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SURVEY ARTICLE: THE REAL NUMBERS–
A SURVEY OF CONSTRUCTIONS

ITTAY WEISS

ABSTRACT. We present a comprehensive survey of con-
structions of the real numbers (from either the rationals or
the integers) in a unified fashion, thus providing an overview
of most (if not all) known constructions ranging from the
earliest attempts to recent results, and allowing for a simple
comparison-at-a-glance between different constructions.

1. Introduction. The novice, through the standard elementary
mathematics indoctrination, may fail to appreciate that, compared to
the natural, integer and rational numbers, there is nothing simple about
defining the real numbers. The gap, both conceptual and technical, that
one must cross when passing from the former to the latter is substantial
and perhaps best witnessed by history. The existence of line segments
whose length cannot be measured by any rational number is well
known to have been discovered many centuries ago (though the precise
details are unknown). The simple problem of rigorously introducing
mathematical entities that do suffice to measure the length of any line
segment proved very challenging. Even relatively modern attempts due
to such prominent figures as Bolzano, Hamilton and Weierstrass were
only partially rigorous, and it was only with the work of Cantor and
Dedekind in the early part of the 1870’s that the reals finally came
into existence. The interested reader may consult [12] for more on the
historical developments and further details.

Two of the most famous constructions of the reals are Cantor’s
construction by means of Cauchy sequences of rational numbers and
Dedekind’s construction by means of cuts of rational numbers, named
after him. Detailed accounts of these constructions and their ubiquity
in textbooks, together with the well-known categoricity of the axioms
of a complete ordered field, would have put an end to the quest for other
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constructions, and yet two phenomena persist. Firstly, it appears that
human curiosity concerning the real numbers is not quite quenched
with just these two constructions. Even though any two models of the
axioms of a complete ordered field are isomorphic, so it really does not
matter which model one works with, we still seem to be fascinated with
finding more and more different models of the same abstract concept.
Secondly, and more practically, from the constructive point of view, not
all models of the real numbers are isomorphic. Fueled by applications in
automated theorem proving and verification, where one must represent
the real numbers in a computer, nuances of the differences between
various constructions of the reals become very pronounced. We refer
the reader to [6, 17, 18] for more details on the constructive reals and
on theorem proving with the real numbers, respectively.

2. A survey of constructions. In order to present a uniform sur-
vey of constructions of the real numbers we choose to adopt the follow-
ing somewhat debatable point of view according to which every con-
struction of the real numbers ultimately relies on an observation about
the reals (treated axiomatically) leading to a bijective correspondence
between the set of real numbers and a set defined in terms of simpler
entities (often the rational or the integer numbers) upon which agree-
ment of existence is present. That set is then taken to be the definition
of the reals, with the order structure and the arithmetical operations
defined, examined and eventually shown to form a complete ordered
field.

We present what we hope is an exhaustive list of constructions of
the reals one can find in the literature, all following the presentation
style exposited above. Certainly, this restrictive decision sometimes
necessitates a suboptimal presentation of a particular construction;
however, the uniform style makes comparison between the definitions
easier.

As a convention, let N+ = N∪{ω} be the set of all natural numbers
augmented with the symbol ω which algebraically behaves like ∞. In
particular, x ≤ ω for all x ∈ N+, and we define x+ ω = ω = ω+ x and
xω = ω = ωx for all x ∈ N+, and x/ω = 0 for all x ∈ Z. The sole use
of this convention is in treating finite sequences of integers as infinite
ones ending with a constant stream of ω’s.
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Finally, we mention at this point, rather than at each construction
surveyed below, that typically it makes little difference whether one
constructs the positive (or nonnegative) reals R+ and then extend to all
the reals by formally adding inverses (and a 0 if needed), or constructing
all of R in one go. However, the former approach may sometimes be
technically simpler than the latter. Consequently, below, a survey of a
construction will be considered complete even if it only produces R+.

Remark 2.1. In those constructions below that refer to convergence of
a sequence (qn) of rationals to a rational number q, the precise meaning
of such a statement is that, for every rational number ε > 0, there exists
n0 ∈ N with |qn − q| < ε for all n > n0. A sequence that converges to
0 is also known as a null sequence.

2.1. Stevin’s “construction” (De Thiende and L’Arithmetique,
1585).

Remark 1. Stevin is credited with laying down the foundations of the
decimal notation. Stevin did not produce a rigorous construction of the
reals though he did present the then controversial point of view that
there is nothing significantly different in nature between the rational
numbers and the irrational ones. Constructing the reals as decimal
expansions (or in any other base) is a popular approach by novices
but is fraught with technical difficulties. The allure of this approach
most likely lies in the emphasis decimal expansions receive in the
current mathematical curriculum, where decimal expansions triumph
over anything else. The details presented below are nowhere near what
Stevin presented. Instead, we follow Gowers ([15]) but leave the details
at a minimum. We also mention [20] for a more holistic view of Stevin’s
numbers.

Observation. Every real number a can be written as

a =
∞∑

k=−∞

ak
bk

,

where the base b ≥ 2 is an integer and the ak ∈ {0, 1, 2, . . . , b − 1}
are digits, and there exists k0 ∈ Z such that ak = 0 for all k < k0.
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Moreover, the presentation is unique if we further demand that there
does not exist k0 ∈ Z with ak = b− 1 for all k > k0.

The reals. One may now take the formal b-base expansions as above
to be the real numbers.

