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NONOSCILLATORY SOLUTIONS TO FORCED
HIGHER-ORDER NONLINEAR NEUTRAL DYNAMIC

EQUATIONS ON TIME SCALES

XUN-HUAN DENG AND QI-RU WANG

ABSTRACT. By employing Kranoselskii’s fixed point
theorem, we obtain sufficient conditions for the existence of
nonoscillatory solutions of the forced higher-order nonlinear
neutral dynamic equation

[x(t) + p(t)x(τ(t))]∇
m

+
k∑

i=1

pi(t)fi(x(τi(t))) = q(t)

on a time scale, where pi(t), fi(t) and q(t) may be oscilla-
tory. Then we establish sufficient and necessary conditions
for the existence of nonoscillatory solutions to the equation

[x(t) + p(t)x(τ(t))]∇
m

+ F (t, x(δ(t))) = q(t). Finally, we deal
with dynamic equation

[x(t) + p(t)x(τ(t))]∇
m−1∆ +

k∑
i=1

pi(t)fi(x(τi(t))) = q(t)

with mixed ∇ and ∆ derivatives. In particular, some
interesting examples are included to illustrate the versatility
of our results.

1. Introduction. Following Hilger’s breakthrough result [8], a ra-
pidly expanding body of literature has sought to unify, extend and
generalize ideas from continuous and discrete calculus to arbitrary time-
scale calculus, where a time scale is simply any nonempty closed set of
real numbers R. Let T be a time scale which is unbounded above and
t0 ∈ T a fixed point. For some basic facts on time scale calculus and
dynamic equations on time scales, one may consult the excellent texts
by Bohner and Peterson [2, 3].
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Throughout this work, we investigate the existence of nonoscillatory
solutions of the forced higher-order nonlinear neutral dynamic equation
with delay and advance terms given by

[x(t) + p(t)x(τ(t))]∇
m

+
k∑

i=1

pi(t)fi(x(τi(t))) = q(t),(1.1)

t ∈ [t0,∞)T,

where 2 ≤ m ∈ N, t ∈ T, p, pi, q ∈ Cld([t0,∞)T,R), τ, τi ∈
C([t0,∞)T,T) with limt→∞ τ(t) = limt→∞ τi(t) = +∞ and fi ∈
C(R,R), i = 1, 2, . . . , k.

We obtain some sufficient conditions for the existence of nonoscil-
latory solutions of (1.1) without using nondecreasing condition on the
functions fi(x) with xfi(x) > 0 (i = 1, 2, . . . , k) for x ̸= 0, any sign con-
ditions on the functions pi(t) (i = 1, 2, . . . , k) and q(t) via Kranoselskii’s
fixed point theorem and some new techniques.

After giving our results on the existence of bounded nonoscillatory
solution of (1.1) in subsection 3.1, we extend our results to

(1.2) [x(t) + p(t)x(τ(t))]∇
m

+ F (t, x(δ(t))) = q(t), t ∈ [t0,∞)T,

where δ ∈ C([t0,∞)T,T) with limt→∞ δ(t) = +∞ and F ∈ C([t0,∞)T×
R,R). With some additional assumptions, we establish sufficient and
necessary conditions for the existence of nonoscillatory solutions of
(1.2). Also, we discuss the existence of unbounded nonoscillatory
solutions of (1.1) and (1.2).

Finally, we consider the dynamic equation related to (1.1) with
mixed ∇ and ∆ derivatives

[x(·) + p(·)x(τ(·))]∇
m−1∆(t) +

k∑
i=1

pi(t)fi(x(τi(t))) = q(t),(1.3)

t ∈ [t0,∞)T.

By [2, Theorem 8.49(ii)] (see also the following Theorem 5.1), (1.3)
can be reduced to a similar form of (1.1).

Related to the above equations is the dynamic equation with ∆
derivatives

(1.4) [x(t) + p(t)x(τ(t))]∆
m

+ F (t, x(δ(t))) = 0, t ∈ [t0,∞)T.
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In 1992, by employing Kranoselskii’s fixed point theorem Chen [5] dealt
with the existence of nonoscillatory solutions to a special case of (1.4)
with T = R, and some related results are summarized in [6]. In 2007,
Zhu and Wang [15] presented some conditions for the existence of
nonoscillatory solutions of (1.4) for m = 1. In [13, 14], Zhu discussed
the existence of unbounded nonoscillatory solutions of (1.4) for m = 2
and 2 ≤ m ∈ N, respectively. Zhang et al. [11] used the contraction
principle to obtain sufficient conditions for existence of nonoscillatory
solutions of higher-order dynamic equations. Recently, Gao and Wang
[7] discussed the existence of nonoscillatory solutions of second-order
nonlinear neutral dynamic equations of the form

[r(t)(x(t) + p(t)x(τ(t)))∆]∆ + f(t, x(δ(t))) = 0

on a time scale T under the condition
∫∞
t0

1/r(s)∆s < ∞. Zhu [12]
also used Kranoselskii’s fixed point theorem to study the existence
of bounded nonoscillatory solutions of higher-order dynamic equations
with ∆ derivative.

This paper is organized as follows. Following this introduction, we
prove some basic lemmas in Section 2. Our main results are presented
in Section 3, and their applications are given in Section 4. In Section 5,
we summarize the basic knowledge on time scales used in this paper
just for the convenience of the reader.

2. Preliminaries. Let k be a nonnegative integer and s, t ∈ T. We

define two sequences of functions ĥk(t, s) and ĝk(t, s) as follows (see
[1]):

ĥk(t, s) =

{
1, k = 0,∫ t

s
ĥk−1(τ, s)∇τ, k ≥ 1,

ĝk(t, s) =

{
1, k = 0,∫ t

s
ĝk−1(ρ(τ), s)∇τ, k ≥ 1,

where the definitions may refer to the following Section 5.

Similar to the ∆ derivative, we have that:

ĥk(t, s) = (−1)kĝk(s, t), ĥ
∇t

k (t, s) =

{
0, k = 0,

ĥk−1(t, s), k ≥ 1,
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ĝ∇t

k (t, s) =

{
0, k = 0,
ĝk−1(ρ(t), s), k ≥ 1,

ĝ∇s

k (t, s) =

{
0, k = 0,
−ĝk−1(ρ(t), s), k ≥ 1,

where ĥ∇t

k (t, s) and ĝ∇t

k (t, s) denote for each fixed s the derivative of

ĥk(t, s) and ĝk(t, s) with respect to t, respectively. The definition of

ĝ∇s

k (t, s) is similar. From the definition of ĥk(t, s), it is easy to obtain

the following property of ĥk(t, s).

Property 2.1. Using induction and the definition of the function

ĥk(t, s), it is easy to see that ĥk(t, s) ≥ 0 holds for all k ∈ N0 and

s, t ∈ T with t ≥ s, and (−1)kĥk(t, s) ≥ 0 holds for all k ∈ N0 and

s, t ∈ T with t ≤ s. In view of the fact that ĥ∇t

k (t, s) = 0, k = 0,

and ĥ∇t

k (t, s) = ĥk−1(t, s), k ∈ N, ĥn(t, s) is increasing in t provided

that t ≥ s, and (−1)nĥn(t, s) is decreasing in t provided that t ≤ s.

Moreover, ĥn(t, s) ≤ (t − s)k−lĥl(t, s) holds for all s, t ∈ T with t ≥ s
and for all k, l ∈ N0 with l ≤ k.

Property 2.1 is also true for ∆ derivatives. The corresponding result
can be found in [9].

Similar to [9, Lemma 1], we prove the following lemma on the change
of order in double (iterated) integrals.

Lemma 2.1. (Change of integration order). Assume that t, s ∈ T and
g ∈ Cld(T× T,R). Then

(2.1)

∫ t

s

[ ∫ t

η

g(η, ξ)∇ξ

]
∇η =

∫ t

s

[ ∫ ρ(ξ)

s

g(η, ξ)∇η

]
∇ξ.

Proof. Set

(2.2) A(t) :=

∫ t

s

[ ∫ t

η

g(η, ξ)∇ξ

]
∇η −

∫ t

s

[ ∫ ρ(ξ)

s

g(η, ξ)∇η

]
∇ξ

for t ∈ T. Applying [2, Theorem 8.50] (also see Theorem 5.2 (iv)) to
(2.2), we have

A∇(t) =

∫ t

s

∂

∇t

[ ∫ t

η

g(η, ξ)∇ξ

]
∇η
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+

∫ ρ(t)

t

g(t, ξ)∇ξ −
∫ ρ(t)

s

g(η, t)∇η

=

∫ t

s

g(η, t)∇η +

∫ ρ(t)

t

g(t, ξ)∇ξ −
∫ ρ(t)

s

g(η, t)∇η

=

∫ t

ρ(t)

g(η, t)∇η +

∫ ρ(t)

t

g(t, ξ)∇ξ

= ν(t)g(t, t)− ν(t)g(t, t) = 0

for all t ∈ T. Hence, A(t) is a constant function. On the other hand,
we see that A(s) = 0 holds. Hence, A(t) ≡ 0 on T, and this shows that
(2.1) is true. �

As an immediate consequence, we can give the following generaliza-
tion of Lemma 2.1 for n-fold integrals.

Corollary 2.2. Assume that n ∈ N, s, t ∈ T and f ∈ Cld(T × R,R).
Then
(2.3)∫ t

s

∫ t

ηn

· · ·
∫ t

η2

f(η1)∇η1∇η2 · · ·∇ηn = (−1)n
∫ t

s

ĥn(s, ρ(η))f(η)∇η.

Proof. We make use of Lemma 2.1 and the induction principle to
complete the proof. From Lemma 2.1, it is clear that (2.3) holds for
n = 2. Suppose now that (2.3) holds for some 2 ≤ n ∈ N. Integrating
(2.3) over [s, t)T and using Lemma 2.1, we obtain

(−1)n
∫ t

s

∫ t

η

ĥn(η, ρ(ξ))f(ξ)∇ξ∇η

= (−1)n
∫ t

s

∫ ρ(ξ)

s

ĥn(η, ρ(ξ))f(ξ)∇η∇ξ

= (−1)n+1

∫ t

s

∫ s

ρ(ξ)

ĥn(η, ρ(ξ))f(ξ)∇η∇ξ

= (−1)n+1

∫ t

s

ĥn+1(s, ρ(ξ))f(ξ)∇η∇ξ,

which proves that (2.3) holds for (n+ 1). The proof is complete. �
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Lemma 2.3. Let n ∈ N0, h ∈ Cld(T, [0,∞)) and s ∈ T. Then each of
the following is true:

(i)
∫∞
s

ĝn(ρ(τ), s)h(τ)∇τ < ∞ implies that
∫∞
t

ĝn(ρ(τ), t)h(τ)∇τ <
∞ for all t ∈ T;

(ii)
∫∞
s

ĝn(ρ(τ), s)h(τ)∇τ = ∞ implies that
∫∞
t

ĝn(ρ(τ), t)h(τ)∇τ =
∞ for all t ∈ T.

Proof. To complete the proof, we shall employ the induction princi-
ple. We need to show that∫ ∞

s

ĥn(s, ρ(τ))h(τ)∇τ and

∫ ∞

t

ĥn(t, ρ(τ))h(τ)∇τ

diverge or converge together by the formula ĥn(t, s) = (−1)nĝn(s, t).
The proof is trivial for n = 0. Suppose that the claim holds for some
n ∈ N. We shall show that it is also true for n + 1. Without loss of
generality, we may suppose that s ≥ t. From the definition of ĥn(t, s)
and Lemma 2.1, we have∫ ∞

t

ĥn+1(t, ρ(η))h(η)∇η

=

∫ ∞

t

∫ t

ρ(η)

ĥn(ξ, ρ(η))h(η)∇ξ∇η

= −
∫ ∞

t

∫ ρ(η)

t

ĥn(ξ, ρ(η))h(η)∇ξ∇η

= −
∫ ∞

t

∫ ∞

ξ

ĥn(ξ, ρ(η))h(η)∇η∇ξ

= −
∫ ∞

s

∫ ∞

ξ

ĥn(ξ, ρ(η))h(η)∇η∇ξ −
∫ s

t

∫ ∞

ξ

ĥn(ξ, ρ(η))h(η)∇η∇ξ.

First, consider the case that (−1)n
∫∞
r

ĥn(r, ρ(η))h(η)∇η = ∞
holds for all r ∈ T. Clearly, this implies by the above formula that

(−1)n+1
∫∞
s

ĥn+1(s, ρ(η))h(η)∇η = ∞, and thus

(−1)n+1

∫ ∞

t

ĥn+1(s, ρ(η))h(η)∇η = ∞

since s ≥ t. Next, by property 2.1, we just consider the case that

(−1)n
∫∞
r

ĥn(r, ρ(η))h(η)∇η < ∞ for all r ∈ T. In view of the definition
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of ĥn(t, s) and Lemma 2.1, we get

(2.4)

∫ ∞

s

ĥn+1(s, ρ(η))h(η)∇η

=

∫ ∞

t

ĥn+1(t, ρ(η))h(η)∇η

+

∫ s

t

∫ ∞

ξ

ĥn(ξ, ρ(η))h(η)∇η∇ξ.

Using the fact that the last term on the right side of (2.4) is finite, we

see that
∫∞
s

ĥn+1(ρ(τ), s)h(τ)∇τ and
∫∞
t

ĥn+1(t, ρ(τ))h(τ)∇τ diverge
or converge together. This proves that the claim holds for (n+1), and
the proof is complete. �

Lemma 2.4. Let n ∈ N0, h ∈ Cld(T, [0,∞)) and s ∈ T. Then

(2.5) (−1)n
∫ ∞

s

ĥn(s, ρ(τ))h(τ)∇τ =

∫ ∞

s

ĝn(ρ(τ), s)h(τ)∇τ < ∞

implies that each of the following is true:

(i) (−1)j
∫∞
t

ĥj(t, ρ(τ))h(τ)∇τ =
∫∞
t

ĝj(ρ(τ), t)∇τ is decreasing for
all t ∈ T and 0 ≤ j ≤ n;

(ii) limt→∞(−1)j
∫∞
t

ĥj(t, ρ(τ))h(τ)∇τ = limt→∞
∫∞
t

ĝj(ρ(τ), t)∇τ =
0 for all 0 ≤ j ≤ n;

(iii) (−1)j
∫∞
t

ĥj(t, ρ(τ))h(τ)∇τ =
∫∞
t

ĝj(ρ(τ), t)∇τ < ∞ for all
t ∈ T and 0 ≤ j ≤ n− 1.

Proof. The proof for n = 0 is trivial. Now, let n ∈ N. To complete
the proof, it suffices to prove (i) and (ii) for j = n and (iii) for j = n−1
because the proof can be completed by repeating the emerging pattern.
Obviously, (2.5) implies

(2.6) lim
t→∞

(−1)n
∫ ∞

t

ĥn(s, ρ(τ))h(τ)∇τ = 0.

By Property 2.1, we have

0 ≤ (−1)n
∫ ∞

t

ĥn(t, ρ(τ))h(τ)∇τ ≤ (−1)n
∫ ∞

t

ĥn(s, ρ(τ))h(τ)∇τ,
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which proves (ii) for j = n by (2.6). Next, we prove (iii) for j = n− 1.
Suppose, to the contrary, that

(−1)n−1

∫ ∞

s

ĥn−1(s, ρ(τ))h(τ)∇τ = ∞.

By Lemmas 2.1 and 2.2 (ii), we obtain

(−1)n
∫ ∞

s

ĥn(s, ρ(τ))h(τ)∇τ

= (−1)n
∫ ∞

s

∫ s

ρ(τ)

ĥn−1(ξ, ρ(τ))h(τ)∇ξ∇τ

= (−1)n−1

∫ ∞

s

∫ ∞

ξ

ĥn−1(ξ, ρ(τ))h(τ)∇τ∇ξ = ∞,

which contradicts (2.5). Therefore, (iii) is true for j = n−1. We finally

prove (i) for j = n; by the property of ĥn(t, s) and Property 2.1, we
have[
(−1)n

∫ ∞

t

ĥn(t, ρ(τ))h(τ)∇τ

]∇t

= (−1)n
∫ ∞

t

ĥn−1(t, ρ(τ))h(τ)∇τ ≤ 0

for all t ∈ T. The proof is complete. �

Lemmas 2.2 and 2.3 are analogous to [9, Lemma 2] or [10, Lemma
2.2] and [10, Lemma 2.3], respectively. We would like to point out
that the idea to prove Lemmas 2.4 and 2.5 comes from [4, Lemmas 2.1
and 2.2].

Lemma 2.5. Let u(t) ∈ Cm
ld ([t0,∞)T, (0,∞)). If u∇m

is of constant
sign on [t0,∞)T and not identically zero on [t1,∞)T for any t1 ≥ t0,
then there exist a tu ≥ t0 and integer l, 0 ≤ l ≤ m, with m+ l even for
u∇m ≥ 0, or m+ l odd for u∇m ≤ 0 such that

l > 0 implies that u∇k

(t) > 0 for t ≥ tu,(2.7)

k = 0, 1, 2, . . . , l − 1,

and

l ≤ m− 1 implies that (−1)l+ku∇k

(t) > 0(2.8)

for t ≥ tu, k = l, l + 1, l + 2, . . . ,m− 1.
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Proof. We shall consider only the case when m ≥ 3 is odd and
u∇m

(t) ≥ 0 on [t0,∞)T because the proofs of other cases are similar.
From the conditions that u∇m

(t) ≥ 0 on [t0,∞)T and is not identically

zero on [t1,∞)T for any t1 ≥ t0, we see that u∇m−1

(t) is increasing on
[t1,∞)T for any t1 ≥ t0. This implies that exactly one of the following
is true:

(a1) There exists a t2 ≥ t0 such that u∇m−1

(t) > 0 for t ∈ [t2,∞)T;

(b1) u
∇m−1

(t) < 0 for t ≥ t0.

It is easy to see that

u∇m−2

(t)− u∇m−2

(t2)

=

∫ t

t2

u∇m−1

(s)∇s ≥ u∇m−1

(t2)(t− t2), t ∈ [t2,∞).

If (a1) holds, then we have u∇m−1

(t2) > 0 and limt→∞ u∇m−2

(t) =
∞. Analogously, we get

lim
t→∞

u∇m−3

(t) = lim
t→∞

u∇m−4

(t) = · · · = lim
t→∞

u∇(t) = ∞.

Thus, the conclusions of Lemma 2.4 hold.

If (b1) holds, then u∇m−2

(t) is strictly decreasing on [t0,∞)T and
exactly one of the following possibilities holds true:

(a2) There exists a t3 ≥ t0 such that u∇m−2

(t) < 0 for t ∈ [t3,∞)T;

(b2) u
∇m−2

(t) > 0 for t ≥ t0.

From (b1), we have u∇m−2

(t) ≤ u∇m−2

(t3) for t ∈ [t3,∞)T. By
integrating the both sides of the last inequality from t3 to t, we obtain

u∇m−3

(t)− u∇m−3

(t3) ≤ u∇m−2

(t3)(t− t3), t ∈ [t3,∞)T.

If (a2) holds, then we get u∇m−2

(t3) < 0 and limt→∞ u∇m−3

(t) =
−∞. Similarly, we find

lim
t→∞

u∇m−4

(t) = lim
t→∞

u∇m−5

(t) = · · ·

= lim
t→∞

u∇(t) = lim
t→∞

u(t) = −∞,
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which contradicts the fact that u(t) > 0 for t ∈ [t0,∞)T. Hence, (a2)

is impossible. From (b2), we see that u∇m−3

(t) is strictly increasing on
t ∈ [t0,∞)T and exactly one of the following is valid:

(a3) There exists a t4 ≥ t0 such that u∇m−3

(t) > 0 for t ∈ [t4,∞)T;

(b3) u
∇m−3

(t) < 0 for t ≥ t0.

Therefore, we can repeat the above arguments and show that the
conclusions of Lemma 2.4 hold. The proof of Lemma 2.4 is complete.

�

Lemma 2.6. Let u(t) ∈ Cm
ld ([t0,∞)T, (0,∞)) be bounded on [t0,∞)T.

Suppose that u∇m

is of constant sign on [t0,∞)T and not identically
zero on [t1,∞)T for any t1 ≥ t0. Then there exist a tu ≥ t0 and integer
l = 0 or l = 1, with m+ l even for u∇m ≥ 0, or m+ l odd for u∇m ≤ 0
such that

(2.9) (−1)l+ku∇k

(t) > 0 for t ≥ tu, k = 1, 2, . . . ,m− 1,

and

(2.10) lim
t→∞

u∇k

(t) = 0, k = 1, 2, . . . ,m− 1.

Proof. We shall discuss only the case when m ≥ 2 is even and
u∇m

(t) ≤ 0 on [t0,∞)T because the proof of the other cases are similar.
By Lemma 2.4, there exist a tu ≥ t0 and an odd l, 0 ≤ l ≤ m, such that
(2.7) and (2.8) hold. We claim that l = 1. Otherwise, l ≥ 3. According

to (2.7), we have u∇(t) > 0 and u∇2

(t) > 0 for tu ≥ t0. Thus, we get

u∇(t) ≥ u∇(tu), t ∈ [tu,∞)T.

By integrating both sides of the last inequality from tu to t, we see

u(t)− u(tu) ≥ u∇(tu)(t− tu), t ∈ [tu,∞)T.

In view of the fact that u∇(tu) > 0, letting t → ∞, we find that
limt→∞ u(t) = ∞, which contradicts the boundedness of u(t). Hence,
(2.9) holds.

Next, we prove (2.10). From (2.9), we have u∇(t) > 0 and u∇2

(t) < 0
for tu ≥ t0. It follows that limt→∞ u∇(t) := L1 ≥ 0, and

u∇(t) ≥ L1, t ∈ [tu,∞)T.
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By integrating both sides of the last inequality from tu to t, we see

u(t)− u(tu) ≥ L1(t− tu), t ∈ [tu,∞)T.

If L1 > 0, then letting t → ∞ will lead to limt→∞ u(t) = ∞, which
is a contradiction with the boundedness of u(t). Therefore L1 = 0, i.e.,

lim
t→∞

u∇(t) = 0.

Also, from (2.9), we have u∇2

(t) < 0 and u∇3

(t) > 0 for tu ≥ t0. It

follows that limt→∞ u∇2

(t) := L2 ≤ 0 and

u∇2

(t) ≤ L2, t ∈ [tu,∞)T.

By integrating the both sides of the last inequality from tu to t, we see

u∇(t)− u∇(tu) ≤ L2(t− tu), t ∈ [tu,∞)T.

If L2 < 0, then letting t → ∞ will lead to limt→∞ u∇(t) = −∞,
which contradicts the fact that u∇(t) > 0 for t ∈ [tu,∞)T. Therefore,
L2 = 0, i.e.,

(2.11) lim
t→∞

u∇2

(t) = 0.

From (2.9), we have u∇3

(t) > 0 and u∇4

(t) < 0 for t ∈ [tu,∞)T. Hence,

we obtain limt→∞ u∇3

(t) := L3 ≥ 0 and u∇3

(t) ≥ L3 for t ∈ [tu,∞)T.
By integrating both sides of the last inequality from tu to t, we get

u∇2

(t)− u∇2

(tu) ≥ L3(t− tu), t ∈ [tu,∞)T.

If L3 > 0, then letting t → ∞ will give limt→∞ u∇2

(t) = ∞, which

contradicts the fact that u∇2

(t) < 0 for t ∈ [tu,∞)T. Therefore, we
obtain L3 = 0, i.e.,

(2.12) lim
t→∞

u∇3

(t) = 0.

The rest of the proof is similar to that of (2.11) and (2.12) so that
we omit it. The proof of Lemma 2.5 is completed. �

Let BCld([t0,∞)T,R) be the Banach space of all bounded ld-
continuous functions on [t0,∞)T with the norm ||x|| = supt∈[t0,∞)T |x(t)|.
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The following is an analogue of the Arzelá-Ascoli theorem on time
scales.

Lemma 2.7. [15, Lemma 4]. Suppose that X ⊆ BCld([t0,∞)T,R)
is bounded and uniformly Cauchy. Further, suppose that X is equi-
continuous on [T0, T1]T for any T1 ∈ [T0,∞)T. Then X is relatively
compact.

In the next section, we will employ Kranoselskii’s fixed point theorem
(see [5, 7, 12, 13, 14, 15] to establish the existence of nonoscillatory
solutions for (1.1). For the sake of convenience, we state this theorem
here as follows.

Lemma 2.8. (Kranoselskii’s fixed point theorem). Suppose that X is
a Banach space and Ω is a bounded, convex and closed subset of X.
Suppose further that there exist two operators U, S : Ω → X such that
(i) Ux+ Sy ∈ Ω for all x, y ∈ Ω;
(ii) U is a contraction mapping ;
(iii) S is completely continuous.
Then U + S has a fixed point in Ω.

3. Main results. This section is organized as follows. In subsection
3.1, we give sufficient conditions for the existence of bounded nonoscil-
latory solutions of (1.1); in subsection 3.2, we state necessary and suf-
ficient conditions for the existence of bounded nonoscillatory solutions
of (1.2) and (1.1); in subsection 3.3, we will discuss sufficient (and nec-
essary) conditions for the existence of bounded nonoscillatory solutions
of (1.3).

We state the following conditions, which are needed in the sequel:
(H1) there exists a constant p ∈ ( 12 , 1) such that |p(t)| ≤ 1 − p for all
t ∈ [t0,∞)T ;
(H2) there exist constants p1, p2 ∈ (−∞,−1) such that p1 ≤ p(t) ≤ p2
for all t ∈ [t0,∞)T ;
(H3) there exists a constant p ∈ (−1, 0] such that p ≤ p(t) ≤ 0 for all
t ∈ [t0,∞)T ;
(H4) there exists a constant p ∈ (0, 1) such that 0 < p(t) ≤ p for all
t ∈ [t0,∞)T ;



HIGHER-ORDER NEUTRAL DYNAMIC EQUATIONS 487

(H5) there exists constants p1, p2 ∈ (1,+∞) such that p1 ≤ p(t) ≤ p2
for all t ∈ [t0,∞)T.

3.1. Sufficient conditions for (1.1). We state the following results
in this subsection, which investigate sufficient conditions for the exis-
tence of bounded nonoscillatory solutions of (1.1) with p(t) in one of
the ranges (H1)–(H5).

Theorem 3.1. Assume that (H1) holds, and that

(3.1)

∫ ∞

t0

ĝm−1(ρ(s), t0)|pi(s)|∇s < ∞, i = 1, 2, . . . , k

and

(3.2)

∫ ∞

t0

ĝm−1(ρ(s), t0)|q(s)|∇s < ∞.

Then (1.1) has a bounded nonoscillatory solution x(t) with

lim inf
t→∞

|x(t)| > 0.

Proof. For some d ̸= 0, we choose d1, c1 such that 0 < d1 < (2p−1)|d|
and d1+(1−p)|d| < c1 < p|d|. Let c = min{c1−d1−(1−p)|d|, p|d|−c1}.
By (3.1), (3.2) and Lemma 2.2, there exists a sufficiently large number
t1 ≥ t0 such that∫ ∞

t1

ĝm−1(ρ(s), t1)

( k∑
i=1

M1|pi(s)|+ |q(s)|
)
∇s ≤ c

and τ(t), τi(t) ≥ t0, i = 1, 2, . . . , k for t ≥ t1, where M1 =
maxd1≤x≤|d|{|fi(x)| : 1 ≤ i ≤ k}.

Let

Ω1 = {x ∈ BCld([t0,∞)T,R) | d1 ≤ x(t) ≤ |d|, t ∈ [t0,∞)T}.

It is easy to verify that Ω1 is a bounded, convex and closed subset of
BCld([t0,∞)T,R).

We define two operators U1, S1 : Ω1 → BCld([t0,∞)T,R) as follows:

(U1x)(t) =

{
−p(t)x(τ(t)), t ∈ [t1,∞)T,
(U1x)(t1), t ∈ [t0, t1]T,
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(S1x)(t)=


c1 + (−1)m−1

∫∞
t

ĝm−1(ρ(s), t)

×
( k∑

i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s, t ∈ [t1,∞)T,

(S1x)(t1), t ∈ [t0, t1]T.

Next, we show that U1 and S1 satisfy the conditions in Lemma 2.7.

(I) We will show that U1x+ S1y ∈ Ω1 for any x, y ∈ Ω1. In fact, for
any x, y ∈ Ω1 and t ≥ t1, we have

(U1x)(t) + (S1y)(t) ≥ c1 − |p(t)|x(τ(t))

−
∫ ∞

t

ĝm−1(ρ(s), t)

( k∑
i=1

|pi(s)||fi(x(τi(s)))|+ |q(s)|
)
∇s

≥ c1 − (1− p)|d| −
∫ ∞

t1

ĝm−1(ρ(s), t1)

( k∑
i=1

M1|pi(s)|+ |q(s)|
)
∇s

≥ c1 − (1− p)|d| − [c1 − d1 − (1− p)|d|] = d1,

and

(U1x)(t) + (S1y)(t) ≤ c1 + |p(t)|x(τ(t))

+

∫ ∞

t

ĝm−1(ρ(s), t)

( k∑
i=1

|pi(s)||fi(x(τi(s)))|+ |q(s)|
)
∇s

≤ c1 + (1− p)|d|

+

∫ ∞

t1

ĝm−1(ρ(s), t1)

( k∑
i=1

M1|pi(s)|+ |q(s)|
)
∇s

≤ c1 + (1− p)|d|+ p|d| − c1 = |d|,

which implies that U1x+ S1y ∈ Ω1 for any x, y ∈ Ω1.

(II) We will show that U1 is a contraction mapping. Indeed, for any
x, y ∈ Ω1, we get

||(U1x)(t)− (U1y)(t)|| ≤ |p(t)||x(τ(t))− y(τ(t))|
≤ (1− p)||x− y||, t ≥ t1,

and
||(U1x)(t)− (U1y)(t)|| = 0, t0 ≤ t ≤ t1.
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Hence, U1 is a contraction mapping.

(III) Finally, we show that S1 is a completely continuous mapping.
According to Lemma 2.6, we need to show that S1 is continuous and
S1Ω1 is bounded, uniformly Cauchy and equi-continuous.

(i) Similar to the proof of (I), we see that d1 ≤ (S1x)(t) ≤ |d| for
t ∈ [t0,∞)T. That is S1Ω1 ⊂ Ω1 and S1Ω1 is bounded.

(ii) We claim that S1 is continuous. Let xn ∈ Ω1 and ||xn − x|| → 0
as n → ∞. Then x ∈ Ω1 and |xn−x| → 0 as n → ∞ for all t ∈ [t0,∞)T.
For t ≥ t1, we have

||S1xn − S1x||

≤
∫ ∞

t1

ĝm−1(ρ(s), t1)

( k∑
i=1

|pi(s)||fi(xn(τi(s)))− fi(x(τi(s)))|
)
∇s.

Since

ĝm−1(ρ(s), t1)

( k∑
i=1

|pi(s)||fi(xn(τi(s)))− fi(x(τi(s)))|
)

≤ ĝm−1(ρ(s), t1)

( k∑
i=1

|pi(s)||fi(xn(τi(s)))|+ |fi(x(τi(s)))|
)

≤ 2M1ĝm−1(ρ(s), t1)
k∑

i=1

|pi(s)|

and

|fi(xn(τi(s)))− fi(x(τi(s)))| −→ 0 (n → ∞), for i = 1, 2, . . . , k.

In view of (3.1) and applying the Lebesgue dominated convergence
theorem, we conclude that

lim
n→∞

||S1xn − S1x|| = 0,

which implies that S1 is continuous on Ω1.

(iii) Next, we show that S1Ω1 is uniformly Cauchy. In fact, for any
ε ≥ 0, take t2 > t1 such that∫ ∞

t2

ĝm−1(ρ(s), t2)

( k∑
i=1

M1|pi(s)|+ |q(s)|
)
∇s ≤ ε/2.
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Then, for any x ∈ Ω1 and t, r ∈ [t2,∞)T, we have

||S1x)(t)− S1x)(r)||

≤
∣∣∣∣ ∫ ∞

t

ĝm−1(ρ(s), t)

( k∑
i=1

|pi(s)||fi(x(τi(s)))|+ |q(s)|
)
∇s

∣∣∣∣
+

∣∣∣∣ ∫ ∞

r

ĝm−1(ρ(s), r)

( k∑
i=1

|pi(s)||fi(x(τi(s)))|+ |q(s)|
)
∇s

∣∣∣∣
≤ 2

∫ ∞

t2

ĝm−1(ρ(s), t2)

( k∑
i=1

M1|pi(s)|+ |q(s)|
)
∇s ≤ ε.

Therefore, S1Ω1 is uniformly Cauchy.

We also have another method to prove S1Ω1 is uniformly Cauchy.
To do so, we only check that S∇

1 (t) is bounded. Here we leave it to the
readers.

(iv) We show that S1Ω1 is equicontinuous on [t0, t2]T for any t2 ∈
[t0,∞)T. Without loss of generality, we assume that t2 ≥ t1. For any
ε > 0, choose

δ = ε/

∫ ∞

t0

ĝm−1(ρ(s), t0)

( k∑
i=1

M1|pi(s)|+ |q(s)|
)
∇s.

Then, for any x ∈ Ω1, when t, r ∈ [t0, t2]T with |t− r| < δ, by Lemmas
2.1 and 2.3, we have

||(S1x)(t)− (S1x)(r)||

=

∣∣∣∣ ∫ ∞

t

ĝm−1(ρ(s), t)

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

−
∫ ∞

r

ĝm−1(ρ(s), r)

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

∣∣∣∣
=

∣∣∣∣ ∫ ∞

t

ĥm−1(t, ρ(s))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

−
∫ ∞

r

ĥm−1(r, ρ(s))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

∣∣∣∣
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=

∣∣∣∣ ∫ ∞

t

[ ∫ t

ρ(s)

ĥm−2(θ, ρ(s))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇θ

]
∇s

−
∫ ∞

r

[ ∫ r

ρ(s)

ĥm−2(θ, ρ(s))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇θ

]
∇s

∣∣∣∣
=

∣∣∣∣ ∫ ∞

t

[ ∫ ∞

θ

ĥm−2(θ, ρ(s))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]
∇θ

−
∫ ∞

r

[ ∫ ∞

θ

ĥm−2(θ, ρ(s))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]
∇θ

∣∣∣∣
=

∣∣∣∣ ∫ ∞

t

[ ∫ ∞

θ

ĝm−2(ρ(s), θ)

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]
∇θ

−
∫ ∞

r

[ ∫ ∞

θ

ĝm−2(ρ(s), θ)

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]
∇θ

∣∣∣∣
=

∣∣∣∣ ∫ r

t

[ ∫ ∞

θ

ĝm−2(ρ(s), θ)

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]
∇θ

∣∣∣∣
≤

∣∣∣∣ ∫ r

t

[ ∫ ∞

t0

ĝm−2(ρ(s), t0)

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]
∇θ

∣∣∣∣
= |t− r|

∫ ∞

t0

ĝm−2(ρ(s), t0)

∣∣∣∣ k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

∣∣∣∣∇s

≤ δ

∫ ∞

t0

ĝm−1(ρ(s), t0)

( k∑
i=1

M1|pi(s)|+ |q(s)|
)
∇s ≤ ε.

This indicates that S1Ω1 is equicontinuous on [t0, t2]T for any t2 ∈
[t0,∞)T. Hence, by Lemma 2.6, S1Ω1 is a completely continuous
mapping.

It follows from Lemma 2.7 that there exists an x ∈ Ω1 such that
(U1 + S1)x = x, which is the desired bounded solution of (1.1) with
lim
t→∞

inf |x(t)| > 0. The proof of Theorem 3.1 is complete. �

Theorem 3.2. Assume that (H2), (3.1) and (3.2) hold, and τ has the
inverse function τ−1 ∈ C(T,T). Then (1.1) has a bounded nonoscilla-
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tory solution x(t) with lim inf
t→∞

|x(t)| > 0.

Proof. We choose positive constants 0 < a < b and β > 0 such that

−ap1 < β < −b(p2 + 1). Let c = min{ (β+ap1)p2

p1
,−b(p2 + 1) − β}. By

(3.1), (3.2) and Lemma 2.2, there exists a sufficiently large number
t1 ≥ t0 such that

∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

( k∑
i=1

M2|pi(s)|+ |q(s)|
)
∇s ≤ c,

and τ−1(t), τi(τ
−1(t)) ≥ t0, i = 1, 2, . . . , k for t ≥ t1, where M2 =

max
a≤x≤b

{|fi(x)| : 1 ≤ i ≤ k}.

Let

Ω2 = {x ∈ BCld([t0,∞)T,R) | a ≤ x(t) ≤ b, t ∈ [t0,∞)T}.

It is easy to verify that Ω2 is a bounded, convex and closed subset of
BCld([t0,∞)T,R).

We define two operators U2 and S2 : Ω2 → BCld([t0,∞)T,R) as
follows:

(U2x)(t) =

{
− β

p(τ−1(t)) −
x(τ−1(t))
p(τ−1(t)) , t ∈ [t1,∞)T,

(U2x)(t1), t ∈ [t0, t1]T,

(S2x)(t) =


(−1)m−1

p(τ−1(t))

∫∞
τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

×
( k∑

i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s, t ∈ [t1,∞)T,

(S2x)(t1), t ∈ [t0, t1]T.

Next, we show that U2 and S2 satisfy the conditions in Lemma 2.7.

We will show that U2x + S2y ∈ Ω2 for any x, y ∈ Ω2. In fact, for
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any x, y ∈ Ω2 and t ≥ t1, we have

(U2x)(t) + (S2y)(t)

≥ − β

p(τ−1(t))
+

1

p(τ−1(t))

×
∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

( k∑
i=1

M2|pi(s)|+ |q(s)|
)
∇s

≥ − β

p1
+

c

p2
≥ − β

p1
+

(β + ap1)p2
p1p2

= a

and

(U2x)(t) + (S2y)(t)

≤ − β

p(τ−1(t))
− x(τ−1(t))

p(τ−1(t))

− 1

p(τ−1(t))

∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

( k∑
i=1

M2|pi(s)|+ |q(s)|
)
∇s

≤ − β

p2
− b

p2
− c

p2
≤ −β + b− b(p2 + 1)− β

p2
= b.

Thus, we have proved that U2x+S2y ∈ Ω2 for any x, y ∈ Ω2. It is easy
to verify ||(S2x)(t)|| ≤ − c

p2
and S2Ω2 is uniformly bounded.

It is clear that the mapping U2 is a contraction mapping.

Then we show that S2Ω2 is equicontinuous on [t0, t2]T for any
t2 ∈ [t0,∞)T. Without loss of generality, we assume that t2 ≥ t1. For
any x ∈ Ω2, we have ||(S2x)(t)− (S2x)(r)|| ≡ 0 for t, r ∈ [t0, t1]T. Since

1
p(τ−1(t)) and τ−1(t) are continuous on [t1, t2]T, so they are uniformly

continuous on [t1, t2]T. For any ε > 0, choose δ > 0 such that when
t, r ∈ [t0, t1]T with |t− r| < δ, we have∣∣∣∣ 1

p(τ−1(t))
− 1

p(τ−1(r))

∣∣∣∣ < ε

2k1
, |τ−1(t))− τ−1(r))| < ε

2k2
,

where

ki = 1 +

∫ ∞

t0

ĝm−i(ρ(s), t0)

( k∑
i=1

M2|pi(s)|+ |q(s)|
)
∇s, i = 1, 2.



494 XUN-HUAN DENG AND QI-RU WANG

For any x ∈ Ω2, we have

|(U2x)(t)− (S2x)(r)|

=

∣∣∣∣ 1

p(τ−1(t))

∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

− 1

p(τ−1(r))

∫ ∞

τ−1(r)

ĝm−1(ρ(s), τ
−1(t))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

∣∣∣∣
≤

∣∣∣∣[ 1

p(τ−1(t))
− 1

p(τ−1(r))

] ∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

×
( k∑

i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s|

+

∣∣∣∣ 1

p(τ−1(r))

[ ∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

×
( k∑

i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

−
∫ ∞

τ−1(r)

ĝm−1(ρ(s), τ
−1(r))

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]∣∣∣∣
=

∣∣∣∣[ 1

p(τ−1(t))
− 1

p(τ−1(r))

] ∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

×
( k∑

i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

∣∣∣∣
+

∣∣∣∣ 1

p(τ−1(r))

∫ τ−1(r)

τ−1(t)

×
[ ∫ ∞

θ

ĝm−2(ρ(s), θ)

( k∑
i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s

]
∇θ

∣∣∣∣
≤

∣∣∣∣[ 1

p(τ−1(t))
− 1

p(τ−1(r))

]
×

∫ ∞

t0

ĝm−1(ρ(s), t0)

( k∑
i=1

M2|pi(s)|+ |q(s)|
)
∇s

∣∣∣∣
+

1

|p2|

∣∣∣∣τ−1(t)− τ−1(r)

∣∣∣∣ ∫ ∞

t0

ĝm−2(ρ(s), t0)

( k∑
i=1

M2|pi(s)|+ |q(s)|
)
∇s

<
ε

2
+

ε

2
= ε,



HIGHER-ORDER NEUTRAL DYNAMIC EQUATIONS 495

which implies that S2Ω2 is equicontinuous on [t0, t2]T for any t2 ∈
[t0,∞)T. The remainder of the proof is similar to that of Theorem 3.1.
The proof is complete. �

Theorem 3.3. Assume that (H3), (3.1) and (3.2) hold. Then (1.1) has
a bounded nonoscillatory solution x(t) with lim inf

t→∞
|x(t)| > 0.

Proof. By (3.1), (3.2) and Lemma 2.2, there exists a sufficiently large
number t1 ≥ t0 such that∫ ∞

t1

ĝm−1(ρ(s), t1)

( k∑
i=1

M3|pi(s)|+ |q(s)|
)
∇s ≤ 1 + p

3
,

and τ(t), τi(t) ≥ t0, i = 1, 2, . . . , k for t ≥ t1, where M3 =
max 1+p

3 ≤x≤ 4
3
{|fi(x)| : 1 ≤ i ≤ k}.

Let

Ω3 =

{
x ∈ BCld([t0,∞)T,R) |

1 + p

3
≤ x(t) ≤ 4

3
, t ∈ [t0,∞)T

}
.

It is easy to verify that Ω3 is a bounded, convex and closed subset of
BCld([t0,∞)T,R).

We define two operators U3 and S3 : Ω3 → BCld([t0,∞)T,R) as
follows:

(U3x)(t) = (U1x)(t), t ∈ [t0,∞)T,

(S3x)(t) =


1 + p+ (−1)m−1

∫∞
t

ĝm−1(ρ(s), t)

×
( k∑

i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s, t ∈ [t1,∞)T,

(S3x)(t1), t ∈ [t0, t1]T.

The rest of the proof is similar to that of Theorem 3.1 so that we omit
it. The proof is complete. �

Theorem 3.4. Assume that (H4), (3.1) and (3.2) hold. Then (1.1)
has a bounded nonoscillatory solution x(t) with lim inft→∞ |x(t)| > 0.
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Proof. By (3.1), (3.2) and Lemma 2.2, there exists a sufficiently large
number t1 ≥ t0 such that∫ ∞

t1

ĝm−1(ρ(s), t1)

( k∑
i=1

M4|pi(s)|+ |q(s)|
)
∇s ≤ 1− p,

and τ(t), τi(t) ≥ t0, i = 1, 2, . . . , k for t ≥ t1, where

M4 = max
1−p≤x≤3

{|fi(x)| : 1 ≤ i ≤ k}.

Let

Ω4 = {x ∈ BCld([t0,∞)T,R) | 1− p ≤ x(t) ≤ 3, t ∈ [t0,∞)T}.

It is easy to verify that Ω4 is a bounded, convex and closed subset of
BCld([t0,∞)T,R).

We define two operators U4 and S4 : Ω4 → BCld([t0,∞)T,R) as
follows:

(U4x)(t) = (U1x)(t), t ∈ [t0,∞)T,

(S4x)(t)

=


2 + p+ (−1)m−1

∫∞
t

ĝm−1(ρ(s), t)

×
( k∑

i=1

pi(s)fi(x(τi(s)))− q(s)

)
∇s, t ∈ [t1,∞)T,

(S4x)(t1), t ∈ [t0, t1]T.

The rest of the proof is similar to that of Theorem 3.1 so that we omit
it. The proof is complete. �

Theorem 3.5. Assume that (H5), (3.1) and (3.2) hold, and τ has the
inverse function τ−1 ∈ C(T,T). Then (1.1) has a bounded nonoscilla-
tory solution x(t) with lim inft→∞ |x(t)| > 0.

Proof. We choose a positive constant β > 0 such that 1 < β < p1.
Let

c = min

{
(p1 − β)

2
, β − 1

}
.
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By (3.1), (3.2) and Lemma 2.2, there exists a sufficiently large number
t1 ≥ t0 such that∫ ∞

τ−1(t)

ĝm−1(ρ(s), τ
−1(t))

( k∑
i=1

M5|pi(s)|+ |q(s)|
)
∇s ≤ c,

and τ−1(t), τi(τ
−1(t)) ≥ t0, 1 ≤ i ≤ k, t ≥ t1, where

M5 = max

{
|fi(x)| :

(p1 − β)

2p2
≤ x ