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EXPOSITORY PAPER: A PRIMER ON
HOMOGENIZATION OF ELLIPTIC PDES WITH

STATIONARY AND ERGODIC RANDOM
COEFFICIENT FUNCTIONS

ALEN ALEXANDERIAN

ABSTRACT. We study the problem of characterizing the
effective (homogenized) properties of materials whose diffu-
sive properties are modeled with random fields. Focusing on
elliptic PDEs with stationary and ergodic random coefficient
functions, we provide a gentle introduction to the mathe-
matical theory of homogenization of random media. We also
present numerical examples to elucidate the theoretical con-
cepts and results.

1. Introduction. Homogenization is a branch of the theory of par-
tial differential equations (PDEs) which provides the mathematical ba-
sis for describing effective physical properties of materials with inho-
mogeneous microstructures. In this article, we study homogenization
of random media, i.e., materials whose physical properties are modeled
with random functions. Major theoretical results on homogenization
of random media were developed first by Papanicolaou and Varadhan
in [38], and Kozlov in [32]. The theory of homogenization of random
media (stochastic homogenization), in addition to the usual analysis
and PDE theory tools, relies on results from probability and ergodic
theory. This intermixing of analysis and PDE theory concepts with
those of probability often makes this otherwise elegant theory difficult
to penetrate for those with a more PDE oriented background and who
are less familiar with the probabilistic concepts encountered in stochas-
tic homogenization.
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This article aims to provide a gentle introduction to stochastic ho-
mogenization by focusing on a few key results and proving them in
detail. We consider linear elliptic PDEs with stationary and ergodic
coefficient functions, and provide proofs of homogenization results in
one space dimension and in several space dimensions. A summary
of the requisite background materials is provided with an expanded
discussion of concepts from ergodic theory. The first homogenization
result we study concerns one-dimensional elliptic equations with ran-
dom coefficients. The proof of the one-dimensional result, which is
considerably simpler than the general n-dimensional case, provides a
first exposure to combining probabilistic and functional analytic tools
to derive homogenization results. Our discussion of the homogeniza-
tion theorem in the general n-dimensional case follows in similar lines
as the arguments given in [31] with many details added to keep the
concepts and arguments accessible. Moreover, to make the presenta-
tion beginner-friendly, throughout the article we provide a number of
motivating numerical examples to illustrate the theoretical concepts
and results that follow.

The target audience of this article includes graduate students who
are entering this field of research as well as mathematicians who are
new to stochastic homogenization. The background assumed in the
following is a working knowledge of basic concepts in PDE theory, a
course in linear functional analysis, and basic concepts from measure-
theoretic probability. Reading this article should aid those new to the
field in transitioning to advanced texts such as [15, 31] that provide
a complete coverage of stochastic homogenization. One should also
keep in mind that the general theory of homogenization is not limited
to the cases of periodic or stationary and ergodic media, and can be
applied to physical processes other than diffusion. We refer the reader
to the book [42] by Tartar, where the author provides an in-depth
presentation of the mathematical theory of homogenization as well as
historical background on the development of homogenization theory.

Let us begin our discussion of homogenization with an example. In
Figure 1, we depict what a realization of a medium with random mi-
crostructure might look like. Numerical modeling of physical processes
such as diffusion through such media is generally a challenging task be-
cause the corresponding differential equations have random coefficients
whose realizations are rapidly oscillating functions. Given a diffusive
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Figure 1. Depiction of a medium with random microstructure.

medium with inhomogeneous (random) microstructure, the goal of ho-
mogenization is to construct an effective (homogenized) medium whose
conductive/diffusive properties, in macroscale, are close to the original
medium. The basic motivation for this is the fact that the homogenized
medium is much easier to work with.

To state the problem mathematically, we first consider a determin-
istic case. Let A : Rn → Rn×n be a matrix-valued coefficient function
that is uniformly bounded and positive definite. We focus on elliptic
differential operators of the form

(1.1) Lεu = − div(Aε∇u), where Aε(x) = A(ε−1x),

where x ∈ Rn and ε > 0 indicates a microstructural length-scale.
The coefficient functions Aε characterize media with inhomogeneous
microstructure. Homogenization theory studies the problem in the
limit as ε → 0.

In the case of materials with random microstructure, the coefficient
function A in (1.1) is a random field, i.e., A = A(x, ω) where ω is an
element of a sample space Ω. To motivate the basic questions that
arise in homogenization, we consider some specific numerical examples
in Section 2 below, in the context of a problem in one space dimension.
This discussion is then used to guide the reader through the subsequent
sections of this article.

2. Motivation and overview. Although our discussion concerns
mainly that of random structures, to develop some intuition we con-
sider the case of a one-dimensional periodic structure first. Consider
the problem of modeling steady-state heat diffusion in a rod whose con-
ductivity profile is given by the function aε(x) = a(ε−1x) where a is
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Figure 2. The solutions uε corresponding to coefficient aε with ε =
1/4, 1/8, and 1/16, respectively.

a bounded periodic function defined on the physical domain D; in our
example, we let D = (0, 1). Moreover, we assume that the temperature
is fixed at zero at the end points of the interval. In this case, the fol-
lowing equation describes the steady-state temperature profile in the
conductor,

(2.1)
− d

dx

(
aε

duε

dx

)
= f in D = (0, 1),

uε = 0 on ∂D = {0, 1}.

The right-hand side function f describes a source term. Since a is a
periodic function, considering aε with successively smaller values of ε
implies working with rapidly oscillating conductivity functions. Speak-
ing in terms of material properties, considering successively smaller
values of ε entails the consideration of conductors with successively
finer microstructure. The basic question of homogenization is that of
what happens as ε → 0, and whether there is a limiting homogenized
material.

For the purposes of illustration, let us consider a specific example.
We let the function a(x) and the right-hand side function f(x) be given
by

(2.2) a(x) = 2 + sin(2πx), f(x) = −3(2x− 1).

It is clear that, as ε → 0, the function aε becomes more and more
oscillatory. In Figure 2, we plot the solution of the problem (2.1) for the
coefficient functions aε with successively smaller values of ε. The results
plotted in Figure 2 suggest that, as ε gets smaller, the solutions uε seem
to converge to a limit. The following are some relevant questions: (i) Do
uε actually converge to a limit? (ii) If so, in what topology does the
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convergence take place? (iii) Can we describe/characterize the limit?
The answers to these questions are all well known. In this case, the
functions uε converge in L2(D)-norm to u0 that is the solution of the
following problem:

(2.3)
− d

dx

(
a0

du0

dx

)
= f in D = (0, 1),

u0 = 0 on ∂D = {0, 1},

where a0 is the harmonic mean of a over the interval (0, 1),

a0 =

(∫ 1

0

1

a(x)
dx

)−1

.

The coefficient a0 is called the homogenized coefficient or the effective
conductivity. Virtually every homogenization textbook or lecture note
has some form of proof for this homogenization result. Hence, we just
illustrate this result numerically here. Notice that, with our choice of
a above, we have(∫ 1

0

1

a(x)
dx

)−1

=

(∫ 1

0

1

2 + sin(2πx)
dx

)−1

=
√
3,

as the homogenized coefficient. With this value of a0, the analytic
solution of the homogenized equation (2.3) is given by

u0(x) =
1√
3
x(x− 1/2)(x− 1).