Order. Defining the order between b-base expansions presents no
difficulties; a < a′ precisely when ak0 < a′k0

for the largest index k0
with ak0

̸= a′k0
.

Arithmetic. The algorithms for symbolically performing addition and
multiplication of real numbers are cumbersome. Gowers suggests
that the simplest approach to turn Stevin’s b-base expansions into a
construction of the reals is by employing limiting arguments to define
addition and multiplication.

2.2. Weierstrass’s construction (unpublished by Weierstrass,
paraphrased following [31, ca. 1860]).

Observation. Every positive real number a can be written as

a =
∑
s∈S

s,

where S is a multiset, i.e., a set where elements may be repeated more
than once, whose elements consist of positive integers and positive
rationals of the form 1/n. Such a presentation is, of course, not unique.

The reals. Consider the set S of all non-empty multisets S of positive
integers and positive rationals of the form 1/n, which are bounded in
the sense that there exists M > 0 with∑

s∈S0

s < M

for all finite submultisets S0 ⊆ S (being finite means that the total
number of elements in S0, counting multiplicities, is finite). Declare
for two multisets S, T ∈ S that S ≤ T if for every finite submultiset
S0 ⊆ S there exists a finite submultiset T0 ⊆ T with∑

s∈S0

s ≤
∑
t∈T0

t.
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Declare S ∼ T if both S ≤ T and T ≤ S hold. The set R+ of positive
real numbers is then defined to be S/∼.

Order. For two real numbers a = [S] and b = [T ], the relation a ≤ b
holds when S ≤ T .

Arithmetic. Addition and multiplication of positive integers and of
positive rationals of the form 1/n extends to S by S + T = {s + t |
s ∈ S, t ∈ T} and ST = {st | s ∈ S, t ∈ T}, subject to the convention
that multiplicities are taken into consideration and that any sum or
product which is not of the form of an integer or 1/n is replaced
by a (necessarily) finite number of elements of this form (there is no
canonical choice, and any would do).

The addition and multiplication of the real numbers a = [S] and
b = [T ] is given by

a+ b = [S + T ]

and
ab = [ST ].

Remark 2.2. As noted, the construction lacks in rigor.

2.3. Dedekind’s construction ([10, 1872]).

Observation. Any real number a determines a partition of Q into a
pair (A,B) where A = {q ∈ Q | q < a} and B = {q ∈ Q | a ≤ q}.
Obviously, A is non-empty and downward closed, B is non-empty
and upward closed, and A has no greatest element. Any partition
of Q satisfying these properties is called a Dedekind cut, and this
construction is a bijection between the real numbers and the set of
all cuts.

The reals. The set R of real numbers is defined to be the set of all
Dedekind cuts.

Order. Given real numbers a1 = (A1, B1) and a2 = (A2, B2), the
relation a1 ≤ a2 holds precisely when A1 ⊆ A2.
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Arithmetic. Obviously, in any Dedekind cut (A,B), any one of A or
B determines the other and, if A ( Q satisfies the properties of the
left ‘half’ of a Dedekind cut, then (A,Q \ A) is a Dedekind cut. It
thus suffices to concentrate on A. Addition of real numbers given by
Dedekind cuts represented by sets A1 and A2 is defined by

A1 +A2 = {a1 + a2 | a1 ∈ A1, a2 ∈ A2}.

If A1 and A2 represent non-negative reals, then their product is given
by

A1A2 = {q ∈ Q | q ≤ 0} ∪ {a1a2 | a1 ∈ A1, a2 ∈ A2, a1 ≥ 0, a2 ≥ 0}.

Multiplication is then extended by sign cases as usual.

2.4. Cantor’s construction ([7, 1873]).

Observation. Every real number a is the limit of a sequence (qn)
of rationals. Moreover, any two convergent sequences (qn) and (q′n)
converge to the same value a if, and only if, |qn − q′n| −−−−→

n→∞
0.

The reals. Declare a sequence (qn) of rationals to be a Cauchy
sequence if, for all ε > 0, there exists k0 ∈ N with |qn − qm| < ε,
provided that n,m > k0. Let C be the set of all Cauchy sequences of
rational numbers, and let ∼ be the equivalence relation on C given by
(qn) ∼ (q′n) precisely when |qn − q′n| → 0. The set of real numbers is
then R = C/∼, the set of all equivalence classes of Cauchy sequences
modulo ∼.

Order. Declare that two real numbers a = [(qn)] and b = [(q′n)] satisfy
a < b when a ̸= b and when there exists k0 ∈ N with qn < q′n for all
n > k0.

Arithmetic. Addition and multiplication are given by a+ b = [(qn +
q′n)] and ab = [(qnq

′
n)], respectively.

2.5. Bachmann’s construction ([3, 1892]). The details below are
essentially identical to those given by Bachmann, but the style is
slightly adapted.
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Observation. A sequence {In}n≥1 of intervals In = [an, cn] in the real
line is said to be a nested family of intervals, or more simply a nest if
Ik+1 ⊆ Ik for all k ≥ 1 and cn−an −−−−→

n→∞
0. For each such nest there is

then a unique real number b satisfying b ∈ Ik for all k ≥ 1. Moreover,
two nests determine in this way the same real number if, and only if,
the nests admit a common refinement. In more detail, a nest {In} is
finer than a nest {Jn} when In ⊆ Jn, for all n ≥ 1. Two nests have a
common refinement if there is a nest finer than each of them. Due to the
density of the rational numbers in the real numbers the intervals above
can be replaced by rational intervals consisting of rational numbers
only, while retaining the correspondence with the reals.

