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GEOMETRIC ASPECTS OF PELLET’S
AND RELATED THEOREMS

A. MELMAN

ABSTRACT. Pellet’s theorem determines when the zeros
of a polynomial can be separated into two regions, according
to their moduli. We refine one of those regions and replace
it with the closed interior of a lemniscate that provides more
precise information on the location of the zeros. Moreover,
Pellet’s theorem is considered the generalization of a zero
inclusion region due to Cauchy. Using linear algebra tools,
we derive a different generalization that leads to a sequence
of smaller inclusion regions, which are also the closed
interiors of lemniscates.

1. Introduction. Pellet’s classical theorem ([15], [10, Theorem
(28,1)]) derives a criterion for the separation of the zeros of a general
polynomial with complex coefficients into two regions of the complex
plane: a disk and the complement of a larger disk, both centered at
the origin. Our first result is to replace the latter set by the interior of
a lemniscate, which provides more precise information on the location
of the zeros. It adds a geometric component to a theorem that is
formulated in terms of simple bounds on the moduli of the zeros that
obscure the details of the zero distribution. Although Pellet’s theorem
is often viewed as the generalization of an inclusion region by Cauchy
([3], [10, Theorem (27,1)]), we show that a different generalization can
be obtained, leading to smaller regions consisting, once again, of the
closed interiors of lemniscates.

Both Pellet’s theorem and Cauchy’s result can be proven with
Rouché’s theorem. However, to refine and extend these theorems, we
used the Gershgorin set to estimate the eigenvalues of a polynomial’s
companion matrix. This set is a union of disks in the complex plane,
centered at the diagonal elements of the matrix. To be able to extract
useful results from this often crude method, we consider a similarity
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transformation of an appropriate polynomial of the companion matrix,
rather than the companion matrix itself. The main advantage of the
Gershgorin set, as we apply it here, is to point out results that might
otherwise not be apparent, even if their subsequent proof by Rouché’s
theorem is relatively straightforward.

Although Pellet’s theorem was recently generalized to matrix poly-
nomials in [2, 12], our results here cannot easily be similarly extended
because of their heavy dependence on the scalar nature of the coeffi-
cients. We will discuss other improvements after the derivation of our
results.

A good introduction to Gershgorin disks and other eigenvalue inclu-
sion regions can be found in [5, Chapter 6]. For a more in-depth study
of the subject, including its interesting history, we refer to [19] and the
many references therein. For results concerning polynomial zeros we
refer to the encyclopedic works [10, 16].

In Section 2, we state the aforementioned theorems, together with
definitions and lemmas that are needed in Section 3, where we derive
and illustrate our main results.

2. Preliminaries. We start by stating Pellet’s theorem.

Theorem 2.1. ([15], [10, Theorem (28,1), page 128]). Given the
polynomial p(z) = zn + an−1z

n−1 + · · · + a1z + a0 with complex
coefficients, a0ak ̸= 0, and n ≥ 3. Let 1 ≤ k ≤ n − 1, and let the
polynomial

fk(x) = xn + |an−1|xn−1 + · · ·+ |ak+1|xk+1 − |ak|xk

+ |ak−1|xk−1 + · · ·+ |a0|

have two distinct positive roots r and R, r < R. Then p has exactly
k zeros in or on the circle |z| = r and no zeros in the annular ring
r < |z| < R.

We will not dwell on the numerical solution of fk(x) = 0. A
systematic method to do so can be found in [13], while a heuristic
method was developed in [18]. An implementation using the Newton
polygon can be found in [1, 2] for scalar and matrix polynomials,
respectively.
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Pellet’s theorem is considered the generalization of the following
result by Cauchy:

Theorem 2.2. ([3], [10, Theorem (27,1), page 122]). All the zeros
of the polynomial p(z) = zn + an−1z

n−1 + · · ·+ a1z + a0 with complex
coefficients lie in the circle |z| = r, where r is the positive root of the
equation

xn − |an−1|xn−1 − · · · − |a1|x− |a0| = 0.

Both these theorems are a direct consequence of Rouché’s theorem
([17], [6, Theorem 1.6, page 181]). However, they only provide in-
formation on the moduli of the zeros. To introduce more interesting
geometry into these results, leading to better information on the dis-
tribution of the zeros in the complex plane, we will instead use linear
algebra tools, namely, Gershgorin’s theorem and the polynomial’s com-
panion matrix. We state Gershgorin’s theorem next.