In Figure 3, we plot the function u0 (left plot) and demonstrate the
convergence of uε to u0 by looking at ∥uε − u0∥L2(D) as ε → 0 (right
plot).

Now let us transition to the case of random media. In this case, the
function a, which defines the conductivity profile of the material, is a
random function. The stochastic version of (2.1) is given by

(2.4)
− d

dx

(
aε(·, ω)du

ε

dx
(·, ω)

)
= f in D = (0, 1),

uε(·, ω) = 0 on ∂D = {0, 1},

with aε(x, ω) = a(ε−1x, ω), and a(x, ω) a random function (random
field). The variable ω is an element of a sample space Ω, and for a fixed
ω, a(·, ω) is a realization of the random function a. As an example, we
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Figure 3. Left: Plot of the solution u0 of the homogenized equation. Right:
The convergence of the solutions uε to u0 in L2(D); the black dots correspond
to ∥uεk − u0∥L2(D) with εk = 1/2k, k = 1, . . . , 8.

consider a material made up of tiles, each of which has conductivity
of either κ1 or κ2, chosen randomly with probabilities p and 1 − p,
respectively, with p ∈ (0, 1). A realization of the conductivity function
for such a structure is depicted in Figure 4, with the choices of κ1 = 1
and κ2 = 3 and with p = 1/2. In this example, the microstructural
length-scale ε determines the size of the tiles in the random structure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

Figure 4. A realization of the conductivity profile for a one-
dimensional random checkerboard structure.

We consider the problem (2.4) with a fixed realization (a fixed ω) of
this coefficient function, and for successively smaller values of ε. (We
continue to use the same right-hand side function f defined in (2.2).)
The solutions uε(·, ω) of the respective problems have been plotted in
Figure 5. These plots suggest that uε seems to converge to a limiting
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Figure 5. The solutions uε corresponding to coefficient aε with ε =
1/4, 1/8, and 1/16 respectively.

function. In what follows, we shall discuss the mathematical theory
for such stochastic homogenization problems. Some relevant questions
in this context include the following: (i) is there a homogenized
problem in this stochastic setting? (ii) Is it possible to have a constant
homogenized coefficient that is independent of ω? (iii) Does the
problem admit homogenization for all ω? (iv) In the deterministic
example above periodicity of the coefficient was the property that led to
a constant homogenized coefficient; what is the stochastic counterpart
of periodicity? (v) What conditions on a(x, ω) ensure existence of a
deterministic homogenized coefficient? A rigorous and clear discussion
of such questions, which is the main point of this article, requires a
systematic synthesis of concepts from functional analysis, PDE theory,
probability theory and ergodic theory.

The discussion in the rest of this article is structured as follows.
In Section 3, we collect the background concepts required in our
coverage of stochastic homogenization. We continue our discussion by
describing the setting of the homogenization problem for random media
in Section 4. Next, in Section 5, we state and prove a homogenization
theorem in one space dimension. An interesting aspect of the analysis
for one-dimensional random structures is the derivation of a closed-
form expression for the homogenized coefficient that is analogous to
the form of the homogenized coefficient for one-dimensional periodic
structures. Finally, in Section 6, we study homogenization of elliptic
PDEs with random coefficients in several space dimensions, where no
closed-form expressions for the homogenized coefficients are available
in general. In Section 7, we conclude our discussion by giving some
pointers for further reading. We mention that an earlier version of the
exposition of the theoretical results in Sections 5 and 6 appeared first
in an introductory chapter of the PhD dissertation [1].
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3. Preliminaries.

3.1. Background from functional analysis and Sobolev spaces.
Here we briefly discuss some background concepts from the theory of
PDEs and functional analysis that are needed in the discussion of the
homogenization results in the present work.

Poincaré inequality. Let D ⊆ Rn be a bounded open set with
piecewise smooth boundary. In what follows, we denote by L2(D) the
space of real-valued square-integrable functions on D and denote by
C∞

c (D) the space of smooth functions with compact support in D.
The Sobolev space H1(D) consists of functions in L2(D) with square
integrable first-order weak derivatives and is equipped with the norm,

∥u∥2H1(D) =

∫
D
u2 dx+

∫
D
|∇u|2 dx.

The space H1
0 (D) is a subspace of H1(D) obtained as the closure of

C∞
c (D) in H1(D). More intuitively, we may interpret H1

0 (D) as the
subspace of H1(D) consisting of functions in H1(D) that vanish on the
boundary of D. The well-known Poincaré inequality states that for a
bounded open set D ⊆ Rn, there is a positive constant Cp (depending
on D only) such that for every u ∈ H1

0 (D),∫
D
u2 dx ≤ Cp

∫
D
|∇u|2 dx.

Weak convergence. Recall that a sequence {uk}∞1 in a Banach space
X converges weakly to u∗ ∈ X if ℓ(uk) → ℓ(u∗) as k → ∞, for every

bounded linear functional ℓ on X, in which case we write uk w
⇀ u∗. We

recall that, as a consequence of the Banach-Steinhaus theorem, weakly
convergent sequences in a Banach space are bounded in norm. More-
over, it is a standard result in functional analysis that, in a reflexive
Banach space, every bounded sequence has a weakly convergent subse-
quence. Another standard result, which will be used in our discussion
below, is that compact operators on Banach spaces map weakly conver-
gent sequences to strongly (norm) convergent sequences. In particular,
this implies the following: consider a Hilbert space H and a Hilbert
subspace U ⊂ H that is compactly embedded in H; then any bounded
sequence in U will have a subsequence that converges strongly in H.
We also recall that, in a Hilbert space H with inner-product ⟨·, ·⟩, a
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sequence {uk} converges weakly to u∗ if ⟨uk, ϕ⟩ → ⟨u∗, ϕ⟩ for every
ϕ ∈ H.

Compensated compactness. Let D be a bounded domain in Rn,
and suppose uε converges strongly in L2(D) = (L2(D))n to u0 and

vε w
⇀ v0 in L2(D). In this case, it is straightforward to show that

uε ·vε w
⇀ u0 ·v0 in L1(D). Consider now sequences uε and vε in L2(D),

both of which converge weakly. In this case, additional conditions are
needed to ensure the convergence of uε ·vε, in an appropriate sense, to
the inner product of the respective weak limits. Such problems, which
arise naturally in homogenization theory, led to the development of the
concept of compensated compactness by Murat and Tartar [33, 41].
Here we recall an important compensated compactness lemma, which
specifies conditions that enable passing to the limit in the scalar product
of weakly convergent sequences and concluding the weak-⋆ convergence
of the scalar product of the sequences to the scalar product of their weak
limits. Weak-⋆ convergence, which is a weaker mode of convergence
than weak convergence discussed above, takes the following form for a
sequence of integrable functions: let {zε} be a sequence in L1(D); then
zε convergences weak-⋆ to z0 if {zε} is bounded in L1(D), and

lim
ε→0

∫
D
zεϕdx =

∫
D
z0ϕdx, for all ϕ ∈ C∞

c (D).

We use the notation zε
w⋆

⇀ z0 for weak-⋆ convergence. The fact that
weak-⋆ limits are unique will be important in what follows.

The following Div-Curl lemma is a well-known compensated com-
pactness result, and is a key in proving homogenization results; see [31]
for a proof of this lemma, and [42, Chapter 7] for a more complete dis-
cussion as well as interesting historical remarks on the development of
the Div-Curl lemma.

Lemma 3.1. Let D be a bounded domain in Rn, and let pε and vε be
vector-fields in L2(D) such that

pε w
⇀ p0, vε w

⇀ v0.

Moreover, assume that curlvε = 0 for all ε and div pε → f0 in
H−1(D). Then we have

pε · vε w⋆

⇀ p0 · v0.
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Figure 6. For T given in (3.1), we look at the orbits {Tn(x0)}Nn=1 with
x0 = (1/32, π/32) (left plot) and {Tn(y0)}Nn=1 with y0 = (1/32, 1/32)
(right plot), for N = 1000 iterations.

3.2. Background concepts from ergodic theory. Here we provide
a brief coverage of the concepts from ergodic theory that are central
to the discussion that follows in the rest of this article. We begin by
illustrating the concept of ergodicity through a numerical example. Let
T2 be the two-dimensional unit torus, given by the rectangle [0, 1) ×
[0, 1) with the opposite sides identified, and consider the transformation
T : T2 → T2 defined by

(3.1) T (x) =

[
(2x1 + x2) mod 1
(x1 + x2) mod 1

]
.

This transformation is an instance of a hyperbolic toral authomorphism
[12] and is commonly referred to as Arnold’s Cat Map, named after
V.I. Arnold who illustrated the behavior of the mapping by considering
its repeated applications to an image of a cat [7].

For a given x0 ∈ T2, we call the sequence of the points {Tn(x0)}∞n=1

the orbit of x0, where Tn means n successive applications of T . In
Figure 6, we depict a portion of the orbit of two different points given by
x0 = (1/32, π/32) and y0 = (1/32, 1/32) in the left and right images,
respectively. The left plot in Figure 6 suggests that the successive
iterates Tn(x0) do a good job of visiting the entire state space T2.
On the other hand, the plot on the right sends the opposite message.
Note, however, that the coordinates of y0 in the latter case are both
rational. It is known [12] that, for this specific example, the set of
points with rational coordinates are precisely the set of periodic points
of the transformation T ; thus, since the Lebesgue measure of this set
is zero, we have that for almost all x0 ∈ T2, the behavior in the left
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plot of Figure 6 holds. This almost sure “space filling” property of the
system defined by T is a consequence of ergodicity.

Next, consider an integrable function f : T2 → R. Due to the “space
filling” property of T , we may intuitively say that, for almost all x0

and for N sufficiently large, the set of points {f
(
Tn(x0)

)
}Nn=1 provide

a sufficiently rich sampling of the function f and that

1

N

N∑
n=1

f(Tn(x0)) ≈
1

|T2|

∫
T2

f(x) dx.

(Here |T2| is the Lebesgue measure of T2, which is equal to one, but is
included in the expression for clarity.) The above observation leads to
the usual intuitive understanding of ergodicity: for an ergodic system,
time averages equal space averages. In the present example, time is
specified by n, that is, we have a system with discrete time.

The remainder of this section contains a brief discussion of the con-
cepts from probability and ergodic theory that we need in our coverage
of stochastic homogenization. For more details on ergodic theory, we
refer the reader to [12, 19, 44]. See also [16] for an accessible introduc-
tion to ergodic theory, where the author incorporates many illustrative
computer examples in the presentation of the theoretical concepts.

Random variables and measure preserving transformations.
Let (Ω,F , µ) be a probability space. The set Ω is a sample space, F
is an appropriate sigma-algebra on Ω, and µ is a probability measure.
A random variable is an F/B(R) measurable function from Ω to R,
where B(R) denotes the Borel sigma-algebra on R. Given a random
variable f : (Ω,F , µ) → (R,B(R)), we denote its expected value by

E {f} :=

∫
Ω

f(ω)µ(dω).

Definition 3.2. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be measure spaces.
A transformation T : Ω1 → Ω2 is called measure preserving if it is
measurable, i.e., for all E ∈ F2 T−1(E) ∈ F1, and satisfies

(3.2) µ1

(
T−1(E)

)
= µ2(E), for all E ∈ F2.

An example of a measure preserving transformation is the one
defined in (3.1), which preserves the Lebesgue measure on T2.
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Dynamical systems and ergodicity. Let T be a measure preserving
transformation on (Ω,F , µ). Interpreting the elements of Ω as possible
states of a system, we may consider T as the law of the time evolution
of the system. That is, if we denote by sn, n ≥ 0, the state of the
system at t = n, and let s0 = ω0 for some ω0 ∈ Ω, then s1 = T (ω0),
s2 = T (s1) = T (T (ω0)) = T 2(ω0), and, in general, sn = Tn(ω0),
for n ≥ 1. This way, T defines a measurable dynamic on Ω. The
dynamical system so constructed is called a discrete time measure-
preserving dynamical system.

Suppose there is a set E ∈ F such that ω ∈ E if and only if T (ω) ∈ E.
In such a case, the study of the dynamics of T on Ω can be reduced
to its dynamics on E and Ω \ E. The set E so described is called a
T -invariant set. We say that T is ergodic if, for every T -invariant set
E, we have either µ(E) = 0 or µ(E) = 1.

n-dimensional dynamical systems. In addition to discrete time
dynamical systems described above, we can also consider continuous
time dynamical systems that are given by a family of measurable
transformations T = {Tt}t∈S where S ⊆ Rn with n = 1. In the case
S = [0,∞), we call T a semiflow and in the case S = (−∞,∞), we call
T a flow. In the present work, we are interested in a more general type
of dynamical system where S = Rn with n ≥ 1.

Definition 3.3. An n-dimensional measure-preserving dynamical sys-
tem T on Ω is a family of measurable mappings Tx : Ω → Ω,
parametrized by x ∈ Rn, satisfying:

(i) Tx+y = Tx ◦ Ty for all x,y ∈ Rn.
(ii) T0 = I, where I is the identity map on Ω.
(iii) The dynamical system is measure preserving in the sense that, for

every x ∈ Rn and F ∈ F , we have µ
(
T−1
x (F )

)
= µ(F ).

(iv) For every measurable function g : (Ω,F , µ) → (X,Σ) where
(X,Σ) is some measurable space, the composition g(Tx(ω)) de-
fined on Rn × Ω is a (B(Rn)⊗F)/Σ measurable function.

The notions of T -invariant functions and sets (where T is an n-
dimensional dynamical system) are made precise in the following defi-
nition [19].
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Definition 3.4. Let (Ω,F , µ) be a probability space and {Tx}x∈Rn an
n-dimensional measure-preserving dynamical system. A measurable
function g on Ω is T -invariant if for all x ∈ Rn,

(3.3) g
(
Tx(ω)

)
= g(ω), for all ω ∈ Ω.

A measurable set E ∈ F is T -invariant if its characteristic function 11E
is T -invariant.

It is straightforward to show that a T -invariant set E defined
according to the above definition can be defined equivalently as follows:
a set E is T -invariant if

T−1
x (E) = E, for all x ∈ Rn.

As is often the case in measure theory, we can replace “for all ω ∈ Ω” by
“for almost all ω ∈ Ω” in Definition 3.4. A function that satisfies (3.3)
for all x and almost all ω ∈ Ω is called T -invariant mod 0. Also,
given two measurable sets A and B, we write A = B mod 0, if their
symmetric difference, A∆B = (A \B)∪ (B \A) has measure zero; note
that this means A and B agree modulo a set of measure zero. We
call a measurable set T -invariant mod 0 if its characteristic function is
T -invariant mod 0.

One can show (cf., [19]) that for any measurable function g on Ω
that is T -invariant mod 0, there exists a T -invariant function g̃ such
that g = g̃ almost everywhere. Similarly, for any T -invariant mod 0 set

E, there exists a T -invariant set Ẽ such that µ(Ẽ∆E) = 0. Hence, in
what follows, we will not distinguish between T -invariance mod 0 and
T -invariance.

With these background ideas in place, we define the notion of an
n-dimensional ergodic dynamical system.

Definition 3.5. Let (Ω,F , µ) be a probability space and T =
{Tx}x∈Rn an n-dimensional measure-preserving dynamical system. We
say T is ergodic if all T -invariant sets have measure of either zero or
one.

Let us also recall the following useful characterization of an ergodic
dynamical system [19, 31], in terms of invariant functions: a dynamical
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system is ergodic if every T -invariant function is constant almost
everywhere; that is,[

g
(
Tx(ω)

)
= g(ω) for all x and almost all ω

]
=⇒ g ≡ const µ-a.e.

Let {Tx}x∈Rn be a dynamical system. Corresponding to a function
g : Ω → X (where X is any set) we define the function gT : Rn×Ω → X
by

(3.4) gT
(
x, ω

)
= g

(
Tx(ω)

)
, x ∈ Rn, ω ∈ Ω.

For each ω ∈ Ω, the function gT (·, ω) : Rn → X is called a realization
of g.

The Birkhoff ergodic theorem. Ergodicity of a dynamical system
has many profound implications. Of particular importance to our
discussion is the Birkhoff Ergodic theorem. Before stating Birkhoff’s
theorem, we define the following notion of mean-value for functions.

Definition 3.6. Let g ∈ L1
loc (Rn). A number Mg is called the mean-

value of g if, for every Lebesgue measurable bounded set K ⊂ Rn,

lim
ε→0

1

|K|

∫
K

g(ε−1x) dx = Mg.

Here |K| denotes the Lebesgue measure of K.

The following result, due to Birkhoff, is a major result in ergodic
theory [19], which, as we will see shortly, plays a central role in proving
homogenization results for random elliptic operators. The statement
of Birkhoff’s theorem given below follows the presentation in [31].

Theorem 3.7. Let (Ω,F , µ) be a probability space, and suppose T =
{Tx}x∈Rn is a measure-preserving dynamical system on Ω. Let g ∈
Lp(Ω) with p ≥ 1. Then, for almost all ω ∈ Ω, the realization gT (x, ω),
as defined in (3.4), has a mean value Mg(ω) in the following sense:
defining gεT (x, ω) = gT (ε

−1x, ω) for ε > 0, one has

gεT (·, ω)
w
⇀ Mg(ω) in Lp

loc(R
n), as ε → 0,

for almost all ω ∈ Ω. Moreover, Mg is a T -invariant function, that is,

(3.5) Mg

(
Tx(ω)

)
= Mg(ω) for all x ∈ Rn, µ-a.e.
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Also,

(3.6)

∫
Ω

g(ω)µ(dω) =

∫
Ω

Mg(ω)µ(dω).

Notice that, if the dynamical system T in Birkhoff’s theorem is
ergodic, then, the mean value Mg is constant almost everywhere and
is given by Mg = E {g}. We record this observation in the following
Corollary of Theorem 3.7:

Corollary 3.8. Let (Ω,F , µ) be a probability space, and suppose T =
{Tx}x∈Rn is a measure-preserving and ergodic dynamical system on Ω.
Let g ∈ Lp(Ω) with p ≥ 1. Define gεT (x, ω) = gT (ε

−1x, ω) for ε > 0.
Then, for almost all ω ∈ Ω,

gεT (·, ω)
w
⇀

∫
Ω

g(ω)µ(dω) in Lp
loc(R

n), as ε → 0.

Stationary random fields. Let (Ω,F , µ) be a probability space, and
let G : Rn × Ω → R be a random field. We say G is stationary if, for
any finite collection of points xi ∈ Rn, i = 1, . . . , k and any h ∈ Rn,
the joint distribution of the random k-vector (G(x1+h, ω), . . . , G(xk+
h, ω))T is the same as that of (G(x1, ω), . . . , G(xk, ω))

T . It is straight-
forward to show that, if G can be written in the form

(3.7) G(x, ω) = g
(
Tx(ω)

)
,

where g : Ω → Ω is a measurable function and T is a measure preserving
dynamical system, then G is stationary. For G to be stationary and
ergodic, we need the dynamical system T in (3.7) to be ergodic.

Note that, when working with stationary and ergodic random func-
tions, the Birkhoff ergodic theorem enables the type of averaging that
is relevant in the context of homogenization. It is also interesting to
recall the following Riemann-Lebesgue lemma that plays a similar role
as Birkhoff’s theorem, in the problems of averaging of elliptic differ-
ential operators with periodic coefficient functions (see [20, page 21]
for a more general statement of the Riemann-Lebesgue lemma and its
proof).
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Lemma 3.9. Let Y = (a1, b1)× (a2, b2)× · · · × (an, bn) be a rectangle
in Rn, and let g ∈ L2(Y ). Extend g by periodicity from Y to Rn. For

ε > 0, let gε(x) = g(ε−1x). Then, as ε → 0, gε
w
⇀ ḡ in L2(Y ), where

ḡ := 1
|Y |

∫
Y
g(x) dx.

Solenoidal and potential vector fields and Weyl’s decomposi-
tion theorem. Let (Ω,F , µ) be a probability space. Here we briefly
recall an important decomposition of the space L2(Ω) = L2(Ω;Rn) of
square integrable vector-fields on Ω–the Weyl decomposition theorem.
This result will be important in homogenization results for random el-
liptic operators in the general n-dimensional case. Recall that a locally
square integrable vector-field v on Rn is called potential if v = ∇ϕ for
some ϕ ∈ H1

loc(Rn) and called solenoidal if it is divergence free. Letting
T be an n-dimensional measure-preserving dynamical system on Ω, we
consider the following spaces:

(3.8)

L2
pot(Ω, T ) = {f ∈ L2(Ω) :

fT (·, ω) is potential on Rn for almost all ω ∈ Ω},
L2

sol(Ω, T ) = {f ∈ L2(Ω) :

fT (·, ω) is solenoidal on Rn for almost all ω ∈ Ω},
V 2

pot(Ω, T ) =
{
f ∈ L2

pot(Ω, T ) : E {f} = 0
}
,

V 2
sol(Ω, T ) =

{
f ∈ L2

sol(Ω, T ) : E {f} = 0
}
.

The Weyl decomposition theorem (see, e.g., [31, page 228]) states
that the subspaces V 2

pot(Ω, T ) and L2
sol(Ω, T ) of L2(Ω) are mutually

orthogonal and complementary, given that T is ergodic.

Theorem 3.10 (Weyl decomposition). If the dynamical system T is
ergodic, then L2(Ω) admits the following orthogonal decompositions:

(3.9) L2(Ω) = V 2
pot(Ω, T )⊕L2

sol(Ω, T ) = V 2
sol(Ω, T )⊕L2

pot(Ω, T ).