The reals. Consider now rational intervals of the form I = [a, c] =
{x ∈ Q | a ≤ x ≤ c}, where a, c ∈ Q. A rational nest is a family
{In}n≥1 of rational intervals In = [an, cn] satisfying Ik+1 ⊆ Ik for all
k ≥ 1 and cn − an −−−−→

n→∞
0. A rational nest {In} is finer than a

rational nest {Jn} if In ⊆ Jn for all n ≥ 1. Consider now the set N of
all rational nests, and define on it the relation ∼ whereby {In} ∼ {I ′n}
precisely when there exists a common refinement of {In} and {I ′n}. It
follows easily that ∼ is an equivalence relation on N and the set R of
real numbers is defined to be N/∼, the set of equivalence classes of
rational nests.

Order. Two real numbers x = [{In}] and y = [{Jn}] satisfy x < y
precisely when there exists n0 ∈ N with In0 < Jn0 in the sense that
α < β for all α ∈ In0 and all β ∈ Jn0 .

Arithmetic. Extending the arithmetic operations of addition and
multiplication of rational numbers to subsets S, T of rational numbers
by means of S+T = {s+t | s ∈ S, t ∈ T} and ST = {st | s ∈ S, t ∈ T},
it is easily seen that, for all rational intervals I and J , both I + J and
IJ are again rational intervals. Addition and multiplication of the real
numbers x and y is given by x+ y = [{In + Jn}] and xy = [{InJn}].

2.6. Bourbaki’s approach to the reals ([5, ca. 1960]). Bourbaki
develops the general machinery of uniform spaces and their completion,
observes that the rationals admit a uniform structure, and takes R to
be any completion of Q. The structure of R as a complete ordered
field is then deduced using the machinery of uniform spaces. Strictly
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speaking, then, Bourbaki does not construct the reals, and in fact
stresses the point that no particular construction is required; the
universal properties, provided by any completion, suffice. However,
Bourbaki also (famously) discusses a particular completion process
of any uniform space (initially by means of equivalence classes of
Cauchy filters, with the canonical choice of minimal Cauchy filters
later on). Bourbaki’s constructions can be combined and expanded
into a particular construction of the reals, which we thus refer to as
the Bourbaki reals, and we cast them into the mold of the survey. The
details of this construction will be given in a separate article.

Observation. Any real number x gives rise to two filters, namely, the
principal filter ⟨x⟩ = {S ⊆ R | x ∈ S} and the minimal Cauchy filter
ι(x) generated by all intervals containing x. Each construction leads
to a bijective correspondence between R and a certain set of filters on
R, but the latter can be used to obtain a bijection between R and the
set of all minimal Cauchy filters on Q by means of simply intersecting
each set in ι(x) with Q.

The reals. The set R of real numbers is defined to be the set of all
minimal Cauchy filters on Q.

Order. The order relation on Q extends universally to P(Q) by declar-
ing A <∀ B when for all a ∈ A and b ∈ B one has a < b. Similarly,
the relation <∀ on P(Q) extends existentially to P(P(Q)) by declaring
A <∃∀ B when there exist A ∈ A and B ∈ B with A <∀ B. None of
these extensions is an order relation. However, since any filter on Q is
an element in P(P(Q)), the relation <∃∀ restricts to a relation on R,
and this relation is an order relation.

Arithmetic. Addition and multiplication in Q extend element-wise to
subsets A,B ⊆ Q. Given real numbers x and y, i.e., minimal Cauchy
filters on Q, their sum is x + y = ⟨{A + B | A ∈ a,B ∈ b}⟩, and their
product is xy = ⟨{AB | A ∈ a,B ∈ b}⟩. It should be noted that the
fact that x+y and xy are real numbers, i.e., that the defining generated
filters are minimal, is not a triviality but rather a fact that encapsulates
most of the technical details in the construction, rendering the rest of
the proof quite straightforward.
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Remark 2.3. This construction can be seen as Bachmann’s construc-
tion (subsection 2.5) with a canonical choice of representatives. A direct
comparison from Bachmann’s reals to the Bourbaki reals is given by
sending a nest of intervals to the roundification of the filter generated
by the intervals.

2.7. Maier-Maier’s construction by a variation on Dedekind
cuts ([24, 1973]).

Observation. Every real number a occurs as the greatest lower bound
of the set {q ∈ Q | a < q}. Of course, the same real number is
the greatest lower bound of many other subsets of Q. However, two
bounded below sets T1, T2 ⊆ Q have the same greatest lower bound
provided that the set of lower bounds of T1 coincides with the set of
lower bounds of T2.

The reals. Let B be the set of all subsets of Q which are bounded
below and denote, for T ∈ B, by b(T ) the set of all lower bounds of T .
Given T1, T2 ∈ B, declare that T1 ∼ T2 precisely when b(T1) = b(T2).
It is easily seen that ∼ is an equivalence relation, and the real numbers
are defined to be B/∼, the set of equivalence classes.

Order. Given real numbers x = [S] and y = [T ], the relation x < y
holds precisely when b(S) ⊂ b(T ).

Arithmetic. For real numbers x and y, their sum is given by x+ y =
[{s + t | s ∈ S, t ∈ T}]. The product of x and y, provided that all
the elements in S and in T are positive, is given by xy = [{st | s ∈
S, t ∈ T}]. Multiplication is extended to all real numbers by sign
considerations.