Theorem 2.3. (Gershgorin, [4], [5, Theorem 6.1.1, page 344]). All
the eigenvalues of the n × n complex matrix A with elements aij are
located in the union of n disks

Γ(A) =

n∪
i=1

{z ∈ IC : |z − aii| ≤ R′
i(A)}, with R′

i(A) =

n∑
j=1

j ̸=i

|aij |.

Moreover, if ℓ disks form a connected region that is disjoint from the
remaining n− ℓ disks, then this region contains exactly ℓ eigenvalues.

R′
i(A) is called the ith deleted row sum of A. The spectrum of

A and AT is the same, so that the Gershgorin set also has a column
version, obtained by applying the theorem to AT , where the deleted
column sums replace the deleted row sums. In addition, any similarity
transformation of A, namely, S−1AS for a nonsingular matrix S, has
the same eigenvalues as A, but may have a smaller Gershgorin set.
Frequently, S is chosen to be a diagonal matrix.

Eigenvalue inclusion sets can be used to estimate zeros of a polyno-
mial by applying them to the polynomial’s companion matrix, whose
eigenvalues are the zeros of the polynomial. A common choice for a
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companion matrix of the monic polynomial p(z) = zn + an−1z
n−1 +

· · ·+ a1z + a0 is given by (see, e.g., [5, page 146]):

(2.1) C(p) =


0 −a0
1 −a1

. . .
...

1 −an−1

 ,

where blank entries represent zeros, a convention we will follow
throughout. In what follows, we set an = 1, where an is the lead-
ing coefficient of the aforementioned polynomial p and denote an open
disk centered at a with radius ρ by O(a; ρ). The closure and the com-
plement of a set ∆ will be denoted by ∆ and ∆c, respectively. We also
define the following.

Definition 2.4. The associated polynomials {pk}n−1
k=1 of the polyno-

mial
p(z) = zn + an−1z

n−1 + · · ·+ a0

are defined by p1(z) = z and the recursion

pk+1(z) = z(pk(z) + an−k).

Therefore, pk, 1 ≤ k ≤ n− 1, is given by

pk(z) = zk + an−1z
k−1 + · · ·+ an−k+1z.

Definition 2.5. The polynomial Pk is obtained from pk by replacing
its coefficients with their moduli, i.e.,

Pk(z) = zk + |an−1|zk−1 + · · ·+ |an−k+1|z.

Definition 2.6. The complex n × n matrix Mk(p), 1 ≤ k ≤ n − 1, is
defined as

Mk(p) = pk(C(p)),

where C(p) is the companion matrix of p.

The eigenvalues of Mk(p) are {pk(zi)}ni=1, where {zi}ni=1 are the
eigenvalues of C(p), which are also the zeros of p. Its structure is
derived in the following lemma.
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Lemma 2.7. The matrix Mk(p), 1 ≤ k ≤ n− 1, is given by

Mk(p) =









































0 −a0

an−k+1

. . . −a1
. . .

an−k+2

. . .
. . .

...
. . .

. . .

...
. . .

. . . 0 −an−k−1

. . .
. . . −a0

an−1

. . .
. . . an−k+1 −an−k

. . .
. . . −a1 −a0

1
. . .

. . . an−k+2

. . .
. . .

... −a1
. . .

. . .
...

. . . −an−k−1

...

. . . an−1 −an−k −an−k−1

1 −an−k









































,

where k diagonal elements are equal to an−k, while the remaining ones
are zero.

Proof. The proof is by induction. Since M1(p) = C(p), the lemma
is obviously true for k = 1. Now assume that is true for Mj(p),
1 ≤ j ≤ n − 2. A straightforward calculation then shows that
C(p)Mj(p) is given by



























































0 −a0 an−ja0

0
. . . −a1

. . . an−ja1

an−j+1

. . .
. . . −a2

. . .
. . . an−ja2

an−j+2

. . .
. . .

. . .
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

. . .
. . .

. . . −a0 an−jan−j−3

an−1

. . .
. . .

. . .
. . . 0 −an−j−2

. . .
. . .

. . . −a1 an−jan−j−2 − a0

1
. . .

. . .
. . .

. . . 0 −an−j−1

. . .
. . .

. . . −a2 an−jan−j−1 − a1
. . .

. . .
. . .

. . . an−j+1 −an−j

. . .
. . .

. . .
...

...

. . .
. . .

. . . an−j+2

. . .
. . .

. . .
...

...