4. Mathematical definition of homogenization. As before, we
let (Ω,F , µ) be a probability space. The conductivity function of a
medium with random microstructure is specified by a random function
A(x, ω) where, for each ω ∈ Ω, A(·, ω) is a matrix-valued function
A(·, ω) : Rn → Rn×n

sym . Here Rn×n
sym denotes the space of symmetric
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n×n matrices with real entries. Let the physical domain be given by a
bounded open set D ⊂ Rn (with n = 1, 2, or 3). Assume for simplicity
that the temperature u is fixed at zero on the boundary of D. The
PDE governing heat conduction in the medium with microstructure is
given by

(4.1)

{
−divx(A(ε

−1x, ω)∇uε(x, ω)) = f(x) in D,

uε(x, ω) = 0 on ∂D,

where f ∈ H−1(D) specifies a (deterministic) source term. The goal of
homogenization theory is to specify a problem of the form

(4.2)

{
− divx(A

0∇u0) = f in D,

u0 = 0 on ∂D

where A0 in (4.2) is a constant matrix such that the solution u0 of (4.2)
provides a reasonable approximation (for almost all ω) to the solution
of (4.1) in the limit as ε → 0. The following definition makes the
notion of homogenization precise for a single deterministic conductivity
function.

Definition 4.1. Consider a matrix valued function, A : Rn → Rn×n
sym ,

and suppose there exist real numbers 0 < ν1 < ν2 such that, for each
x ∈ Rn,

ν1|ξ|2 ≤ ξ ·A(x)ξ ≤ ν2|ξ|2, for all ξ ∈ Rn.

That is, A is uniformly bounded and positive definite. For ε > 0, denote
Aε(x) = A(ε−1x). Then, we say that A admits homogenization if there
exists a constant symmetric positive definite matrix A0 such that for
any bounded domain D ⊂ Rn and any f ∈ H−1(D), the solutions uε

of the problems

(4.3)

{
− div(Aε∇uε) = f in D,

uε = 0 on ∂D,

satisfy the following convergence properties:

uε w
⇀ u0 in H1

0 (D),
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and

Aε∇uε w
⇀ A0∇u0 in L2(D),

as ε → 0, where u0 satisfies the problem

(4.4)

{
− div(A0∇u0) = f in D,

u0 = 0 on ∂D.

Remark 4.2. In practice, it is sufficient to verify the convergence
relations in the above definition for right-hand side functions f ∈
L2(D); see also the discussion in [31, Remark 1.5].

Remark 4.3. A family of operators {Aε}ε>0 satisfying the above defi-
nition is said to G-converge to A0. The uniqueness of the homogenized
matrix A0 is also guaranteed by the uniqueness of G-limits, see e.g.,
[31, page 150] or [30, page 229] for basic properties of G-convergence.

Note that Definition 4.1 concerns the homogenization of a single
conductivity function A(x). In the case where A is a periodic function,
i.e., the case of periodic media, the existence of the homogenized
matrix is well-known [8, 17, 34, 40]. In the random case [10, 32,
31, 37, 38, 39, 45], where we work with a random conductivity
function A = A(x, ω), we say A admits homogenization if, for almost all
ω ∈ Ω, A(·, ω) admits homogenization A0 (with A0 a constant matrix
independent of ω) in the sense of Definition 4.1.

5. Stochastic homogenization: The one-dimensional case. In
this section, we discuss the homogenization of an elliptic boundary
value problem, in one space dimension, with a random coefficient
function. As we shall see shortly, under assumptions of stationarity
and ergodicity, there is a closed-form expression for the (deterministic)
homogenized coefficient. Let (Ω,F , µ) be a probability space, and let
T = {Tx}x∈R be a one-dimensional measure preserving and ergodic
dynamical system. Let a : Ω → R be a measurable function, and
suppose there exist positive constants ν1 and ν2 such that

(5.1) ν1 ≤ a(ω) ≤ ν2, for almost all ω ∈ Ω.



EXPOSITORY PAPER: A PRIMER ON HOMOGENIZATION 721

For ω ∈ Ω, we consider the following problem

(5.2)
− d

dx

(
aT (·, ω)

du

dx
(·, ω)

)
= f in D = (s, t),

u(·, ω) = 0 on ∂D = {s, t}.

Here D = (s, t) is an open interval, f ∈ L2(D) is a deterministic source
term and aT (x, ω) = a(Tx(ω)) denotes realizations of a with respect
to T . Note that, by construction, aT (x, ω) is a stationary and ergodic
random field.

Theorem 5.1. For almost all ω ∈ Ω, aT (x, ω) defined above admits
homogenization and

(5.3) a0 =
1

E {1/a}

is the corresponding homogenized coefficient.

Proof. Since the dynamical system is ergodic, by the Birkhoff ergodic
theorem, we know that there is a set E ∈ F , with µ(E) = 1 such that,
for all ω ∈ E,

(5.4)
1

aεT (·, ω)
w
⇀ E

{
1

a

}
:=

1

a0
in L2(D),

as ε → 0. Let ω ∈ E be fixed but arbitrary and, for ε > 0, consider the
problem

(5.5)
− d

dx

(
aεT (·, ω)

duε

dx
(·, ω)

)
= f in D = (s, t),

uε(·, ω) = 0 on ∂D = {s, t},

with the weak formulation given by

(5.6)

∫
D
aεT (·, ω)

duε

dx

dϕ

dx
dx =

∫
D
fϕ dx, for all ϕ ∈ H1

0 (D).

We know that, for each ε > 0, (5.6) has a unique solution uε =
uε(·, ω). First, we show that {uε(·, ω)}ε>0 is bounded in the H1

0 (D)
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norm. To see this, we begin by letting ϕ = uε in (5.6) and note that

ν1

∫
D

∣∣∣∣duε

dx

∣∣∣∣2 dx ≤
∫
D
aεT

duε

dx

duε

dx
dx =

∫
D
fuε dx

≤ ∥f∥L2(D) ∥u
ε∥L2(D) ≤ Cp ∥f∥L2(D)

∥∥∥∥duε

dx

∥∥∥∥
L2(D)

,

where the last two inequalities use Cauchy-Schwarz and Poincaré in-
equalities respectively. Thus,

(5.7)

∥∥∥∥duε

dx

∥∥∥∥
L2(D)

≤ Cp

ν1
∥f∥L2(D) .

Moreover, applying the Poincaré inequality again, we have

∥uε∥L2(D) ≤ Cp

∥∥∥∥duε

dx

∥∥∥∥
L2(D)

and, therefore, the sequence {uε} is bounded in L2(D) as well. Thus,
we conclude that {uε(·, ω)}ε>0 is bounded in H1

0 (D). Consequently, we
have as ε → 0, along a subsequence (not relabeled),

(5.8) uε(·, ω) w
⇀ u0 in H1

0 (D).

Moreover, by compact embedding of H1
0 (D) into L2(D), we have that

uε(·, ω) → u0 strongly in L2(D). Note that, at this point, it is not clear
whether u0 is independent of ω. From (5.8), we immediately get that

(5.9)
duε

dx
(·, ω) w

⇀
du0

dx
in L2(D).

Next, we let

(5.10) σε(x, ω) = aεT (x, ω)
duε

dx
(x, ω).

Using the fact that {aεT (·, ω)}ε>0 is bounded in L∞(D) and (5.7),
we have {σε(·, ω)}ε>0 is bounded in L2(D). Moreover, we note that

dσε

dx
= −f

and, therefore, {
dσε

dx
(·, ω)

}
ε>0
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is bounded in L2(D) as well. Therefore, we conclude that {σε(·, ω)}ε>0

is bounded in H1(D). Thus, σε(·, ω) w
⇀ σ0(·, ω) in H1(D) (along a

subsequence), and therefore, by compact embedding of H1(D) into
L2(D) we have, as ε → 0,

(5.11) σε(·, ω) −→ σ0(·, ω) in L2(D).

Next, consider the following obvious equality

(5.12)
duε

dx
(·, ω) = aεT (·, ω)

aεT (·, ω)
duε

dx
(·, ω) = σε(·, ω) 1

aεT (·, ω)
.

In view of (5.9) and using (5.4) and (5.11), we have, as ε → 0.

σε(·, ω) 1

aεT (·, ω)
w
⇀ σ0(·, ω) 1

a0
in L2(D),

and
du0

dx
= σ0(·, ω) 1

a0
.

Thus, we have

σ0(·, ω) = a0
du0

dx
,

and, recalling the definition of σε in (5.10), we can rewrite (5.11) as
follows:

(5.13) aεT (x, ω)
duε

dx
(x, ω) −→ a0

du0

dx
, in L2(D).

Hence, passing to the limit as ε → 0 in (5.6) gives∫
D
a0

du0

dx

dϕ

dx
dx =

∫
D
fϕ dx, for all ϕ ∈ H1

0 (D),

which says that u0 is the weak solution to

(5.14)
− d

dx

(
a0

du0

dx

)
= f in D = (s, t),

u0 = 0 on ∂D = {s, t}.

Note also that, by (5.1), we have that ν1 ≤ a0 ≤ ν2. The problem (5.14)
has a unique solution u0 that is independent of ω, because a0 is
a constant independent of ω and the right-hand side function f is
deterministic. Also, since the solution u0 is unique, any subsequence
of uε(·, ω) converges to the same limit u0 (weakly in H1

0 (D) and thus
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strongly in L2(D)), and thus the entire sequence {uε(·, ω)}ε>0 converges
to u0, not just such a subsequence. Finally, since the domain D was
any arbitrary open interval and the right-hand side function f ∈ L2(D)
was arbitrary, (5.8), (5.13) and (5.14) lead to the conclusion that
aεT (·, ω) admits homogenization with homogenized coefficient given by

a0 = E {1/a}−1
. Note also that this conclusion holds for almost all

ω ∈ Ω. �

Remark 5.2. Note that Theorem 5.1 says the effective coefficient a0 is
a constant function on D with a0(x) = E {1/a}−1

for all x ∈ D. Also,
observe that a0 is the one-dimensional counterpart of the homogenized
coefficient A0 in (4.4).

6. Stochastic homogenization: The n-dimensional case. Be-
fore delving into the theory, we consider a numerical illustration of
homogenization in a two-dimensional example. We consider:

(6.1)

{
− div(A(ε−1x, ω)∇uε(x, ω)) = f(x) in D=(0, 1)×(0, 1),

uε(x, ω) = 0 on ∂D,

where the source term is given by

f(x) =
C

2πL
exp

{
− 1

2L

[
(x1 − 1/2)2 + (x2 − 1/2)2

]}
,

with C = 5 and L = 0.05.

We describe the diffusive properties of the medium, modeled by the
conductivity function A(x, ω), by a random tile-based structure similar
to the one-dimensional example presented at the beginning of the
article. Consider a checkerboard like structure where the conductivity
of each tile is a random variable that can take four possible values
κ1, . . . , κ4, with probabilities pi ∈ (0, 1),

∑4
i=1 pi = 1. For the present

example, we let κ1 = 1, κ2 = 10, κ3 = 50 and κ4 = 100, which can occur
with probabilities p1 = 0.4 and p2 = p3 = p4 = 0.2, respectively. We
depict a realization of the resulting (scalar-valued) random conductivity
function A(x, ω) in Figure 7 (left) and the solution u(x, ω) of the
corresponding diffusion problem (6.1) in the right image of the same
figure. Note that, in the plot of the random checkerboard, lighter colors
correspond to tiles with larger conductivities.
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Figure 7. Left: a realization of the random checkerboard conductivity
function described above; right: the solution u(x, ω) corresponding to the
realization of A(x, ω).

Figure 8. Top row: A(ε−1x, ω), for a fixed ω, with ε = 1/2, 1/4, and 1/8;
bottom row, the respective solutions uε(x, ω).

For a numerical illustration of homogenization, we compute the solu-
tions of problem (6.1) with successively smaller values of ε. Specifically,
using the same realization of the medium shown in Figure 7 (left), we
solve the problem (6.1) with ε = 1/2, 1/4, and 1/8. Results are reported
in Figure 8, where we plot the coefficient fields A(ε−1x, ω) (top row)
and the corresponding solutions uε(x, ω) (bottom row). Note that, as
ε gets smaller, the solutions uε seem to approach that of a diffusion
problem with a constant diffusion coefficient. This is the expected out-
come when working with structures that admit homogenization. We
mention that these problems were solved numerically using a contin-
uous Galerkin finite-element discretization with a 200 × 200 mesh of
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quadratic quadrilateral elements. COMSOL Multiphysics was used for
the finite-element discretization, and computations were performed in
Matlab.

Below, we study a homogenization result in Rn, which shows
that, under assumptions of stationarity and ergodicity, a homogenized
medium exists. As we shall see shortly, in this general n-dimensional
case, unlike the one-dimensional problem, there is no closed-form ana-
lytic formula for the homogenized coefficients. (Analytic formulas for
the homogenized coefficients are available only in some special cases in
two dimensions [31].) Note that, even in the case of periodic struc-
tures in several space dimensions, analytic formulas for the homoge-
nized coefficient are not available; however, in the periodic case, the
characterization of the effective coefficients suggests a straightforward
computational method for computing the homogenized conductivity
matrix. This is no longer the case in the stochastic case, where the
numerical approximation of homogenized coefficients is generally a dif-
ficult problem; see also Remark 6.2 below.

6.1. The homogenization theorem in Rn. In this section, we
present the stochastic homogenization theorem for linear elliptic op-
erators in Rn. The discussion in this section follows along similar lines
as that presented in [31]. Consider the problem

(6.2)

{
− div(A(ε−1x, ω)∇uε(x, ω)) = f(x) in D,

uε(x, ω) = 0 on ∂D.

Here D is a bounded domain in Rn, f ∈ L2(D) is a deterministic
source term, and A is a stationary and ergodic random field. That is,
we assume that

(6.3) A(x, ω) = A(Tx(ω)), for all x ∈ Rn, ω ∈ Ω,

where T = {Tx}x∈Rn is an n-dimensional measure preserving and
ergodic dynamical system, and A is a measurable function from Ω to
Rn×n

sym that is uniformly bounded and positive definite. We define the
set of all such A as follows. For positive constants 0 < ν1 ≤ ν2, let

E (ν1, ν2,Ω) = {A : Ω → Rn×n
sym :

A is measurable and ν1|ξ|2 ≤ ξ · A(ω)ξ ≤ ν2|ξ|2

for all ξ ∈ Rn, for almost all ω ∈ Ω}.
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Note that here | · | denotes the Euclidean norm in Rn, i.e., |ξ|2 =∑n
i=1 ξ

2
i . The following homogenization result (cf. [31, Theorem 7.4])

provides a characterization of the homogenized matrix for stationary
and ergodic diffusive media.