Remark 2.4. This construction is essentially Dedekind’s construction
without canonical choices of representatives. In more detail, given a
real number x = [S] the set b(S), if it does not have a maximum
determines a Dedekind cut, denoted by b0(x). If b(S) does have a
maximum, then b(S) \ {max b(S)} determines a Dedekind cut, again
denoted by b0(x). The function x 7→ b0(x) is then an isomorphism
giving a direct comparison between Dedekind’s construction and the
present construction.
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2.8. Shiu’s construction by infinite series ([27, 1974]).

Observation. Since the harmonic series
∑

n 1/n diverges, it follows
that every positive real number x can be written as

x =
∑
n∈A

1

n

for some (non-unique) infinite set A ⊆ N.

The reals. Let α be the set of all infinite subsets of natural numbers,
writing A = (ak) with ak < ak+1 for a typical element in α. For such
an A ∈ α, let

An =

n∑
k=1

1

ak
.

Let β be the subset of α consisting of those A ∈ α for which the
sequence (An) is bounded. Introduce an equivalence relation on β by
declaring A ∼ B precisely when (An − Bn) is a null sequence. The
positive real numbers are then defined to be R+ = β/∼, the set of
equivalence classes.

Order. Real numbers x and y satisfy x ≤ y precisely when x = [A]
and y = [B] for some representatives satisfying A ⊆ B.

Arithmetic. Let x = [A] and y = [B] be positive real numbers.
Consider the set AB = {ab | a ∈ A, b ∈ B}. Call the representing
sets A and B excellent if A ∩ B = ∅ and every c ∈ AB can be written
uniquely as c = ab with a ∈ A and b ∈ B. Heuristically,

x =
∑
a∈A

1

a

and

y =
∑
b∈B

1

b

so, since the representatives are excellent, it follows that both A ∪ B
and AB represent real numbers, which intuitively are∑

c∈A∪B

1

c
=

∑
a∈A

1

a
+

∑
b∈B

1

b
= x+ y



SURVEY ARTICLE: THE REAL NUMBERS 747

and ∑
c∈AB

1

c
=

(∑
a∈A

1

a

)(∑
b∈B

1

b

)
= xy.

This informal argument turns into a definition of addition and multi-
plication on representatives by the fact that excellent representatives
can always be found.

Remark 2.5. With suitable adaptation the harmonic series can be
replaced by other divergent series of positive rationals converging to 0.

Remark 2.6. This construction is very similar to Weierstrass’s (sub-
section 2.2). Here repetitions are not allowed, resulting in a simpler
definition of the set of real numbers at the cost of a slightly less imme-
diate notion of addition and multiplication. Weierstrass allows repeti-
tions, and thus arithmetic is immediate, but identifying the set of real
numbers requires a delicate notion of equivalence.

2.9. Faltin-Metropolis-Ross-Rota’s wreath construction ([13,
1975]).

Observation. The difficulty in defining the arithmetic operations
when defining the reals as sequences of base b expansions lies in the
need to keep track of carries. This necessity stems from the (almost)
uniqueness of the digits of any given real number, resulting from the
use of the base to limit the range of the digits. Instead, one may not
place a limit on the digits, i.e., every real number a can be written in
infinitely many ways as

a =
∑
n∈Z

an
2n

,

where the an are integers, all of which are 0 for sufficiently small n
(the base is taken to be b = 2 only to conform with the construction in
the mentioned article). The definition of addition and multiplication
of such expansions is formally identical to the way one would add and
multiply formal Laurent series, at the price of an algorithmically more
intricate recovery of the order structure by manipulating carries. In-
terestingly, this exchange in algorithmic complexity between arithmetic
and order results in a much simpler construction of the real numbers
than Stevin’s construction.
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The reals. Let Σ(Z) be the set of all formal expressions of the form∑
n∈Z

anx
n,

where x is an indeterminate, an ∈ Z for all n ∈ Z, and ak = 0 for all
k < k0, for some k0 ∈ Z. With the formal operations of addition and
multiplication of Laurent series the set Σ(Z) becomes a ring, whose
elements are also called strings. More explicitly,∑

n∈Z

anx
n +

∑
n∈Z

bnx
n =

∑
n∈Z

(an + bn)x
n

and (∑
n∈Z

anx
n

)(∑
n∈Z

bnx
n

)
=

∑
n∈Z

cnx
n,

where
ck =

∑
n∈Z

anbk−n,

for all k ∈ Z. The element K ∈ Σ(Z) with k0 = 1, k1 = −2, and
ki = 0 for all i ∈ Z \ {0, 1} is called the carry constant. It is easily seen
that two elements A,B ∈ Σ(Z) are related by A = B + KC, where
C ∈ Σ(Z) has only finitely many non-zero coefficients, precisely when
A can be obtained from B by formally performing carrying operations
as indicated by C (in base 2). An element A ∈ Σ(Z) is said to be
bounded if there exists an integer z ≥ 1 such that∑

i≤n

|ai|2n−i ≤ z2n.

for all non-negative n. The set of all bounded elements in Σ(Z) is
denoted by Σ2(Z). An element C ∈ Σ(Z) is called a carry string if KC
is bounded, and when for every positive integer z there exists k ≥ 0
with

z|cj | ≤ 2j

for all j > k. Finally, two bounded elements A,B ∈ Σ2(Z) are declared
to be equivalent if there exists a carry string C with A = B + KC.
The set R of real numbers is then Σ2(Z)/∼, the set of equivalence
classes of formal carry-free binary expansions modulo the performance
of carrying.
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Arithmetic. The ring structure on Σ(Z) restricts to one on Σ2(Z) and
is compatible with the equivalence relation A = B+KC and thus gives
rise to addition and multiplication in R, namely, the usual addition and
multiplication of formal Laurent series performed on representatives.