. . .
. . .

...
. . .

. . . −an−j−2 an−jan−3 − an−j−3

. . . an−1

. . . −an−j−1 an−jan−2 − an−j−2

1 −an−j an−jan−1 − an−j−1



























































,

from which one easily deduces that Mj+1(p) = C(p)Mj(p) + an−jC(p)
is of the same form as Mj(p). �

The form of Mk(p) makes it convenient to apply the column version
of Gershgorin’s theorem since the deleted column sums are the same
for identical diagonal elements. To add flexibility to the Gershgorin
set, we will use a diagonal similarity transformation. The next lemma
shows its effect on Mk(p).
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Lemma 2.8. Let Dx be a diagonal matrix with diagonal (xn, xn−1, . . . ,
x) for x > 0. Then the matrix D−1

x Mk(p)Dx, 1 ≤ k ≤ n − 1, is given
by









































0 −a0/x
n−k

an−k+1x
. . . −a1/x

n−k−1
. . .

an−k+2x
2

. . .
. . .

...
. . .

. . .

...
. . .

. . . 0 −an−k−1/x
. . .

. . . −a0/x
n−k

an−1x
k−1

. . .
. . . an−k+1x −an−k

. . .
. . . −a1/x

n−k−1
−a0/x

n−k

xk . . .
. . . an−k+2x

2
. . .

. . .
... −a1/x

n−k−1

. . .
. . .

...
. . . −an−k−1/x

...

. . . an−1x
k−1

−an−k −an−k−1/x

xk
−an−k









































·

Proof. For any diagonal matrixD with diagonal (d1, d2, . . . , dn), and
matrix A with elements aij , (D

−1AD)ij = djaij/di. The lemma then
follows directly by substituting Dx in D−1

x Mk(p)Dx. �

In what follows, we will frequently encounter lemniscates of the form
|q(z)| = α, where q is a polynomial. The zeros of q are the foci of
the lemniscate, which, depending on the value of α can consist of
at most m disjoint closed curves, where m is the order of q. These
curves are simple except for at most m − 1 critical values of α. If a
lemniscate has distinct foci {zj}mj=1, and if there exists η > 0 so that
the disks ∆j = {z ∈ IC : |z − zj | < η} are disjoint, then the lemniscate
{z ∈ IC : Πm

j=1|z − zj | = ρn} is contained in the union ∪m
j=1∆j for any

ρ ≤ η. Since a lemniscate must contain all of its foci in its interior, this
provides an easily computable sufficient condition for a lemniscate to
be composed of m disjoint simple curves. We refer to [11, Volume I,
page 379] for a more detailed discussion of lemniscates.

3. Main results. Our first result is Pellet’s theorem with a refine-
ment of the region outside the disk with radius R in Theorem 2.1, where
the largest zeros can be found.

Theorem 3.1. Let p(z) = zn+an−1z
n−1+· · ·+a1z+a0 be a polynomial

with complex coefficients, a0 ̸= 0, 1 ≤ k ≤ n− 1, n ≥ 3, and with zeros
{zi}ni=1, labeled so that |z1| ≤ |z2| ≤ · · · ≤ |zn|. Let {pj}n−1

j=1 be the
associated polynomials of p, let Pj be the polynomial obtained from pj
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by replacing its coefficients with their moduli, and let

µ(k, x) =

k−1∑
j=0

|aj |xj−k.

Furthermore, let

fk(x) = xn + |an−1|xn−1 + · · ·+ |ak+1|xk+1 − |ak|xk

+ |ak−1|xk−1 + · · ·+ |a0|

have two distinct positive roots r and R such that 0 < r < R, and define
the disjoint sets

Ω1(k) = {z ∈ IC : |pn−k(z)| ≤ Pn−k(r) = |ak| − µ(k, r)},
Ω2(k) = {z ∈ IC : |pn−k(z) + ak| ≤ µ(k,R) = |ak| − Pn−k(R)}.

Then:

(i) the k zeros {zi}ki=1 are contained in the closed disk O(0; r),
whereas the remaining n − k zeros {zi}ni=k+1 are contained in
Ω2(k), the closed interior of a lemniscate;

(ii) O(0; r) ⊆ Ω1(k) and Ω2(k) ⊆ Oc(0;R);
(iii) if Ω2(k) consists of disjoint regions whose boundaries are simple

closed (Jordan) curves, then each disjoint region contains as many
zeros of p as it contains zeros of pn−k(z) + ak (or foci of Ω2(k)).

