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A CLASS OF GROUPS DETERMINED
BY THEIR 3-S-RINGS

STEPHEN P. HUMPHRIES AND EMMA L. RODE

ABSTRACT. We study the class of groups G satisfying
the condition that, for every ordered pair x, y ∈ G, one of
the following is true: (1) xy = yx; (2) x and y are conjugate;
(3) xy = x−1; (4) yx = y−1. We describe all such groups
completely and give a further condition that characterizes
these groups in terms of their 3-S-rings.

1. Introduction. When Frobenius developed the concept of a char-
acter table for non-abelian groups, he also studied [4] the k-characters
of a group, these being functions defined on the k-classes for k =
2, 3, . . ., where 1-classes are conjugacy classes and 1-characters are the
usual group characters.

The center of the group ring of a finite group G, Z(CG), is also
the S-ring over G determined by the 1-classes. For k > 1, generalized
centralizer rings, called k-S-rings, are defined (see Section 2 for details)
by taking the S-ring over Gk determined by the k-classes of G. It
is a standard result to show that the 1-characters, i.e., the character
table, can be determined from the centralizer ring Z(CG). However,
for k = 2, it is possible to find groups with the same 2-S-rings, but
different 2-characters, and to find groups with the same 2-characters,
but different 2-S-rings [5]. We note that the second author has recently
shown that the 3-S-ring of a finite group G determines G [9].

The fact that Z(CG) is a commutative ring plays a key role in
calculating the character table from Z(CG). Further, commutative
S-rings have been studied in [11]. In this paper we characterize groups
which have a commutative 3-S-ring, which we will callS(3)-com groups.
We prove the following results:
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Theorem 1.1. If a finite group G is S(3)-com, then for all ordered
pairs x, y ∈ G we have at least one of :

(1) xy = yx;
(2) x and y are conjugate;
(3) xy = x−1;
(4) yx = y−1.

A finite group G will be called a pre-S(3)-com group if it satisfies
the conclusion of Theorem 1.1. We determine all pre-S(3)-com groups:

Theorem 1.2. A finite group G is a pre-S(3)-com group if and only
if G satisfies one of the following conditions:

(1) G is abelian;
(2) G is the generalized dihedral group of an abelian group N of odd

order, i.e., G = N oϕ C2 where C2 is the cyclic group of order 2
and its generator conjugates elements of N to their inverses;

(3) G ∼= Q8 × Cr
2 , where Q8 is the quaternion group of order 8 and

r ≥ 0.

We note that each of the above groups have irreducible characters
of degree at most 2, such groups having been characterized by Amitsur
[1]. We refer to the above three types as abelian, dihedral and 2-group
types.

Clearly the abelian groups are S(3)-com. We prove the following
results:

Theorem 1.3. No non-abelian finite 2-group has a commutative 3-S-
ring.

Theorem 1.4. If G is a generalized dihedral of order 2n with n odd,
then G is S(3)-com.

From these, our main result follows immediately:

Theorem 1.5. A finite non-abelian group G is S(3)-com exactly when
G is generalized dihedral of order 2n, n odd.
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As a corollary of our main result, we are able to answer the corre-
sponding question regarding commutative 4-S-rings.

Theorem 1.6. A finite group G has a commutative 4-S-ring if and
only if G is abelian.

2. S-rings and k-S-rings. For X = {x1, . . . , xk} ⊆ G, |X| = k, we
let X = x1 + · · ·+ xk ∈ CG. We now define the concept of a k-S-ring
(from [5]), first recalling the definition of an S-ring [3, 10, 13]:

An S-ring over a group G is a sub-ring of CG which is constructed
from a partition S ={Γ1,Γ2, . . . ,Γm} of the elements of G: G =
Γ1 ∪ Γ2 ∪ · · · ∪ Γm, with Γ1 = {e}, satisfying:

(1) If i ≥ 1 and Γi = {g1, . . . , gs}, then there is some j ≥ 1 such that
Γ−1
i := {g−1

1 , . . . , g−1
s } is equal to Γj ;

(2) If i, j ≥ 1, then ΓiΓj =
∑

k λijkΓk where λijk is a non-negative
integer for all i, j, k.

The Γi are called the principal sets of the S-ring. The Γi are called the
principal elements. The S-ring is thus ⟨Γ1, . . . ,Γm⟩.

Let G be a finite group. Fix k ≥ 1, and let the symmetric group Σk

act on Gk by permuting entries:

(g1, g2, . . . , gk)σ = (g(1)σ, g(2)σ, . . . , g(k)σ)

Let G act on Gk by diagonal conjugation:

(g1, g2, . . . , gk)
g = (gg1 , g

g
2 , . . . , g

g
k).

Let G̃k denote the permutation group generated by these actions of Σk

andG on Gk. Then the G̃k-orbits of the action are called k-classes, with

the G̃k-orbit of (g1, g2, . . . , gk) ∈ Gk being denoted C
(k)
G (g1, g2, . . . , gk).

The k-classes determine an S-ring over Gk which we call the k-S-ring

of G and which we denote by S
(k)
G .

In the case k = 1, we see that S
(1)
G is just the centralizer ring Z(CG).

Thus, we think of the k-S-rings of G as generalized centralizer rings.

The k-classes as defined here are the same k-classes used by Frobe-
nius in his study of k-characters. In the definition of the 2-character
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table of a group the notion of the 2-S-ring is used [8]. See also [12] for
a discussion of k-S-rings and k-characters.

In [5], the authors have shown that there are non-isomorphic groups
with the same 2-S-ring.

3. Proof of Theorem 1.2. We have the following conventions.
All groups will be assumed finite. We will be constantly referring
to conditions (1)–(4) of Theorem 1.1 for an ordered pair of elements
x, y ∈ G. We let ∼H denote conjugacy in the subgroup H of G. We
let |x| denote the order of x ∈ G. As usual, we have: xy = y−1xy,
(x, y) = x−1y−1xy. We let yG denote the conjugacy class of y ∈ G. We
let 1 denote the identity element of the group G.

Suppose that G is a group satisfying (1), (2) or (3) of Theorem 1.2.
We show that G is pre-S(3)-com i.e., that any pair x, y ∈ G satisfies
one of (1), (2), (3) or (4). This is clear if G is abelian. For a
generalized dihedral dihedral group G = N o C2, with the order
of N odd, G \ N consists entirely of involutions which conjugate
elements of N to their inverses [7, page 57]. This means that, for
any involution t ∈ G, nt = n−1 so that tn = n−2t. Since |N | is
odd and N is abelian, the map n 7→ n2 gives a surjection of N , so
tG = G \ N , i.e., any two involutions must be conjugate. Finally,
suppose G ∼= Q8 × Cr

2 . Let x, y ∈ Q8 ≤ G be generators for the
subgroup Q8, so that xy = x−1, yx = y−1, x4 = y4 = 1. If u, v ∈ Cr

2 ,
then (xu)yv = xyu = x−1u = (xu)−1 and (xyu)yv = (xy)yu = (xyu)−1,
and all other cases follow similarly. Thus, any g, h ∈ G either commute
or satisfy gh = g−1.

So all of the groups of types (1), (2) and (3) of Theorem 1.2 are
pre-S(3)-com groups, and it remains to show the converse.

Throughout the remainder of this section we will let G be a pre-S(3)-
com group. Let N be the (possibly trivial) set of elements of G which
have odd order. Notice that, if y ∈ N and x ∈ G satisfy xy = x−1,

then x = xy|y|
= x−1. The following two results follow immediately:

Lemma 3.1. If x, y ∈ N then xy = yx or x ∼ y.

Proof. Since x ̸= 1 has odd order, we know x ̸= x−1, and the same is
true for y, so it follows from the remark above that the pair x, y cannot
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satisfy (3) or (4). �

Lemma 3.2. If y ∈ N and x ∈ G \N , then xy = yx or yx = y−1.

Proof. Cases (2) and (3) cannot be true if y ̸= 1, so only Cases (1)
and (4) remain. �

We also have the following:

Lemma 3.3. If, for some y ∈ N , we have xy = yx for all x ∈ G \N ,
then y is central.

Proof. In this situation, Lemma 3.1 shows that y commutes with
every element not in its conjugacy class yG, i.e., G \ yG ⊆ CG(y).
But, since |CG(y)| = |G|/|yG| this gives |G| − |yG| ≤ |G|/|yG|, or
equivalently that |yG| ≤ |G|/(|G| − |yG|) ≤ 2, and if we have equality,
then |CG(y)| = 2, giving a contradiction, since y has odd order. �

Corollary 3.4. If G is a pre-S(3)-com group of odd order, then G is
abelian.

Proof. The requirements of Lemma 3.3 are vacuously satisfied, so
every element of G is central. �

Let |G| = 2km where m is odd. We handle the cases where m ̸= 1,
and the 2-group case separately.

Lemma 3.5. If, for some y ∈ N , we have yx = y−1 for some x ∈ G\N ,
then yG = {y, y−1}.

Proof. From Lemma 3.1, we know that for any g ∈ N , either yg = gy
or y ∼ g. From Lemma 3.2, we know that for any h ∈ G\N , either h and
y commute or yh = y−1. So all elements of G not in yG either commute
with y or conjugate y to its inverse. So we haveG\yG ⊂ CG(y)∪CG(y)x
or, more precisely, G \ yG ∪ {y, y−1} ⊂ CG(y) ∪ CG(y)x. This means
that |G| − |yG| + 2 ≤ 2|CG(y)| = 2|G|/|yG|. We can simplify this
inequality to get |G|(|yG| − 2) ≤ |yG|2 − 2|yG|. If we assume |yG| > 2,
then dividing by |yG| − 2 gives |G| ≤ |yG|, which is a contradiction.
Thus, |yG| ≤ 2, and since y−1 ∼ y we have yG = {y, y−1}. �
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Theorem 3.6. Let G be a pre-S(3)-com group with |G| = 2km where
k ≥ 1 and m ̸= 1 is odd. Suppose that, for some y ∈ N , t ∈ G \N we
have yt = y−1. Then G = N o C2 is generalized dihedral.

Proof. We know from Lemma 3.5 that |G : CG(y)| = 2, so CG(y)
is normal in G. Assume that, for some x ∈ CG(y), we have xt = x.
Then txy = ty which cannot be t or t−1, since y has odd order. So
(xy)t = (xy)−1, but (xy)t = xy−1, so in fact we must have x = x−1.
This means we have ht = h−1 for any h ∈ CG(y). Also, if h, g ∈ CG(y),
then

h−1g−1 = (gh)−1 = (gh)x = gxhx = g−1h−1,

so CG(y) is abelian.

Next we show that CG(y) = N . If CG(y) has even order, then
G \ CG(y) is not a single class of involutions, because the map g → g2

is not a surjection of CG(y). Choose gt ∈ G \ CG(y) which is not
conjugate to yt. For involutions, (3) and (4) reduce to (1), and so gt
and yt must commute; therefore, their product gtyt = gy−1 must be
an involution. But this is impossible, since CG(y) is abelian and y has
odd order. So CG(y) = N , and this depends only on the fact that
t inverts y. We showed that t inverts every element of CG(y), so for
any h ∈ CG(y) = N we have CG(h) = N ; we thus see that in fact
CG(N) = N .

Now there is an involution s in G \ N , and N = CG(N), so from
Lemma 3.5 we know hs = h−1 for any h ∈ N . So G = ⟨N, s⟩ and is
generalized dihedral. �

Theorem 3.7. If G is a pre-S(3)-com group with |G| = 2km where
k ≥ 1 and m ̸= 1 is odd, and for any y ∈ N we have xy = yx for all
x ∈ G \N , then G is abelian.

Proof. From Lemma 3.3, it follows that all elements of odd order are
central, and N is in fact a subgroup of the center of G.

We will also use the fact that if x, y ∈ G have order a power of two,
then xm ∼ yn for n,m ∈ N \ {1} only if n = m. This is true because
z−1xmz = yn implies z−1xz = ynm−1, where the term on the left has
order a power of two, and the term on the right must also, but this
only occurs if nm−1 = 1.
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Suppose, by way of contradiction, that there are x, y ∈ G \ N
which do not commute. Then their 2-parts [6, page 134] also cannot
commute. Let s be the 2-part of x, and t is the 2-part of y.

Choose n,m ∈ N \{1} with n ̸= m. Then ns ̸∼ mt, and they cannot
commute, so we must have either (ns)mt = (ns)−1 or (mt)ns = (mt)−1.
In the first case we get

s−1n−1 = (ns)mt = nmtsmt = nst,

so that st = s−1(n2)−1. But the left hand side has order a power of
2 and the right hand side does not, since s and n commute, giving a
contradiction. And similarly the second case is also impossible.

So G must be abelian. �

The rest of the proof of Theorem 1.2, the 2-group case, is by
induction on |G|. As shown earlier, Q8 is pre-S(3)-com. If the dihedral
group of order 8 is presented as D4 = ⟨r, s|r4 = s2 = 1, rs = r3⟩, then
s ̸∼ sr are both of order 2 and ssr = sr2, (sr)s = sr3, so D4 is not a
pre-S(3)-com group. Assume we have a non-abelian 2-group G which is
pre-S(3)-com with |G| > 8 and that all 2-groups of smaller order which
are also pre-S(3)-com are abelian or of type (3).

If z ∈ Z(G), |z| = 2, then G/⟨z⟩ is also a pre-S(3)-com group with
smaller order. Thus, the induction shows that either

(A) G/⟨z⟩ is abelian; or
(B) G/⟨z⟩ ∼= Q8 × Cr

2 , r ≥ 0.

Suppose we have (A). Then the classes of G are either central
elements or cosets of the central subgroup ⟨z⟩. In particular, elements
of the same class commute. Thus we can write G as a disjoint union of
classes:

G = Z(G) ∪ g1⟨z⟩ ∪ g2⟨z⟩ ∪ · · · ∪ gs⟨z⟩.

Lemma 3.8.

(1) If |gi| = |gj | = 2, i ̸= j, then (gi, gj) = 1.
(2) If |gi| = 2, |gj | > 2, then (gi, gj) = 1.

In particular, all involutions are central in G.
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Proof.

(1) If, for the pair of involutions gi, gj , we have (1), (3) or (4), then
(gi, gj) = 1. However, we cannot have (2), since i ̸= j. This gives
(1).

(2) Without loss of generality, let i = 1, j = 2. For the pair g1, g2 we
cannot have (2), and (3) implies that (g1, g2) = 1.

So suppose that we have (4): gg12 = g−1
2 . We note that g1g2⟨z⟩ is

either a central set or is a conjugacy class. If g1g2 is central, then
(g1, g1g2) = 1, showing that (g1, g2) = 1. So now, suppose that
g1g2⟨z⟩ is a class. Note that, in fact, g1g2⟨z⟩ ̸= g1⟨z⟩. Thus, the
pair g1, g1g2 does not satisfy (2) (in G). If g1 and g2 satisfy (3), i.e.,
gg1g21 = g−1

1 = g1, then we have (g1, g2) = 1, as required. Lastly, if
g1, g1g2 satisfies (4), then

(g1g2)
g1 = g−1

2 g−1
1 = g−1

2 g1.

Then, using gg12 = g−1
2 , we see that this gives g1g

−1
2 = g1g

g1
2 =

(g1g2)
g1 = g−1

2 g1, showing that (g1, g2) = 1. �

Lemma 3.9. Let x, y ∈ G, where (x, y) ̸= 1. Then we have

x4 = y4 = 1, x2 = y2 = z,(3.1)

(x, z) = 1, (y, z) = 1, xy = x−1, yx = y−1,

and ⟨x, y⟩ ∼= Q8.

Proof. If we can show these relations, then certainly ⟨x, y⟩ ∼= Q8.
Since z ∈ Z(G), we have (x, z) = (y, z) = 1.

For the pair x, y, we do not have (1). If we have (2), x ∼ y, then
G/⟨z⟩ abelian means that either x = y or x = yz, and in either case
we have (x, y) = 1, a contradiction. Thus, we must have xy = x−1 or
yx = y−1. By symmetry, there is no loss in assuming xy = x−1. But
xy ̸= x implies that xy = xz. Then we have xz = xy = x−1, giving
x2 = z and x4 = 1.

Now consider the pair yx, yx. They cannot satisfy (1) because
(yx, yx) = 1 implies (x, y) = 1. If we have (2), yx ∼ yx; then we
have yx = yxz and so (yx, yx) = 1 again. If we have (3) for this pair,
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then
x−1y−1x · yx · x−1yx = x−1y−1,

and so z = x2 = y−2 and we are done, since yx = y−1 follows.

If we have (4), then

x−1y−1 · x−1yx · yx = x−1y−1x,

which gives yz = yx = y−1, which in turn gives y2 = z and y4 = 1. �

Lemma 3.10. Let x, y ∈ G where (x, y) ̸= 1. Let u ∈ CG(⟨x, y⟩). Then
u2 = 1. In particular, Z(G) = CG(⟨x, y⟩) is an elementary 2-group.

Proof. By Lemma 3.9, we see that x, y satisfy (3.1). Consider the
pair xu, yu. This pair cannot satisfy (1) or (2). If we have (3), then
(xu)yu = u−1x−1 gives xyu = x−1u−1. But, from the above, we have
xy = x−1, and so u2 = 1. We similarly obtain u2 = 1 if we have (4)
for this pair. This shows that CG(⟨x, y⟩) has exponent 2 and so is an
elementary 2-group.

We clearly have Z(G) ⊆ CG(⟨x, y⟩), and if u ∈ CG(⟨x, y⟩), then
u2 = 1 and so Lemma 3.8 shows that u ∈ Z(G). �

Proposition 3.11. Let x, y ∈ G where [x, y] ̸= 1. Then G =
⟨x, y, CG(x, y)⟩ ∼= Q8 × Cr

2 .

Proof. Lemma 3.9 shows that x and y satisfy (3.1). Let w ∈
G \ ⟨x, y, CG(x, y)⟩; then one of (x,w), (y, w) is non-trivial. Assume,
without loss, that (w, x) ̸= 1. By Lemma 3.9, we have the relations

(3.2) w4 = 1, w2 = z, (w, z) = 1, xw = x−1, wx = w−1.

If we also have (y, w) ̸= 1, then by Lemma 3.9, we have the relations
(3.1) and

(3.3) yw = x−1, wy = w−1.

The group satisfying (3.1)–(3.3) has the property that xyz ∈ CG(x, y)
and so w ∈ ⟨x, y, CG(x, y)⟩, a contradiction.

If (w, y) = 1, then the group satisfying (3.1), (3.2) and (y, w) = 1
has yw ∈ CG(x, y), and so w ∈ ⟨x, y, CG(x, y)⟩, a contradiction. This
shows that G = ⟨x, y, CG(x, y)⟩.
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From Lemma 3.10, we have Z(G) = CG(⟨x, y⟩) = Cr+1
2 , r ≥ 0. Now

Z(⟨x, y⟩) = ⟨z⟩ ⊂ Z(G), and so we may write Z(G) = ⟨z⟩ × Cr
2 ; it

follows that G = ⟨x, y, CG(x, y)⟩ = ⟨x, y⟩ × Cr
2 , as required. �

This concludes consideration of (A).

Now suppose that we have (B): Since G/⟨z⟩ = Q8 × Cr
2 , there

are x, y ∈ G such that π(⟨x, y⟩) = Q8. Here π : G → G/⟨z⟩ is the
projection. Thus, H = ⟨x, y, z⟩ is a normal subgroup of G of order 16,
where H/⟨z⟩ ∼= Q8. One can check that the only possibilities for H are:
(I) G = Q8 × C2; and (II) the group

J = ⟨x, y, u, v|x2 = v, y2 = u, u2, v2, yx = yu, (u, x), (u, y), (v, x), (v, y)⟩.

We now look at each case separately; we dismiss case (II) first as it
is easier.

(II) H = J . Here one can check that if the pair x, xy satisfies any of
(1), (3), (4), then |H| = 8, a contradiction. However, x ∼H xy implies
x ∼Q8 xy, a contradiction. Thus the case H = J does not happen.

(I) H = Q8 × C2 = ⟨x, y⟩ × ⟨u⟩. Then the only possibilities for z are
(a) z = u or (b) z = ux2, since these are the only elements of H of
order 2 with H/⟨z⟩ non-abelian. In both cases, we see that x, y satisfy
the relations x4 = y4 = 1, xy = x−1, yx = y−1.

Lemma 3.12. If u ∈ CG(⟨x, y⟩), then u2 = 1. In particular,
CG(⟨x, y⟩) ∼= Cs

2 .

Proof. If u ∈ H, then u ∈ Z(H) = ⟨x2, z⟩, and we certainly have
u2 = 1.

If u /∈ H, then we consider the pair ux, uy. Now ux ̸∼ uy, as one
can see by considering the quotient G → Q8 × Cr

2 → Q8. Clearly,
we have (ux, uy) ̸= 1. If we have (3), then (ux)uy = u−1x−1 gives
ux−1 = uxy = (ux)uy = u−1x−1, giving u2 = 1. Condition (4)
similarly gives u2 = 1.

The last statement follows from the fact that CG(⟨x, y⟩) has expo-
nent 2. �

Lemma 3.13. G = ⟨x, y, CG(⟨x, y⟩)⟩.



A CLASS OF GROUPS DETERMINED BY THEIR 3-S-RINGS 575

Proof. Let u ∈ G \ ⟨x, y, CG(⟨x, y⟩)⟩. Then either (x, u) ̸= 1 or
(y, u) ̸= 1. Assume, without loss, that (x, u) ̸= 1. We also have u /∈ H,
so that u ̸∼ w for all w ∈ H ▹G. Thus, the pair x, u satisfies (3) or (4).
Further, the pair y, u satisfies one of (1), (3), (4). We consider the six
cases so determined.

(3), (1): xu = x−1, yu = y. Here we have ux = x2u = y2u,
so that (yu)x = y−1y2u = yu. Thus, yu ∈ CG(⟨x, y, ⟩) and so
u ∈ ⟨x, y, CG(⟨x, y⟩)⟩, a contradiction

(3), (3): xu = x−1, yu = y−1. Here we have (xyu)x = xy−1(y2u) =
xyu and (xyu)y = x−1yx2u = xyu, giving xyu ∈ CG(⟨x, y⟩), and so
u ∈ ⟨x, y, CG(⟨x, y⟩)⟩.

(3), (4): xu = x−1, uy = u−1. Here we consider the pair xy, u.
If (xy, u) = 1, then xyu ∈ CG(⟨x, y⟩); if (xy)u = (xy)−1, then
yu ∈ CG(⟨x, y⟩). Thus, in each case we get u ∈ ⟨x, y, CG(⟨x, y⟩)⟩.
We are left with the case uxy = u−1. Here, we consider the pair u, yu.
If we impose any of the relations (1), (3), (4) on u, yu, then we get
|⟨x, y⟩| = 4, a contradiction.

(4), (1): ux = u−1, yu = y. Here we consider the pair x, xu. If
(x, xu) = 1, then u ∈ CG(⟨x, y⟩). If xxu = x−1 or (xu)x = (xu)−1,
then yu ∈ CG(⟨x, y⟩). Thus, in each case we get u ∈ ⟨x, y, CG(⟨x, y⟩)⟩.

(4), (3): ux = u−1, yu = y−1. Here we consider the pair xy−1, u. If
(xy−1, u) = 1, then xyu ∈ CG(⟨x, y⟩). If (xy−1)u = (xy−1)−1, then

xu ∈ CG(⟨x, y⟩). If uxy−1

= u−1, then |⟨x, y⟩| = 4, a contradiction.
Thus, again, we get u ∈ ⟨x, y, CG(⟨x, y⟩)⟩.

(4), (4): ux = u−1, uy = u−1. Here we consider the pair x, xu. If
(x, xu) = 1, then u ∈ CG(⟨x, y⟩). If xxu = x−1 or (xu)x = (xu)−1, then
xyu ∈ CG(⟨x, y⟩).

This concludes consideration of all cases. �

It follows easily from the fact that H = Q8 × C2 = ⟨x, y⟩ × ⟨u⟩ ▹ G,
together with Lemmas 3.12 and 3.13 that G = Q8 × Cr

2 .

This concludes the proof of (B) and so of Theorem 1.2. �
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4. Commutative 3-S-rings.

Theorem 4.1. Let G be a group with commutative 3-S-ring. Then G
is pre-S(3)-com.

Proof. Let g, h ∈ G. We wish to show that the pair x, y satisfies one
of (1), . . . , (4). We consider the elements x = (g, 1, g), y = (h, h, 1) ∈
G3 and let C(3)(x), C(3)(y) ∈ S

(3)
G denote their 3-classes. We have

xy = (gh, h, g) as a term of C(x) · C(y) and so (gh, h, g) is also a term
of C(y) · C(x).

Now the elements of C(3)(x) have the form

(i) (ga, 1, ga), (ii) (ga, ga, 1), (3) (1, ga, ga),

for some a ∈ G, and the elements of C(3)(y) have the form

(i′) (hb, 1, hb), (ii′) (hb, hb, 1), (iii′) (1, hb, hb),

for some b ∈ G. It follows that xy = (gh, g, h) is realized in C(y) ·C(x)
as one of the following possibilities:

Case (i), (i’): Here

(hb, 1, hb)(ga, 1, ga) = (gh, h, g),

and so h = 1, giving (g, h) = 1.

Case (i), (ii’): Here

(hb, hb, 1)(ga, 1, ga) = (gh, h, g),

and so hbga = gh, hb = h, ga = g, giving (g, h) = 1.

Case (i), (iii’): Here

(1, hb, hb)(ga, 1, ga) = (gh, h, g),

and so ga = gh, hb = h, hbga = g giving ga = h−1g = gh, so that
hg = h−1.

Case (ii), (i’): Here

(hb, 1, hb)(ga, ga, 1) = (gh, h, g),

and so ga = h, giving g ∼ h.
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Case (ii), (ii’): Here

(hb, hb, 1)(ga, ga, 1) = (gh, h, g),

and so g = 1, giving (g, h) = 1.

Case (ii), (iii’): Here

(1, hb, hb)(ga, ga, 1) = (gh, h, g),

and so hb = g, giving g ∼ h.

Case (iii), (i’): Here

(hb, 1, hb)(1, ga, ga) = (gh, h, g),

and so ga = h, giving g ∼ h.

Case (iii), (ii’): Here

(hb, hb, 1)(1, ga, ga) = (gh, h, g),

and so hb = gh, hbga = h, ga = g, giving gh = hb = hg−1. We thus
have gh = g−1.

Case (iii), (iii’): Here

(1, hb, hb)(1, ga, ga) = (gh, h, g),

and so gh = 1. We thus have (g, h) = 1.

This concludes consideration of all cases. �

Lemma 4.2. A group of the form G = Q8 × Cr
2 does not have a

commutative 3-S-ring.

Proof. Let π : G = Q8 × Cr
2 → Q8 be the projection. Then

π induces a homomorphism of 3-S-rings, π : S(3)(G) → S(3)(Q8).
Since π(S(3)(G)) = S(3)(Q8), we need only show that S(3)(Q8) is not
commutative. Suppose that Q8 = ⟨x, y⟩, where x, y satisfy the relations
(3.1). Let α be the 3-class of (x, x, 1) and β the 3-class of (xy, xy, 1).
Then one can check that αβ ̸= βα. �

Lemma 4.3. A generalized dihedral group G = N o C2 with order of
N odd has a commutative 3-S-ring.
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Proof. Let C2 = ⟨x⟩. Elements of G will be written nxε, n ∈ N ,
ε = 0, 1. If α ∈ G3, then C(3)(α) contains an element of one of the
following four types:

(A): (n1, n2, n3), (B): (n1x, n2, n3),

(C): (n1x, n2x, n3), (D): (n1x, n2x, n3x).

Here ni ∈ N , i = 1, 2, 3.

Let α, β ∈ G3. We thus have some cases to consider to show that
C(3)(α)C(3)(β) = C(3)(β)C(3)(α):

Case (A) × (A). Here α = (n1, n2, n3), β = (n′
1, n

′
2, n

′
3) and in

this case we have αβ = βα, so we certainly have C(3)(α)C(3)(β) =
C(3)(β)C(3)(α).

Case (A) × (B). Here α = (n1, n2, n3), β = (n′
1x, n

′
2, n

′
3). To prove

this case we just need to show that αβ ∈ C(3)(β) · C(3)(α). Now, for
n ∈ N , we have xn = n−2x and so

(n′
1x, n

′
2, n

′
3)

n = (n′
1n

−2x, n′
2, n

′
3),

Since |N | is odd and N is abelian, the map n 7→ n2 gives a surjection
of N , and so the element n ∈ N can be chosen so that

βnα = (n′
1n

−2x, n′
2, n

′
3)(n1, n2, n3)

is equal to
(n1n

′
1x, n2n

′
2, n3n

′
3) = αβ.

Case (A) × (C). Here α = (n1, n2, n3), β = (n′
1x, n

′
2x, n

′
3). Let

β′ = βx, so that β′ has type (B). Then, from the above case (A)× (B),
we have αβ′ = β′α. Thus, we have

(4.1) αβ = αβ′x = β′αx = β′x · xαx = βαx ∈ C(3)(β) · C(3)(α),

as required.

Case (A) × (D). Here α = (n1, n2, n3), β = (n′
1x, n

′
2x, n

′
3x). Let

β′ = βx, so that β′ has type (A). Then, from the case (A) × (A), we
have αβ′ = β′α. Thus, (4.1) again gives this case.

Case (B) × (B). Here we need to consider subcases:
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(i) α = (n1x, n2, n3), β = (n′
1x, n

′
2, n

′
3). Then αβ = (n1(n

′
1)

−1,
n2n

′
2, n3n

′
3). But

βnα = (n′
1n

−2x, n′
2, n

′
3)(n1x, n2, n3) = (n′

1n
−2n−1

1 , n2n
′
2, n3n

′
3),

and we can find n ∈ N such that this is equal to αβ, as required.

(ii) α = (n1x, n2, n3), β = (n′
1, n

′
2x, n

′
3). For n,m ∈ N , we have

βmαn = (n′
1, n

′
2m

−2x, n′
3)(n1n

−2x, n2, n3)

= (n′
1n1n

−2x, n′
2m

−2n−1
2 x, n3n

′
3),

and we can choose n,m ∈ N such that this is equal to αβ =
(n1(n

′
1)

−1x, n2n
′
2x, n3n

′
3).

Case (B) × (C). Here α = (n1x, n2, n3), β = (n′
1x, n

′
2x, n

′
3). Let

β′ = βx. Then β′ has type (B) and so we have αβ′ = β′α. The result
now follows from (4.1).

The remainder of the cases can be proved by reducing to cases that
we have already considered, and then using (4.1). �

Theorems 1.3, 1.4 and 1.5 follow from Theorem 1.1 and Lemmas 4.2
and 4.3. �

5. Commutative 4-S-rings.

Here we prove Theorem 1.6.

For any finite group G, the 4-S-ring contains a sub-ring isomorphic
to the 3-S-ring [5, Theorem 1.1]. So a group G can have a commutative
4-S-ring only if G isS(3)-com. So to show that only abelian groups have
commutative 4-S-rings, it suffices to show that the generalized dihedral
groups N o C2 with N having odd order do not have commutative
4-S-rings.

Let G = N o C2 with C2 = ⟨t⟩, where N has odd order. Let
y ∈ N \ {1}. Let K1 be the 4-class of (y, y, y−1, y−1) in G4. Since
yG = {y, y−1}, this class contains only the 6 elements of G4 obtained
by permuting the entries. Let K2 be the 4-class of (1, t, t, t). For each
x ∈ N , there are 4 elements of K2 corresponding to the 4 possible
permutations of (1, xt, xt, xt).

The element (y, yt, y−1t, y−1t) = (y, y, y−1, y−1)(1, t, t, t) is a term
in the product K1K2. Suppose (y, yt, y−1t, y−1t) = kl where k ∈ K2,
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l ∈ K1. Because (xt)y = xy−1t and (xt)y−1 = xyt, the first entry of k
must be 1 (it cannot have a term with t), and hence k = (1, xt, xt, xt)
for some x ∈ N . It follows that l has first entry y and so l is one
of (y, y, y−1, y−1), (y, y−1, y, y−1), and (y, y−1, y−1, y). So we need to
determine whether there is an x ∈ N for which one of the following can
occur:

Case 1: (y, yt, y−1t, y−1t) = (1, xt, xt, xt)(y, y, y−1, y−1) = (y, xy−1t,
xyt, xyt). In this case, we get yt = xy−1t and y−1t = xyt so that
yt = x(xyt) = x2yt so x2 = 1, giving x = 1. But then we have
yt = xy−1t = y−1t and so y2 = 1, a contradiction.

Case 2: (y, yt, y−1t, y−1t) = (1, xt, xt, xt)(y, y−1, y, y−1) = (y, xyt,
xy−1t, xyt). In this case, we get yt = xyt = y−1t, a contradiction
since y ∈ N .

Case 3: (y, yt, y−1t, y−1t) = (1, xt, xt, xt)(y, y−1, y−1, y) = (y, xyt, xyt,
xy−1t). In this case, we get yt = xyt = y−1t, again contradicting that
y ∈ N .

So (y, yt, y−1t, y−1t) cannot be a term in the product K2K1.

So the product K1K2 contains a term which is not a term of K2K1.
Thus, these products are not equal, and so the 4-S-ring of G cannot be
commutative. �
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