Order. For the definition of a clear string refer to [13, Section 6].
For every real number [A] there exists a unique clear string B with
[A] = [B]. Declare [A] to be positive if, when cleared, the leading digit
(i.e., leading non-zero coefficient) is 1. Then the set of positive reals
defines an ordering in the usual manner. Equivalently, [A] ≤ [B] is the
lexicographic order on the cleared strings representing [A] and [B].

2.10. De Bruijn’s construction by additive expansions ([9,
1976]).

Observation. As noted in subsection 2.1, the set of real numbers
can be identified with formal decimal expansions (or other bases), i.e.,
as certain strings of digits indexed by the integers. The difficulty of
performing the arithmetical operations (and even just addition) directly
on the strings of digits stems in some sense from the expansions arising
in complete disregard of the arithmetical operations; the expansions
are analytic, not algebraic. If, instead, one considered the set of formal
expansions with the aim of focusing on easily defining addition, then
one is led to interpret the expansions differently. This is the approach
taken in this construction.

The reals. Fix an integer b > 1, and let Σ be the set of all functions
f : Z → {0, 1, 2, . . . b−1} which satisfy the condition that, for all i ∈ Z,
there exists k ∈ Z with k > i and f(k) < b−1. Given any two functions
f, g : Z → {0, 1, 2, . . . , b − 1}, define two other such functions, denoted
by difcar (f, g) (standing for the difference carry of f and g) and f − g,
as follows. For k ∈ Z, define difcar (f, g)(k) = 1 if there exists x ∈ Z
with x > k, f(x) < g(x), and such that f(y) ≤ g(y) for all k < y < x.
In all other cases, difcar (f, g)(k) = 0. The value of f − g at k ∈ Z is
given by

(f − g)(k) = f(x)− g(x)− difcar (f, g),

computed mod b. Following this procedure leads to defining f ∈ Σ
to be positive if f ̸= 0 and if some k ∈ Z exists with f(y) = 0 for all
y < k. Similarly, declare f ∈ Σ to be negative if there exists k ∈ Z
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with f(y) = b− 1 for all y < k. Then the set of real numbers is defined
to be the set of all f ∈ Σ such that either f = 0, f is positive, or f is
negative.

Order. For real numbers f and g, the relation f < g holds precisely
when g − f is positive. The greatest lower bound property is then
verified, allowing for limit-like arguments used only when defining the
product of real numbers.

Arithmetic. Addition of real numbers is given by f + g = f − (0− g).
Multiplication is defined as a supremum over suitably constructed
approximations.

2.11. Rieger’s construction by continued fractions ([26, 1982]).

Observation. Every irrational real number a can be written uniquely
as a continued fraction

a = a0 +
1

a1 +
1

a2+
1

a3+···

= [a0; a1, a2, . . . , ak, . . .]

where a0 ∈ Z and ak ∈ N with ak ≥ 1 for all k ≥ 1. When a is rational,
the continued fraction terminates at some k0 ≥ 0, and if one further
demands that if k0 > 0, then ak0 > 1, then the presentation of rational
numbers is also unique.

The reals. Let R be the set of all sequences [a0; a1, a2, . . . , ak, . . . ]
where a0 ∈ Z and ak ∈ N+ with ak ≥ 1 for all k ≥ 1, subject to the
demand that, if ak = ω, then at = ω for all t > k and if k0 is the last
index where ak0 ̸= ω and k0 > 0, then ak0 > 1.

Order. Given real numbers a = [a0; a1, a2, . . . , ak, . . .] and b =
[b0; b1, b2, . . . , bk, . . .] the relation a < b holds precisely when a ̸= b
and when for the smallest index k0 with ak0 ̸= bk0 one has

• ak0 < bk0 , if k is even;
• ak0 > bk0 , if k is odd.

The least upper bound property of R is then established and the proof
of the Euclidean algorithm produces an order embedding Q → R,
which thus serves to identify the rationals in R as precisely those real
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numbers in which ω appears. It then follows that every real number
a = [a0; a1, a2, . . . , ak, . . .] can be approximated by suitably constructed
rationals to obtain

a(0) < a(2) < a(4) < · · · < a < · · · < a(5) < a(3) < a(1).

Arithmetic. The sum of a and b is defined to be

a+ b = sup{a(2n) + b(2n) | n ≥ 0}.

Multiplication of positive real numbers is given by

ab = sup{a(2n)b(2n) | n ≥ 0}

and extended to all of R by the usual sign conventions. The proofs
of the algebraic properties utilize the rational approximations using
limit-like arguments.

2.12. Schanuel (et al.)’s construction using approximate en-
domorphisms of Z ([2, 11, 16, 29, 30, 1985]).

Observation. Given a real number a, the function fa : R → R given
by fa(x) = ax is a linear function whose slope is a, and the assignment
a 7→ fa thus sets up a bijection between the real numbers and linear
operators R → R. Under this bijection, addition in R corresponds
to the point-wise addition of functions, while multiplication in R
corresponds to composition of functions.