Proof. We start by observing that ak ̸= 0 since fk has positive zeros,
and that fk can be written as

(3.1) fk(x) = xk(Pn−k(x)− |ak|+ µ(k, x)).

That the zeros {zi}ki=1 are contained in the closed disk O(0; r) is
obtained from Rouché’s theorem, exactly as in the proof of Pellet’s
theorem (see, e.g., [10, Theorem (28,1), page 128]).

The numbers {pn−k(zi)}ni=1 are the eigenvalues of pn−k(C(p)) =
Mn−k(p), and therefore also of D−1

x Mn−k(p)Dx for any x > 0,
where Dx is as in Lemma 2.8. From that same lemma, the matrix
D−1

x Mn−k(p)Dx is given by



610 A. MELMAN









































0 −a0/x
k

ak+1x
. . . −a1/x

k−1
. . .

ak+2x
2

. . .
. . .

...
. . .

. . .

...
. . .

. . . 0 −ak−1/x
. . .

. . . −a0/x
k

an−1x
n−k−1

. . .
. . . ak+1x −ak

. . .
. . . −a1/x

k−1
−a0/x

k

xn−k . . .
. . . ak+2x

2
. . .

. . .
... −a1/x

k−1

. . .
. . .

...
. . . −ak−1/x

...

. . . an−1x
n−k−1

−ak −ak−1/x

xn−k
−ak









































,

and its Gershgorin column set is easily seen to be the union of a disk
centered at the origin with radius Pn−k(x) and a disk centered at −ak
with radius µ(k, x). These disks are disjoint if there exists δ > 0 such
that Pn−k(δ) + µ(k, δ) < |ak|, which, in view of (3.1), is equivalent to
fk(δ) < 0. It therefore suffices to choose any δ for which r < δ < R to
obtain disjoint disks. Since the diagonal of D−1

δ Mn−k(p)Dδ contains k
zeros, we conclude that exactly k of the n numbers {pn−k(zi)}ni=1 lie
in the closed disk O(0;Pn−k(δ)), while the remaining n − k lie in the
disjoint closed disk O(−ak;µ(k, δ)). Since this is true for any δ such
that r < δ < R, the same conclusions hold for the disks O(0;Pn−k(r))
and O(−ak;µ(k,R)), respectively. This concludes the proof of the first
part of the theorem.

Recalling that we defined an = 1, we now observe that |z| ≤ r
implies that

|pn−k(z)|=
∣∣∣∣ n∑
j=k+1

ajz
j−k

∣∣∣∣≤ n∑
j=k+1

|aj ||z|j−k≤
n∑

j=k+1

|aj |rj−k=Pn−k(r),

which means that O(0; r) ⊆ Ω1(k). It also means that it is the k
numbers {pn−k(zi)}ki=1, corresponding to the first k zeros of p, that
lie in O(0;Pn−k(r)). To show the second inclusion in the statement of
the theorem, assume that z ∈ Ω2(k). Since the disk O(−ak;µ(k,R)) is
bounded away from the origin, we have that |pn−k(z)| ≥ |ak|−µ(k,R) =
Pn−k(R) > 0, and therefore that

(3.2) Pn−k(|z|) ≥ |pn−k(z)| ≥ Pn−k(R) > 0.

The polynomial Pn−k is strictly increasing for positive arguments, so
that inequality (3.2) implies that |z| ≥ R and therefore that z must lie
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in Oc(0;R). This proves the second part of the theorem.

The lemniscate Ω2(k) has n−k foci, which are the zeros of pn−k(z)+
ak, and it can consist of, at most, n− k disjoint regions. Any disjoint
region contains one or more foci. Let us now assume that there exists
a disjoint region H of Ω2(k) with a simple boundary. Define

Ω̃2(k) = {z ∈ IC : |pn−k(z) + ak| ≤ µ(k, δ)}, r < δ < R,

where R − δ is small enough so that Ω̃2(k) (which contains Ω2 since
µ(k, δ) > µ(k,R)) has the same number of disjoint regions with simple

boundary as Ω2, one of which, H̃, contains H. Similarly, as before, we

have for z ∈ Ω̃2(k) that |pn−k(z)| ≥ |ak| − µ(k, δ) > Pn−k(δ) > 0, and
therefore that

Pn−k(|z|) ≥ |pn−k(z)| > Pn−k(δ) > 0,

so that now |z| > δ.