Theorem 6.1. Let A : Ω → Rn×n be in E (ν1, ν2,Ω) for some
0 < ν1 ≤ ν2. Moreover, assume that T = {Tx}x∈Rn is a measure
preserving and ergodic dynamical system. Then, for almost all ω ∈ Ω,
the realization AT (·, ω) admits homogenization, and the homogenized
matrix A0 is characterized by

(6.4) A0ξ =

∫
Ω

A(ω)
(
ξ + vξ(ω)

)
µ(dω), for all ξ ∈ Rn,

where vξ is the solution to the following auxiliary problem: Find
v ∈ V 2

pot(Ω, T ) (recall the definition of V 2
pot(Ω, T ) in (3.8)) such that

(6.5)

∫
Ω

A(ω)
(
ξ + v(ω)

)
·φ(ω)µ(dω) = 0, for all φ ∈ V 2

pot(Ω, T ).

Before presenting the proof of this result, we collect some observa-
tions.

Remark 6.2. Note that Theorem 6.1 provides an abstract characteri-
zation for A0, which does not lend itself directly to a numerical recipe
for computing A0. While the discussion in the present note does not
include numerical methods, we point out that numerical approaches
for computing A0 are available. See, e.g., [11, 35] that describe the
method of periodization, which can be used to compute approximations
to the homogenized matrix A0.

Remark 6.3. The above homogenization result applies to random dif-
fusive media whose conductivity functions are described by stationary
and ergodic random fields. From a practical point of view, such ergod-
icity assumptions are mathematical niceties that cannot be verified in
real-world problems. One possible idea is to construct mathematical
definitions of certain “idealized” random structures for which one can
prove ergodicity and use such structures as potential modeling tools in
real applications. An example of such an effort is done in [2] where,
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starting from their physical descriptions, a class of stationary and er-
godic tile-based random structures has been constructed. See also the
book [43], which provides a comprehensive treatment of means for sta-
tistical characterization of random heterogeneous materials.

Remark 6.4. The form of the homogenized coefficient in one space
dimension given by Theorem 5.1 can be derived by specializing The-
orem 6.1 to the case of n = 1. To see this, we note that, in the
one-dimensional case, the homogenized coefficient is characterized as
follows: For ξ ∈ R,

(6.6) a0ξ =

∫
Ω

a(ω)(ξ + vξ(ω))µ(dω),

where vξ ∈ V 2
pot(Ω, T ) is a solution to auxiliary problem (6.5). Hence,

using Weyl’s theorem, we may write

(6.7) a (ξ + vξ) ∈ L2
sol(Ω, T ).

To find a0, we need only to consider ξ = 1 in (6.6). Denote

(6.8) q(ω) = a(ω)(1 + v1(ω)),

and note that, by (6.7), and recalling the definition of L2
sol(Ω, T ), we

have that, for almost all ω, q(Tx(ω)) is a constant (depending on ω).
That is, for almost all ω ∈ Ω, q(Tx(ω)) = q(ω), for all x ∈ R. Therefore,
by ergodicity of the dynamical system T , we have q(ω) ≡ const =: q
almost everywhere. Thus, using (6.8), we have v1(ω) = q/a(ω)−1, and

since E {v1} = 0, we have q = E {1/a}−1
. Then, (6.6) gives

a0 =

∫
Ω

a(ω)(1 + v1(ω))µ(dω) =

∫
Ω

q µ(dω) = q = E {1/a}−1
.

Next, we turn to the proof of Theorem 6.1.

Proof. First we note that the characterization of A0 in the statement
of the theorem along with the properties of A allows us to, through a
standard argument, conclude that A0 is a symmetric positive definite
matrix (see subsection 6.2 for a proof of this fact). Consider the family
of Dirichlet problems{

− div
(
Aε

T (x, ω)∇uε(x, ω)
)
= f(x) in D,

uε(x, ω) = 0 on ∂D,
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whose weak formulation is given by

(6.9)

∫
D
Aε

T (·, ω)∇uε(·, ω) · ∇ϕdx =

∫
D
fϕ dx, for all ϕ ∈ H1

0 (D).

For a fixed ω, we can use arguments similar to those in the one-
dimensional case, to show that the family of functions uε(·, ω) is
bounded inH1

0 (D), and the family of functions σε(·, ω)=Aε
T (·, ω)∇uε(·, ω)

is bounded in L2(D). Therefore, (along a subsequence) as ε → 0,

uε(·, ω) w
⇀ u0 in H1

0 (D),(6.10)

σε(·, ω) = Aε
T (·, ω)∇uε(·, ω) w

⇀ σ0 in L2(D).(6.11)

Note that (6.10) also implies that ∇uε(·, ω) w
⇀ ∇u0 in L2(D). Our

goal is to show that σ0 = A0∇u0 and that the limit u0 is the (weak)
solution of the problem

(6.12)

{
− div(A0∇u0) = f in D,

u0 = 0 on ∂D.

Let ξ ∈ Rn be fixed but arbitrary, and let p = pξ be given by

(6.13) p = ξ + vξ,

where vξ ∈ V 2
pot(Ω, T ) solves (6.5). Note that p ∈ L2

pot(Ω, T ) with

E {p} = ξ. Moreover, let q(ω) = A(ω)p(ω), and note that

E {q} =

∫
Ω

A(ω)p(ω)µ(dω) =

∫
Ω

A(ω)
(
ξ + vξ(ω)

)
µ(dω) = A0ξ,

where the last equality follows from (6.4). Moreover, let us note that,
since vξ satisfies (6.5), invoking Weyl’s decomposition theorem, we have

that q(ω) = A(ω)(ξ + vξ(ω)) belongs to the space L2
sol(Ω, T ).

By ergodicity of the dynamical system T , we can invoke the Birkhoff
ergodic theorem to conclude that, for almost all ω ∈ Ω,

pε
T (·, ω)

w
⇀ ξ, in L2(D), and qε

T (·, ω)
w
⇀ A0ξ, in L2(D).

Next, since A(ω) ∈ Rn×n
sym , we can write,

σε(x, ω) · pε
T (x, ω) = Aε

T (x, ω)∇uε(w, ω) · pε
T (x, ω)(6.14)

= ∇uε(x, ω) · qε
T (x, ω).
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Let us consider both sides of (6.14). Note that − divσε(·, ω) = f and
curlpε(·, ω) = 0 for every ε; this along with the weak convergence of
σε(·, ω) and pε

T (·, ω) allows us to use Lemma 3.1 to get

(6.15) σε(·, ω) · pε
T (·, ω)

w⋆

⇀ σ0 · ξ.

On the other hand, considering the right-hand side of (6.14), we note
that for every ε, we have curl∇uε = 0 and (for almost all ω ∈ Ω)
div qε(·, ω) = 0. Therefore, again we use Lemma 3.1 to get

(6.16) ∇uε(·, ω) · qε
T (·, ω)

w⋆

⇀ ∇u0 · A0ξ.

Finally, using (6.14) along with (6.15) and (6.16), we have ∇u0 ·A0ξ =
σ0 · ξ. Therefore, by symmetry of A0

σ0 · ξ = A0∇u0 · ξ,

and since ξ was arbitrary we have σ0 = A0∇u0. Therefore, recalling
the definition of σε and (6.11), we have that

Aε
T (·, ω)∇uε(·, ω) w

⇀ A0∇u0, in L2(D).

Hence, we can pass to limit ε → 0 in (6.9) to get∫
D
A0∇u0 · ∇ϕdx =

∫
D
fϕ dx, for all ϕ ∈ H1

0 (D),

which says that u0 is a weak solution to the problem (6.12). Note also
that since A0 and f are deterministic, u0 does not depend on ω. �

6.2. Variational characterization of the homogenized matrix.
Let the probability space (Ω,F , µ) be as in the previous subsection, and
let A ∈ E (ν1, ν2,Ω) be as in Theorem 6.1. For an arbitrary ξ ∈ Rn, we
let Jξ : V 2

pot(Ω, T ) → R be the quadratic functional below:

Jξ(v) =

∫
Ω

(
ξ + v(ω)

)
· A(ω)

(
ξ + v(ω)

)
µ(dω),(6.17)

v ∈ V 2
pot(Ω, T ).

Note that the dynamical system T in definition of V 2
pot(Ω, T ) here is

as in Theorem 6.1. The functional Jξ is strictly convex, coercive
and bounded from below, and therefore, it has a unique minimizer
in V 2

pot(Ω, T ). The Fréchet derivative of Jξ at the minimizer vξ in any
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direction φ is zero, that is:∫
Ω

A(ω)
(
ξ + vξ(ω)

)
·φ(ω)µ(dω) = 0,(6.18)

for all φ ∈ V 2
pot(Ω, T ).

Therefore, in view of Weyl’s decomposition, we have

A(ξ + vξ) ∈ L2
sol(Ω, T ).

It is clear from (6.18) that vξ is linear in ξ. Hence, the expected value
E {A(ξ + vξ)}, viewed as a function of ξ, is a linear mapping from Rn

to Rn. Consequently, we define the matrix A0 by

(6.19) A0ξ =

∫
Ω

A(ω)
(
ξ + vξ(ω)

)
µ(dω), ξ ∈ Rn.

Notice that A0 defined above is the same as the homogenized matrix
in Theorem 6.1.

Proposition 6.5. The homogenized matrix A0 satisfies the following :

(i) For every ξ ∈ Rn, ξ · A0ξ = inf
v∈V 2

pot(Ω,T )
Jξ(v).

(ii) The matrix A0 is symmetric and positive definite.

Proof. Let us note that

inf
v∈V 2

pot(Ω,T )
Jξ(v) = Jξ(vξ)

=

∫
Ω

(
ξ + vξ(ω)

)
· A(ω)

(
ξ + vξ(ω)

)
µ(dω)

= ξ ·
∫
Ω

A(ω)
(
ξ + vξ(ω)

)
µ(dω)

+

∫
Ω

vξ(ω) · A(ω)
(
ξ + vξ(ω))µ(dω).

Now, the first integral on the right-hand side reduces to ξ · A0ξ due
to (6.19), and the second integral vanishes because vξ and A(ξ + vξ)

are orthogonal in L2(Ω).

To show A0 is symmetric, we proceed as follows. Let ei and ej be ith
and jth standard basis vectors in Rn, and let vi and vj be minimizers
in V 2

pot(Ω, T ) of Jei and Jej , respectively. It is straightforward to see
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ei · A0ej =
∫
Ω
(ei + vi) · A(ej + vj) dµ. Thus, symmetry of A0 follows

from symmetry of A. As for positive definiteness, we note

ξ · A0ξ =

∫
Ω

(
ξ + vξ(ω)

)
· A(ω)

(
ξ + vξ(ω)

)
µ(dω)

≥ ν1

∫
Ω

|ξ + vξ(ω)|2 µ(dω)

≥ ν1

∣∣∣∣∫
Ω

(
ξ + vξ(ω)

)
µ(dω)

∣∣∣∣2 = ν1|ξ|2. �

7. Epilogue. In this article, we took a brief tour of stochastic
homogenization by studying homogenization of linear elliptic PDEs
of divergence form with stationary and ergodic coefficient functions.
The goal of our discussion was to provide an accessible entry into a
very rich theory that is elaborated in detail in books such as [15, 31],
which we refer to for in-depth coverage of various aspects of stochastic
homogenization. Also, we mention again the book [42] by Tartar, on
the general theory of homogenization, that is an excellent resource for
mathematicians working in the area as well as those who are entering
the field. We end our discussion by giving some pointers for further
reading.

Our discussion focused on homogenization of linear elliptic PDEs
with random coefficients. The homogenization of nonlinear PDEs in-
volves many additional difficulties both in theory as well as in numer-
ical computations. We refer to the book [36] as well as the articles
[13, 14, 21, 22] for stochastic homogenization theory for nonlinear
problems. See also [23, 24], which concern numerical methods for
stochastic homogenization of nonlinear PDEs.

Stochastic homogenization continues to be an active area of research.
Recent developments in the area include the works [9, 18, 25, 27,
28, 29]. We also point to the survey article [26], which provides a
review of the state-of-the-art of numerical methods for homogenization
of linear elliptic equations with random coefficients. Recent work in
homogenization of random nonlinear PDEs includes the articles [4, 5].
See also [3, 6], which concern stochastic homogenization of Hamilton-
Jacobi equations.
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Wissen. 245, Springer-Verlag, New York, 1982.

20. B. Dacorogna, Direct methods in the calculus of variations, Appl. Math. Sci.
78, Springer, New York, 1989.

21. G. Dal Maso and L. Modica, Nonlinear stochastic homogenization, Ann.

Mat. Pura Appl. 144 (1986), 347–389.

22. , Nonlinear stochastic homogenization and ergodic theory, J. reine
angew. Math. 368 (1986), 28–42.

23. Y. Efendiev and A. Pankov, Numerical homogenization and correctors for
nonlinear elliptic equations, SIAM J. Appl. Math. 65 (2004), 43–68.

24. , Numerical homogenization of nonlinear random parabolic opera-
tors, Multiscale Model. Sim. 2 (2004), 237–268.

25. A. Gloria, Numerical approximation of effective coefficients in stochastic
homogenization of discrete elliptic equations, ESAIM: Math. Model. Numer. Anal.
46 (2012), 1–38.

26. , Numerical homogenization: survey, new results, and perspectives,
in ESAIM: Proceedings 37 (2012), 50–116.

27. A. Gloria, S. Neukamm and F. Otto, Quantification of ergodicity in stochas-

tic homogenization: Optimal bounds via spectral gap on glauber dynamics, Invent.
Math. (2013), 1–61.

28. , A quantitative two-scale expansion in stochastic homogenization of

discrete linear elliptic equations, Model. Math. Anal. Numer., 2013.

29. A. Gloria and F. Otto, An optimal variance estimate in stochastic homoge-
nization of discrete elliptic equations, Ann. Prob. 39 (2011), 779–856.

30. U. Hornung, Homogenization and porous media, Volume 6, Springer, 1997.

31. V.V. Jikov, S.M. Kozlov and O.A. Olĕınik, Homogenization of differential
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