Of course, this point of view of the real numbers as linear operators
(thought of as slopes) requires the existence of the real numbers for
the operators to operate on. Thus, in order to obtain a construction of
the reals, one seeks to modify fa to a linear operator on Z instead of
on R. Restricting the domain of fa to Z does not produce a function
fa : Z → Z (unless a is an integer), and it is tempting to simply adjust
fa(x) to an integer near ax so as to obtain a function ga : Z → Z.
Of course, this new function need not be linear anymore, but it is
approximately so in the sense that, though the choice of ga may be
somewhat arbitrary, as long as the adjustment to an integer was not
too out of hand, the set

{ga(x+ y)− ga(x)− ga(y) | x, y ∈ Z},
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which measures how non-linear ga is, is finite. Furthermore, while it is
obvious that different ga, g

′
a may arise from the same fa, for sensible

processes leading to a ga and g′a, the set

{ga(x)− g′a(x) | x ∈ Z},

measuring how different ga and g′a are, is finite. Further motivation is
gathered from the observation that defining ga(x) = [ax], the integer
part of ax, is a function with the property that ga(x)/x −−−−→

x→∞
a, so

there is at least one obvious way of adjusting the linear function fa to
an approximately linear function from which a can be extracted.

The reals. Let Z be the integers considered as a group under addition.
Call a function f : Z → Z a quasihomomorphism if the set

{f(x+ y)− f(x)− f(y) | x, y ∈ Z}

is finite. Introduce an equivalence relation on the set H of all quasiho-
momorphisms whereby f ∼ g precisely when the set

{f(x)− g(x) | x ∈ Z}

is finite. The real numbers are then defined to be H/∼.

Arithmetic. Given real numbers a = [f ] and b = [g], their sum is
represented by f + g : Z → Z, where (f + g)(x) = f(x) + g(x). The
product ab is represented by f ◦ g : Z → Z, the composition of f and g.

Order. It can be shown that, for any quasihomomorphism f : Z → Z,
precisely one of the conditions

• f has bounded range;
• for all C > 0, there exists n0 ∈ N with f(x) > C for all x > n0;
• for all C > 0, there exists n0 ∈ N with f(x) < −C for all
x > n0

holds. A real number a = [f ] is said to be positive if the second
condition holds for f . For all real numbers b and c it is said that b < c
precisely when c− b is positive.
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2.13. Knopfmacher-Knopfmacher’s construction using Can-
tor’s theorem ([21, 1987]).

Observation (Cantor). Every real number a > 1 can be written
uniquely as

a =
∞∏
k=1

(
1 +

1

ak

)
= [a1, . . . , ak, . . .],

where ak > 0 is an integer for all k ≥ 1 with ak > 1 from some point
onwards, and further ak+1 ≥ a2k for all k ≥ 1. The number a is rational
if, and only if, ak+1 = a2k for all k ≥ k0, for some k0 ≥ 1. Every real
number 0 < b < 1 can be written uniquely as

b =

∞∏
k=1

(
1− 1

bk

)
= [−b1, . . . ,−bk, . . .],

where bk > 1 is an integer for all k ≥ 1 with bk > 2 from some point
onwards, and further bk+1 > (bk − 1)2. The real number b is rational
if, and only if, bk+1 = 1 + (bk − 1)2 for all k ≥ k0, for some k0 ≥ 1.

The reals. Let S0 be the set of all sequences [−b1, . . . ,−bk, . . .] of
negative integers −bk < −1, not all equal to −2, and such that
bk+1 > (bk − 1)2 for all k ≥ 1. Let S1 be the set of all sequences
[a1, . . . , ak, . . . ] of positive integers ak ≥ 1, not all equal to 1, and such
that ak+1 ≥ a2k for all k ≥ 1. The set of non-negative real numbers is
then R+ = S0 ∪ {1} ∪ S1.

Order. For real numbers a = [a1, . . . , ak, . . .], c = [c1, . . . , ck, . . .] ∈ S1

the relation a < c holds precisely when for the first index k0 where
ak0 ̸= ck0 one has ak0 > bk0 . The ordering among real numbers in
S0 is best seen by first introducing the bijection [a1, . . . , ak, . . .] ↔
[−b1, . . . ,−bk, . . .], where bk = ak + 1, which is in fact the reciprocal
correspondence x 7→ x−1. Then a < c holds for real numbers a, c ∈ S0

precisely when c−1 > a−1 holds in S1. Lastly, a > 1 > b holds for
all a ∈ S1 and b ∈ S0. The least upper bound property for R is then
proven.

Arithmetic. The proof of Cantor’s theorem yields an embedding of
Q+ in R+ and further one obtains for every positive real number a,
by properly truncating it, sequences a(n) and a(n) in R+ of rational
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numbers which approximate a from below and from above, respectively.
Addition of positive real numbers a and b is then given by

a+ b = sup{a(n) + b(n) | n ≥ 1},

and their product is given by

ab = sup{a(n)b(n) | n ≥ 1}.