For any z on ∂H̃, we have that

(3.3) |pn−k(z) + ak| = µ(k, δ).

Since |z| > δ, multiplying both sides of (3.3) by |z|k yields∣∣zn + an−1z
n−1 + · · ·+ akz

k
∣∣

= |ak−1|
∣∣∣∣zδ

∣∣∣∣|z|k−1 + |ak−2|
∣∣∣∣zδ

∣∣∣∣2|z|k−2 + · · ·+ |a0|
∣∣∣∣zδ

∣∣∣∣k
> |ak−1||z|k−1 + |ak−2||z|k−2 + · · ·+ |a0|

≥
∣∣ak−1z

k−1 + ak−2z
k−2 + · · ·+ a0

∣∣ .
Then, by Rouché’s theorem, the polynomial p has as many zeros inside

this disjoint region H̃ as zk(pn−k(z) + ak), which is as many zeros as

pn−k(z) + ak since H̃ does not contain 0. Because this remains true as
δ → R−, the proof follows. �

It is a direct consequence of part (iii) of this theorem that if Ω2(k)
consists of n − k disjoint regions with simple boundaries, then each
region must contain exactly one zero of p.
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Figure 1. The sets Ω1(5) (light gray) and Ω2(5) (dark gray) for qA.

We illustrate this theorem at the hand of the polynomial qA, defined
by

qA(z) = z8 + 2z7 − (1− i)z6 − 11z5 +
1

2
z4 + z3 +

5

2
z2 − z + (1 + i),

and its sets Ω1(5) and Ω2(5). We obtain r = 0.9872 and R = 1.4065,
so that

Ω1(5) = {z ∈ IC : |z3 + 2z2 − (1− i)z| ≤ 4.3065},
Ω2(5) = {z ∈ IC : |z3 + 2z2 − (1− i)z − 11| ≤ 2.2720}.

Figure 1 shows Ω1(5) in light gray and Ω2(5) in dark gray for qA, while
its zeros are represented by the white dots. The two circles are the
boundaries of the disks O(0; r) and O(0;R). The smaller disk, which
contains five zeros, is contained in Ω1(5), while Ω2(5), which contains
the remaining three zeros, lies outside the larger disk. The disk O(0; r)
is clearly preferable to Ω1(5), whereas Ω2(5) is clearly preferable to
Oc(0;R), as predicted by the theorem. We remark that Ω2(k) does
not necessarily consist of disjoint regions, although it often happens,
as in this case. The boundary of Ω2(5) has foci at 1.8291 − 0.1119i,
−2.1035 + 1.5937i and −1.7257 − 1.4818i, which can be enclosed in
disjoint disks of radius 1.5 centered at these foci. Since (1.5)3 = 3.3750
and 2.2720 < 3.3750, Ω2(5) must consist of three disjoint regions with
simple boundaries, as explained at the end of Section 2. By part (iii)
of Theorem 3.1 each must contain exactly one zero of qA.
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Figure 2. The sets Ω1(5) (light gray) and Ω2(5) (dark gray) for qA,
compared to the refined Pellet region.

In [9] and [10, Theorem (29,1), page 130 and Exercise 2, page 133]
a refinement of Pellet’s theorem was derived, requiring the solution
of an additional equation, related to fk(x) = 0 in Theorem 3.1, along
with a nonzero requirement on one additional coefficient. It was further
generalized in [8, Theorem 1]. The refinement leads to a slightly better
gear-wheel shaped region (instead of an annulus) that does not contain
any zeros of the polynomial. In Figure 2, we have compared Ω1(5) and
Ω2(5) for qA to the refined region from [10, Theorem (29,1), page 130].
The radii of the circles determining the inner boundary of this region
are 0.8612 and 0.9872, whereas for the outer boundary they are given
by 1.4065 and 1.4331.

Let us consider two more examples, namely, qB = z3 + 4z2 + 2z + 1
(the example in [8]) for k = 2, and qC = z8+3iz5+z4−8iz3+2iz+1 for
k = 3. Similar conclusions as for qA can be drawn for these polynomials
as can be seen from Figure 3, which shows (using the same conventions
as before) the corresponding sets Ω1(k) and Ω2(k) for qB (left) and qC
(right) with k = 2 and k = 3, respectively, together with the refined
Pellet region from [10, Theorem (29,1), page 130]. We leave out the
details for brevity.

Remarks. (1) By using the reciprocal polynomial, similar lemnis-
cates can be derived for the reciprocals of the zeros of a polynomial,
leading to corresponding inclusion regions for the zeros themselves, al-
though these are more complicated. They can be combined with our
previous results as is illustrated for qA in Figure 4, which also shows the



614 A. MELMAN

Figure 3. The sets Ω1(k) (light gray) and Ω2(k) (dark gray) for qB and
qC with k = 2 and k = 3, respectively, compared to the refined Pellet region.

Figure 4. Inclusion sets obtained from both the polynomial and its recip-
rocal for qA.

same refined Pellet region as before. Results of a very similar nature
are obtained for qB and qC .

(2) A converse of Pellet’s theorem is stated in [20] (see also [10,
Theorem (28,3), page 129]), whose proof was later corrected in [14]. It
can be formulated as follows. Let aj (j = 1, 2, . . . , n) be fixed complex
coefficients and ϵj (j = 1, 2, . . . , n) arbitrary complex numbers with
|ϵj | = 1 for all j = 1, 2, . . . , n. Let τ be any positive number such that
it is not a zero of any polynomial

∑n
j=1 ajϵjz

j , and let every polynomial

of that form have k zeros (0 < k < n) in O(0; τ). Then fk (with fk
as defined in Theorem 2.1) has two positive roots r and R such that
r < ρ < R.

It may be possible to construct a similar converse of Theorem 3.1,
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although its proof would be well beyond the scope of this paper.

(3) A sufficient condition for the n−k largest zeros to have a modulus
strictly larger than R is for Ω2(k) to be contained in the interior of
Oc(0;R). A similar condition based on the reciprocal polynomial holds
for the k smallest zeros. In [21], different (but more explicit) conditions
were derived for the same situation. The special case r = R = ρ was
considered in [20] (also mentioned in [10, Theorem (28,2), page 129]),
where it was shown that the polynomial then has ℓ (ℓ ≥ 0) double
roots on the circle |z| = ρ, k− ℓ zeros inside and n−k− ℓ zeros outside
this circle, respectively. Theorem 3.1 adds to this result a sufficient
condition guaranteeing that no double roots lie on the circle |z| = ρ,
as follows: from its proof, we have in this case that the two disks in
the Gershgorin set of D−1

x Mn−k(p)Dx are tangent to each other when
pn−k(ζ) = −Pn−k(ρ)ak/|ak| for a point ζ ∈ Ω1(k) ∩ Ω2(k), i.e., when

(3.4) pn−k(ζ) +
Pn−k(ρ)

|ak|
ak = 0 .

This means that Ω1(k) and Ω2(k) touch at exactly n−k points, namely,
the zeros of the polynomial of degree n− k in (3.4). If those points do
not lie on the circle |z| = ρ, then, because the zeros of a polynomial are
continuous functions of their coefficients, none in the group of largest
zeros of p can cross the gap between Ω2(k) and the circle when the
coefficients are continuously perturbed from a situation of two very
close distinct values for r and R to one where r = R. In view of [20],
this means that in such a case no double roots of p can lie on the circle.

(4) The set Ω2(k) can also be derived without using Gershgorin’s
theorem in the following way. The equation p(z) = 0 can be written as

zk(zn−k + an−1z
n−k−1 + · · ·+ ak) = −ak−1z

k−1 − · · · − a0,

from which we have∣∣zn−k + an−1z
n−k−1 + · · ·+ ak

∣∣ ≤ |ak−1|
|z|

+ · · ·+ |a0|
|z|k

.

The zeros {zi}ni=k+1, which satisfy |zi| ≥ R, must then also satisfy∣∣zn−k
i + an−1z

n−k−1
i + · · ·+ ak

∣∣ ≤ |ak−1|
R

+ · · ·+ |a0|
Rk

,

and therefore zi ∈ Ω2(k) for k + 1 ≤ i ≤ n.
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On the other hand, Gershgorin’s theorem permits a unified and
convenient treatment of both the previous and the next theorem, our
second result, which represents a generalization of Theorem 2.2.

Theorem 3.2. Let p(z) = zn+an−1z
n−1+· · ·+a1z+a0 be a polynomial

with complex coefficients, a0 ̸= 0, 1 ≤ k ≤ n − 1, n ≥ 3, and with
zeros {zi}ni=1. Let {pj}n−1

j=1 be the associated polynomials of p, let Pj be
the polynomial obtained from pj by replacing its coefficients with their
moduli, and let

µ(k, x) =

k−1∑
j=0

|aj |xj−k.

For j = 0, 1, . . . , n− 1, let sj be the unique positive root of

hj(x) = xn + |an−1|xn−1 + · · ·
+ |aj+1|xj+1 − |aj |xj − |aj−1|xj−1 − · · · − |a0|.

Then

(1) all the zeros of p are contained in Υ1(k) and also in Υ2(k), where

Υ1(k) = {z ∈ IC : |pn−k(z)| ≤ Pn−k(sk) = µ(k, sk) + |ak|},
Υ2(k) = {z ∈ IC : |pn−k(z) + ak| ≤ µ(k, sk−1) = Pn−k(sk−1) + |ak|},

each of which is the closed interior of a lemniscate;
(2) if Υ1(k) or Υ2(k) consists of disjoint regions whose boundaries are

simple closed (Jordan) curves and ℓ is the number of foci of the
corresponding lemniscate contained in any such region, then that
region contains ℓ zeros of p when that region does not contain the
origin, and when it does contain the origin, then it contains ℓ+ k
zeros of p.

Proof. We begin by observing that hj can be written as

(3.5) hj(x) = xj(Pn−j(x)− |aj | − µ(j, x)).

Let us now consider once more the matrix D−1
x Mn−k(p)Dx for any

x > 0, where Dx is as in Lemma 2.8, whose eigenvalues are the numbers
{p(zi)}ki=1. Its Gershgorin column set, which contains these numbers,
is the union of the two disks O(0;Pn−k(x)) and O(−ak;µ(k, x)). As x
increases, so does Pn−k(x), while µ(k, x) decreases. The former disk
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will then encompass the latter when Pn−k(x) = |ak| + µ(k, x), or, as
can be seen from (3.5), hk(x) = 0. That is, when x = sk. All the zeros
of p are then contained in the set

Υ1(k) = {z ∈ IC : |pn−k(z)| ≤ Pn−k(sk)}.

Because hk(sk) = 0, the right-hand side of the inequality defining Υ1(k)
can be replaced by µ(k, sk) + |ak|.

On the other hand, we can let x decrease until the disk centered at
−ak encompasses the one centered at the origin. This happens when
µ(k, x) = |ak|+ Pn−k(x). Since, by using (3.5), we can write

Pn−k(x) + |ak| − µ(k, x)

= x−1
(
x
(
Pn−k(x) + |ak|

)
− xµ(k, x)

)
= x−1

(
Pn−k+1(x)−

(
|ak−1|+ µ(k − 1, x)

))
= x−khk−1(x),

we conclude that x = sk−1. All the zeros of p are then contained in the
set

Υ2(k) = {z ∈ IC : |pn−k(z) + ak| ≤ µ(k, sk−1)}.

Because hk−1(sk−1) = 0, the right-hand side of the inequality defining
Υ1(k) can be replaced by Pn−k(sk−1) + |ak|.

If there exists a disjoint region H of Υ1(k) with a simple boundary,
we proceed similarly as in the proof of Theorem 3.1 and first define

Υ̃1(k) = {z ∈ IC : |pn−k(z)| ≤ Pn−k(s)}, s > sk,

where s − sk is small enough so that Υ̃1(k) (which contains Υ1(k)
because Pn−k(s) > Pn−k(sk)) has the same number of disjoint regions

with simple boundary as Υ1(k), one of which, H̃, contains H. Any

z ∈ ∂H̃ satisfies

Pn−k(|z|) ≥ |pn−k(z)| = Pn−k(s),

implying that |z| ≥ s because Pn−k is increasing for positive arguments.
In addition, because s > sk, we also have that Pn−k(s) > µ(k, s)+ |ak|.
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Then we can write for any z ∈ ∂H̃:

|pn−k(z)| = Pn−k(s) > |ak|+
|ak−1|

s
+ · · ·+ |a0|

sk

≥ |ak|+
|ak−1|
|z|

+ · · ·+ |a0|
|z|k

,

from which it follows that

|z|k|pn−k(z)| > |ak||z|k + |ak−1||z|k−1 + · · ·+ |a0|,

and therefore

|zkpn−k(z)| >
∣∣akzk + ak−1z

k−1 + · · ·+ a0
∣∣ .

Since we assumed that ∂H̃ is a simple closed (Jordan) curve, we
conclude from Rouché’s theorem that the polynomial p has as many

zeros in H̃ as the polynomial zkpn−k(z). If 0 /∈ H̃,then that number

is the number of foci of the lemniscate forming the boundary of Υ̃1(k)

that lie in H̃, i.e., those zeros of pn−k that are contained in H̃. If 0 ∈ H̃,
then k is added to the number of foci. Because this remains true as
s → s+k , the proof follows. The proof for Υ2(k) is analogous. �

Following are the four lowest-order lemniscates containing all the
zeros of p:

Υ1(n− 1) = {z ∈ IC : |z| ≤ sn−1},
Υ2(n− 1) = {z ∈ IC : |z + an−1| ≤ |an−1|+ sn−2},
Υ1(n− 2) = {z ∈ IC : |z(z + an−1)| ≤ sn−2(sn−2 + |an−1|)},
Υ2(n− 2) = {z ∈ IC : |z(z + an−1) + an−2|

≤ sn−3(sn−3 + |an−1|) + |an−2|}.

The sets Υ1(n− 1) and Υ2(n− 1) are closed disks, whereas the sets
Υ1(n − 2) and Υ2(n − 2) are the closed interiors of ovals of Cassini
([7, pages 153–155]). The zeros of p lie in the intersection of all of the
aforementioned sets, although, with the exception of the sets that are
disks, such an intersection is in general difficult to compute. When all
the coefficients of the polynomial are real, then all our inclusion sets
are symmetric with respect to the real axis.
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Figure 5. The sets Υ1(k) (left) and Υ2(k) (right) for qD with k = 6, 5, 3.

To illustrate Theorem 3.2, we consider the polynomial qD, defined
by

qD(z) = z8 +
5

2
z7 − 1

2
z6 − (2− 3i)z5

− 1

2
z4 − 4z3 + 2z2 − 5z + i.

Figure 5 shows the corresponding sets Υ1(k) on the left and Υ2(k) on
the right for k = 6, 5, 3. To better compare them, the lemniscates have
been superimposed in alternating shades of light and dark gray. The
circles mark the boundaries of the sets Υ1(n − 1) = Υ1(7) (left) and
Υ2(n−1) = Υ2(7) (right). The largest proper lemniscates in dark gray,
the ones in light gray, and the smallest ones in dark gray correspond
to k = 6, k = 5, and k = 3, respectively. The white dots are the zeros
of qD.

Remark 3.3. (1) The sets Y1(k) and Y2(k) are not necessarily nested
for successive values of k, although they do tend to become smaller
as k decreases.

(2) Theorem 3.2 is a generalization of Theorem 2.2, since that theorem
is obtained for Υ1(k) with k = n− 1 in Theorem 3.2. Lemniscates
are more interesting geometric regions than disks, and even low-
order lemniscates can already provide significantly improved inclu-
sion regions for the zeros of a polynomial. The computation of the
positive root of any hj is inexpensive compared to the computation
of the (generally complex) zeros of p.

(3) The last part of the previous theorem’s proof shows that it can
be proven with just Rouché’s theorem, without using Gershgorin’s
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theorem. However, the latter provides a natural explanation for
the appearance of the functions hj that would otherwise be lacking
and also creates a larger framework in which both Pellet’s and
the generalized Cauchy theorems are obtained as special cases for
special values of x in D−1

x Mn−k(p)Dx. This framework generates
infinitely many other inclusion regions depending on the values of
x, e.g., the value for which both disks in the proof of Theorem 3.2
have the same radius, leading to a union of the interiors of two
lemniscates, to give but one example.

(4) The Υ1(k) and Υ2(k) sets can sometimes be simplified if the co-
efficients of the polynomial exhibit certain patterns. For instance,
if the leading coefficients fit the pattern of a power of (z − a) for
some complex number a, then the corresponding set, defined by
a polynomial of the same degree as the power, becomes a simple
disk. Consider as an example the set Υ2(3) for the polynomial
z5 + 2iz4 − z3 + z2 + 3z − 1 , whose first three coefficients are the
same as those of (z + i)2. It is given by

Υ2(3) = {z ∈ IC : |z + i| = s2 + 1}.

The inclusion sets for lacunary polynomials with several consecu-
tive leading zero coefficients can be treated in the same way since
their leading coefficients fit the pattern of a power of (z − 0).
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17. E. Rouché, Mémoire sur la série de Lagrange, J. Ecole Polytech. 22 (1862),
217–218.

18. S. Rump, Ten methods to bound multiple roots of polynomials, J. Comp.

Appl. Math. 156 (2003), 403-432.
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