥ 1− 4

9
− 0.19(1 + 1.57) > 0,

which establishes the result. �

Since Theorem 2.1 (a) deals with the next case of M = 3 (corre-
sponding to the dominance of the term Qk

3(σ)), and only a little bit of
extra effort is needed to prove it, we give a proof of it right now.

Proof of Theorem 2.1 (a). For a zero-free region to exist we must
have

q3k + 4 log 3 ≤ q2k − 2,

which implies k ≥ 20. Separating the dominant term Qk
3(σ), we get

|ζ(k)(s)| ≥ Qk
3(σ)−Qk

2(σ)− T k
3 (σ)

≥ Qk
3(σ)

(
1− Qk

2

Qk
3

(σ)− Qk
4

Qk
3

(σ)
(
1 +Rk

4(σ)
))

.

Therefore, we only need to show that

1− Qk
2

Qk
3

(σ)− Qk
4

Qk
3

(σ)
(
1 +Rk

4(σ)
)
> 0.

By Lemma 4.2, Rk
4(σ) ≤ Rk

4(q3k+4 log 3) ≤ Rk3
4 (q3k3+4 log 3) < 0.72,

for σ ≥ q3k + 4 log 3 and k ≥ k3 = 4 log 3+2
q2−q3

= 19.5311 . . . . Also,

Qk
4

Qk
3

(σ) ≤ Qk
4

Qk
3

(q3k + 4 log 3) < 0.29

and
Qk

2

Qk
3

(σ) ≤ Qk
2

Qk
3

(q2k − 2) < 0.45.
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Hence,

1− Qk
2

Qk
3

(σ)− Qk
4

Qk
3

(σ)
(
(1 +Rk

4(σ)
)
> 1− 0.45− 0.29(1 + 0.72) > 0,

as desired. �

Theorem 2.1 (b) deals with the dominance of the general term
Qk

M (σ) and, consequently, requires knowledge of the behavior of the
sum of all the terms preceding it.

The heads. We rewrite the heads of the series (1) in the following
form:

Hk
M (σ) = Qk

M (σ)

(
Qk

M−1

Qk
M

(σ) +
Qk

M−2

Qk
M

(σ) + · · ·+ Qk
2

Qk
M

(σ)

)(10)

= Qk
M (σ)

(
Qk

M−1

Qk
M

(σ)

(
1+

Qk
M−2

Qk
M−1

(σ)

(
1+· · ·

(
1+

Qk
2

Qk
3

(σ)

)
· · ·

)))
,(11)

and we will find upper bounds for all the above quotients
Qk

n−1

Qk
n

(σ) of

consecutive terms. Clearly,

Qk
n−1

Qk
n

(σ) =

(
log(n− 1)

logn

)k(
n

n− 1

)σ

,

and therefore
Hk

M

Qk
M

(σ) increases with σ. For 2 ≤ n ≤ M and σ ≤
qM−1k + b2, we get

Qk
n−1

Qk
n

(σ) ≤
Qk

n−1

Qk
n

(qM−1k + b2)

≤
Qk

n−1

Qk
n

(qn−1k + b2) =

(
n

n− 1

)b2

,

where the second inequality holds because qM−1 < qn for n ≤ M ,
while the equality holds because σ = qn−1k is the solution of Qk

n(σ) =

Qk
n−1(σ). Thus, in order for

Hk
M

Qk
M

(σ) to stay bounded, we must choose

b2 < 0.
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Lemma 4.4. Let c ∈ R be positive. Then y(n) =
(
n−1
n

)cn
is

monotonously increasing with asymptote 1/ec.

Proof. As

lim
n→∞

(
1 +

1

n

)cn

= ec,

we evidently have limn→∞
(
n−1
n

)cn
= 1/ec. Finally,

y′(n) = c · y(n)
(
log

(
1− 1

n

)
+

1

n− 1

)
> 0

proves the monotonicity assertion. �

Thus, for 2 ≤ n ≤ M and σ ≤ qM−1k − uM , we have

Qk
n−1

Qk
n

(σ) ≤
(

n

n− 1

)−uM

≤
(

M

M − 1

)−uM

≤ 1

eu
.

Now (11) yields

(12)
Hk

M

Qk
M

(σ) ≤
∞∑

n=1

1

(eu)n
=

1

1− (1/eu)
− 1 =

1

eu − 1
.

Proof of Theorem 2.1 (b). Similarly to the proof of Theorem 2.1 (a)
we write∣∣∣ζ(k)(s)∣∣∣ ≥ Qk

M (σ)−Hk
M (σ)− T k

M (σ)

≥ Qk
M (σ)

(
1− Hk

M

Qk
M

(σ)−
Qk

M+1

Qk
M

(σ)
(
1 +Rk

M+1(σ)
))

.

Now, notice that

Rk
M (σ) :=

M

σ − 1

(
1 +

k

(σ − 1) logM − k + 1

)
<

1

u
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is equivalent to (σ − 1)2 logM − (σ − 1)(cM logM + k− 1)− uM > 0,
and this quadratic inequality is satisfied whenever

σ > 1 +
(uM logM + k − 1)

2 logM
+

√
(uM logM + k − 1)2 + 4M logM

2 logM

> 1 +
2(uM logM + k − 1)

2 logM

= 1 + uM +
k − 1

logM
.

Thus, by Lemma 4.2, for σ ≥ qMk + u(M + 1),

k ≥ kM =
(2M + 1)u

qM−1 − qM
,

and M ≥ 4, we have

Rk
M+1(σ) ≤ RkM

M+1(qMkM + u(M + 1)) <
1

u
.

By Lemma 4.4 we also have

Qk
M+1

Qk
M

(qMk + u(M + 1)) =

(
M

M + 1

)u(M+1)

<
1

eu
;

thus, with (12), we obtain, for M ≥ 4 and qMk + u(M + 1) ≤ σ ≤
qM−1k + uM ,

1− Hk
M

Qk
M

(σ)−
Qk

M+1

Qk
M

(σ)
(
1 +Rk

M (σ)
)
> 1− 1

eu − 1
− 1

eu

(
1 +

1

u

)
≥ 0,

which proves the theorem. �

Remark 4.5. The zero-free regions we have given are not the largest
possible. For example, if one considered the lines σ = 1

2 ((qM+qM−1)k+
u) through the centers of the wedges and searched for the lowest k for
which there were no zeros on those lines, then one would obtain the
following values for kM (which are lower than the values we have for
the tips of the wedge-shaped regions):

M 3 4 5 6 7 8 9 10
kM on line 19 58 123 220 354 529 748 1014
kM at the tip 20 77 163 291 465 691 971 1313
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5. Proof of Theorem 2.3. Because of the property of the quasi-
periodicity of the zeros of ζ(k)(s) inside Sk

M , we are able to count the
zeros by individual separation. In order for our approach to work, we
first find horizontal, periodically-spaced zero-free line segments within
the strips (in Lemma 5.1). Then we show that there is always exactly
one zero of ζ(k)(s) in the rectangles Rj (for j ∈ N) that are delimited
by the vertical edges of two neighboring zero-free regions and two
horizontal zero-free lines (see Figure 6).

As already mentioned above, in the strips Sk
M , which are located

between two consecutive zero-free regions, where the expansion of
ζ(k)(s) is dominated by the terms Qk

M (s) and Qk
M+1(s), respectively,

one can obtain values of the imaginary parts t of expected zeros by
solving the equation Qk

M (σ + it) = Qk
M+1(σ + it) (an act of balancing

the real and imaginary parts of two largest terms), and then choosing
the horizontal lines of separation exactly halfway between them, thus
managing to avoid even the most irregular of zeros inside Sk

M . That is

exactly what we do below. As a consequence all zeros of ζ(k)(s) inside
Sk
M are simple.

Lemma 5.1. Let M ≥ 2 and k ∈ N. If s ∈ Sk
M , then ζ(k)(s) ̸= 0 for

s = σ + i · 2πj

log(M + 1)− logM
.

Proof. In the center of the strip Sk
M , that is on the line σ = qMk, we

have |Qk
M (s)| = |Qk

M+1(s)|. We consider the line segments in Sk
M with

qMk − (M + 1)u ≤ σ ≤ qMk + (M + 1)u

and

t =
2πj

log(M + 1)− logM
, where j ∈ Z,

see Figure 6. Our choice of t gives Qk
M (qMk+it)+Qk

M+1(qMk+it) = 0
(compare with (5)) and therefore cos(t logM) = cos(t log(M + 1)) and
sin(t logM) = − sin(t log(M + 1)). We set s = σ + it, with t and σ as
above, and consider the real and imaginary parts of

ζ(k)(s) =
∞∑

n=2

(cos(t log n)− i · sin(t logn))Qk
n(σ).
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qM+1k+(M+2)c

M+1

qM k�(M+1)c qM k

S k
M

qM k+(M+1)c

M

qM�1k�Mc

2(j+1)�

log(M+1)�logM

(2j+1)�

log(M+1)�logM

2j�

log(M+1)�logM

�

�

t

1 2 3 4 5 6

1

2

3

4

Figure 6. The curve γ is the boundary of the rectangle Rj . The point •
represents a zero of Z(s) = Qk

M (s) +Qk
M+1(s) on the line σ = qMk.

With |ℑ(Qk
n(s)| ≤ Qk

n(σ) and |ℜ(Qk
n(s)| ≤ Qk

n(σ), we obtain

|ℜ(ζ(k)(s))| ≥ | cos(t logM)Qk
M (σ) + cos(t log(M + 1))Qk

M+1(σ)|

−Hk
M (σ)− T k

M+1(σ),

|ℑ(ζ(k)(s))| ≥ | sin(t logM)Qk
M (σ) + sin(t log(M + 1))Qk

M+1(σ)|

−Hk
M (σ)− T k

M+1(σ).

If t = 0, the situation is trivial. If t ̸= 0, then we either have
| sin(t logM)| ≥ sin(π/4) = 1/

√
2 or | cos(t logM)| ≥ cos(π/4) = 1/

√
2.

Because |ζ(k)(s)| ≥ |ℜ(ζ(k)(s))| and |ζ(k)(s)| ≥ |ℑ(ζ(k)(s))|, we get:

|ζ(k)(s)| ≥ 1√
2

(
Qk

M (σ) +Qk
M+1(σ)

)
−Hk

M (σ)− T k
M+1(σ)

= Qk
M (σ)

(
1√
2
+

1√
2

Qk
M+1

Qk
M

(σ)− Hk
M

Qk
M

(σ)

−
Qk

M+2

Qk
M

(σ)−
T k
M+2

Qk
M

(σ)

)
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= Qk
M (σ)

(
1√
2
− Hk

M

Qk
M

(σ)

+
Qk

M+1

Qk
M

(σ)

(
1√
2
−

Qk
M+2

Qk
M+1

(σ)−
T k
M+2

Qk
M+1

(σ)

))
From the proof of Theorem 2.1 (b) we know that for σ ≥ qM+1k +
(M + 2)u and u = 1.1879426249 . . . (see Remark 2.2)

1√
2
−

Qk
M+2

Qk
M+1

(σ)−
T k
M+2

Qk
M+1

(σ) ≥ 1√
2
−

Qk
M+2

Qk
M+1

(σ) (1 +RM+2(σ))

≥ 1√
2
− 1

eu

(
1 +

1

c

)
> 0.

Similarly, since
Hk

M

Qk
M

(σ) is increasing in σ (see (11)) and because σ <

qM−1k −Mu, we get with (12) that

1√
2
− Hk

M

Qk
M

(σ) ≥ 1√
2
− Hk

M

Qk
M

(qM−1k −Mu) ≥ 1√
2
− 1

eu − 1
> 0,

which concludes the proof of the lemma. �

Proof of Theorem 2.3. Let Z(s) = Qk
M (s) + Qk

M+1(s). It is easy
to check that the function Z(s) has exactly one (simple) zero in Rj ,
namely,

s = qMk + i · (2j + 1)π

log(M + 1)− logM
.

In order to be able to apply Rouché’s theorem we need to show that
|ζ(k)(s)− Z(s)| < |Z(s)| for all s on Rj .

The vertical sides of Rj are in the zero free regions for M and M+1.

As shown in the proof of Theorem 2.1 the termQk
M (s) dominates ζ(k)(s)

on the right vertical side ofRj , and the termQk
M+1(s) dominates ζ(k)(s)

on the left vertical side of Rj . Thus, |ζ(k)(s) − Z(s)| < |Z(s)| on
the vertical sides of Rj . Furthermore, we have seen in the proof of

Lemma 5.1 that Z(s) = Qk
M (s) + Qk

M+1(s) dominates ζ(k)(s) on the

horizontal sides of Rj . Hence, |ζ(k)(s)−Z(s)| < |Z(s)| on the horizontal
sides of Rj .

Therefore, by Rouché’s theorem, Z(s) and ζ(k)(s) have the same
number of zeros inside Rj , for every j ∈ N. This proves both the
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simplicity of all zeros of ζ(k)(s) inside Sk
M , and the sharp formula for

Nk
M (T ), as given in Corollary 2.5. �

Acknowledgments. The research presented in this work was sup-
ported in part by a New Faculty Grant from the University of North
Carolina at Greensboro held by S. Pauli and F. Saidak. Most of the in-
vestigations were conducted while T. Binder was a visiting researcher
at the University of North Carolina at Greensboro, during the Fall
2008 semester. The authors would like to thank Garry J. Tee from the
University of Auckland, David W. Farmer from AIM, and the referee,
whose many comments and remarks have helped to improve this paper
considerably. All computations and plots were done with the computer
algebra system Sage [10].

REFERENCES

1. B. Berndt, The number of zeros for ζ(k)(s), J. Lond. Math. Soc. 2 (1970),
577–580.

2. S. Feng, A note on the zeros of the derivative of the Riemann zeta function

near the critical line, Acta Arith. 120 (2005), 59-68.
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