2.14. Pintilie’s construction by infinite series ([25, 1988]).

Observation. With the same starting point as in Shiu’s construction
described in subsection 2.8, any sequence (an) of rational numbers with
the properties that an → 0 and

∑
an = ∞ gives rise to a presentation

of the positive reals, i.e., for every real number a > 0 there exists a
subsequence (ank

) with

a =

∞∑
k=1

ank
,

albeit non-uniquely. In other words, if A is the set of all subsequences
(ank

) such that
∞∑
k=1

ank
< ∞,

then R+
∼= A as sets. To recover uniqueness, one may normalize

the sequence (an) by demanding that a0 = 0 and only consider those
subsequences leading to a bounded series which further satisfy

nk+1 = min
{
p > nk | there exists m :

k∑
i=1

ani + ap <
m∑
i=1

ani

}
for all k ≥ 0.

The reals. Fix a sequence (an)n≥1 of positive rational numbers, and
set a0 = 0. Let A be the set of all subsequences (ank

) leading to a
convergent series

∑
ank

. Define the positive real numbers to be the
subset R+ ⊆ A consisting only of those subsequences satisfying

nk+1 = min
{
p > nk | there exists m :

k∑
i=1

ani + ap <
m∑
i=1

ani

}
for all k ≥ 0.
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Arithmetic. Given positive real numbers b = (bn) and c = (cn), their
sum is given by the subsequence (ank

) determined, for all k > 0, by

nk+1 = min
{
n > nk | there exists m ∈ N :

k∑
i=1

ani+an <
m∑
i=1

(bi+ci)
}
,

and similarly their product is the subsequence determined by the
conditions

nk+1=min

{
n>nk | there existm ∈ N :

k∑
i=1

ani +an<

( m∑
i=1

bi

)( m∑
i=1

ci

)}
for all k > 0.

Order. For positive real numbers b = (abk) and c = (ack), the meaning
of b < c is that there exists k ∈ N with bk > ck and bi = ci, for all
i < k.

2.15. Knopfmacher-Knopfmacher’s construction using Engel’s
theorem ([22, 1988]).

Observation (Engel). Every real number a can be written uniquely
as

a = a0 +
1

a1
+

1

a1a2
+ · · ·+ 1

a1a2 · · · an
+ · · · = (a0, a1, a2, . . .),

where the ai are integers satisfying ai+1 ≥ ai ≥ 2 for all i ≥ 1.

The reals. Let R be the set of all infinite sequences (a0, a1, a2, . . .) of
integers satisfying ak+1 ≥ ak ≥ 2, for all k ≥ 1.

Order. Given real numbersA = (a0, a1, a2, . . .) andB = (b0, b1, b2, . . .),
declare that A < B precisely when

• a0 < b0, if a0 ̸= b0, or
• ak > bk for the first index k ≥ 1 with ak ̸= bk otherwise.

The least upper bound property of R is then established, and the
proof of Engel’s theorem produces an order embedding Q → R, which
thus serves to identify the rationals in R. It then follows that every
real number can be approximated from above and from below by,
respectively, sequences A(n) and A(n) of rationals.
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Arithmetic. Addition and multiplication of real numbers A and B is
given by exploiting the upper bound property of R and the rational
approximations above. That is, the sum A+B is given by

A+B = sup{A(n) +B(n)},

and the product of positive reals is given by

AB = sup{A(n)B(n)}

and extended to all of R as usual. The proofs of the algebraic properties
utilize the rational approximations using limit-like arguments.

2.16. Knopfmacher-Knopfmacher’s construction using Sylves-
ter’s theorem ([22, 1988]). The construction is formally identical to
the one given in subsection 2.15 and will thus be presented quite briefly.

Observation (Sylvester). Every real number a can be written uniquely
as

a = a0 +
1

a1
+

1

a2
+ · · ·+ 1

an
+ · · · = ((a0, a1, a2, . . .))

where the ai are integers satisfying a1 ≥ 2 and ai+1 ≥ ai(ai − 1) + 1
for all i ≥ 1.

The reals. Let R be the set of all infinite sequences ((a0, a1, a2, . . .))
of integers satisfying ak ≥ 2 and ak+1 ≥ ak(ak − 1) + 1, for all k ≥ 1.

Order. Given real numbersA=((a0, a1, a2, . . .)) andB=((b0, b1, b2, . . .)),
declare that A < B precisely when

• a0 < b0, if a0 ̸= b0, or
• ak > bk for the first index k ≥ 1 with ak ̸= bk, otherwise.

The least upper bound property of R is then established and the proof
of Sylvester’s theorem produces an order embeddingQ → R, identifying
the rationals in R. It then follows that every real number can be
approximated from above and from below by, respectively, sequences
A(n) and A(n) of rationals.
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Arithmetic. Formally identical to subsection 2.15.

Remark 2.7. A generalization of Sylvester’s theorem, and conse-
quently a generalization of this construction of the real numbers, is
given, along essentially the same lines, in [28].

2.17. Knopfmacher-Knopfmacher’s construction using the al-
ternating Engel theorem ([23, 1989]).

Observation (alternating Engel). Every real number A can be
written uniquely as

A = a0 +
1

a1
− 1

a1a2
+

1

a1a2a3
− · · ·+ (−1)n+1

a1a2 · · · an
+ · · · ,

where the ak are integers satisfying ak+1 ≥ ak + 1 ≥ 2 for all k ≥ 1.
Furthermore, this representation terminates after a finite number of
summands if, and only if, A is rational.

The reals. The set R of real numbers is defined to be the set of all
infinite sequences (a0, a1, a2, . . .) of elements in N+ which satisfy a0 ∈ N
and ak+1 ≥ ak + 1 ≥ 2, for all k ≥ 1.

Order. Two real numbers A = (a0, a1, a2, . . .) and B = (b0, b1, b2, . . .)
satisfy A < B precisely when a2n < b2n or a2n+1 > b2n+1, where the
index i = 2n or i = 2n + 1 is the first index with ai ̸= bi. It is then
shown that R satisfies the least upper bound property. The proof of
the alternating Engel theorem produces an order embedding Q → R,
which thus serves to identify the rationals in R. It then follows that
every real number can be approximated from above and from below by,
respectively, sequences A(n) and A(n) of rationals.

Arithmetic. Addition is defined by

A+B = sup{A(2n) +B(2n) | n ≥ 0},

and multiplication of positive reals is given by

AB = sup{A(2n)B(2n) | n ≥ 0}.

The rest of the construction is formally very similar to the one presented
in subsection 2.15.
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2.18. Knopfmacher-Knopfmacher’s construction using the al-
ternating Sylvester theorem ([23, 1989]).

Observation (alternating Sylvester). Every real number A can be
written uniquely as

A = a0 +
1

a1
− 1

a2
+

1

a3
− · · ·+ (−1)n

an
+ · · · = ((a0, a1, a2, . . .)),

where the ak are integers satisfying a1 ≥ 1 and ak+1 ≥ ak(ak + 1) for
all k ≥ 1. Furthermore, this representation terminates after a finite
number of summands if, and only if, A is rational.

The reals. The set R of real numbers is defined to be the set of all
infinite sequences ((a0, a1, a2, . . .)) of elements in N+, which satisfy
a0 ∈ N, a1 ≥ 1 and ak+1 ≥ ak(ak + 1), for all k ≥ 1.

Order. Formally identical to subsection 2.17, except that it is the
proof of the alternating Sylvester theorem that gives the identification
of the rationals in R.

Arithmetic. Formally identical to subsection 2.17.

Remark 2.8. In [19], a generalization of the alternating Sylvester
theorem is presented along with a corresponding construction of the
real numbers which is formally identical to this one.

2.19. Arthan’s irrational construction ([1, 2001]).

Observation. A closer look at the construction of R as a completion
of Q by means of Dedekind cuts (cf., 2.3) reveals what the crucial
ingredients present in Q actually are that lead to the real numbers.
In more detail, Dedekind’s construction is well known to be a special
case of the Dedekind-MacNeille completion of an ordered set, and a
famous theorem of Cantor shows that the completion of any countable,
unbounded and densely ordered set is order isomorphic to R. Further,
it is the archimedean property of Q that assures the additive structure
on the completion has the right properties, and finally, by a theorem
of Hölder, the completion of any ordered group which is dense and
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archimedean must be isomorphic to an additive subgroup of R, and
thus admits a multiplication.

It follows then that any countable, unbounded, archimedean and
densely ordered group admits a completion isomorphic to R as a field.
If the multiplicative structure can effectively be defined in terms of the
given ordered group, then a construction of the reals emerges.

The reals. Given a dense, archimedean ordered commutative group,
the reals are constructed as its Dedekind-MacNeille completion. Once
such an ordered group is chosen, the details are essentially identical to
those of Dedekind’s construction, and thus we further concentrate on
the presentation of the ordered group, namely, Z[

√
2], which formally

we view as the set Z × Z. Other rational numbers may be chosen,
with more or less adverse effects on the desired properties of the group,
the ease of establishing those properties and the implementability on a
computer.

Arithmetic. Addition and multiplication in Z[
√
2] are easily estab-

lished to be given by (a, b) + (c, d) = (a + c, b + d) and (a, b)(c, d) =
(ac+ 2bd, ad+ bc).

Order. Recovering the ordering on Z[
√
2] solely in terms of integers

uses the fact that
√
2 is approximated by certain rational numbers

whose numerators and denominators admit an efficient recursive for-
mula. For details, see [1, subsection 5.2].

2.20. Notes on Conway’s surreal numbers and nonstandard
models. We conclude the survey by briefly mentioning two other
venues leading to the real numbers which, however, do not quite fall
into the same category as the constructions surveyed above.

2.20.1. Conway’s surreal numbers ([8, 1976]). Conway’s famous
construction of the surreal numbers is a construction of a proper class
in which every ordered field embeds. It thus follows that the surreal
numbers contain a copy of the real numbers, and thus one may view the
surreal number system as providing yet another construction of the real
numbers. However, when one distills just the real numbers from the
entire array of surreal ones, the construction basically collapses to the
Dedekind cuts construction. The interest in the surreal numbers is not
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so much for the reals embedded in them, but rather for the far reaching
extra numbers beyond the reals that occupy most of the surreal realm.

2.20.2. Nonstandard constructions. Since R is a completion of Q,
and since it is well known that the techniques of nonstandard analysis
yield completions, any path towards nonstandard analysis is also a path
to a definition of the real numbers. However, to what extent can these
nonstandard definitions be seen as constructions of the real numbers is
a delicate issue. Inseparable to the technique of enlargement, which is
at the heart of nonstandard analysis, is the axiom of choice (or some
slightly weaker variant) and therefore the objects produced are not
particularly tangible. For that reason, we avoided including any details
of nonstandard definitions of the real numbers. The interested reader is
referred to [14] for a very detailed and carefully motivated exposition
of one nonstandard model of the reals (the hyperreals) and to [4] for
seven other possibilities.
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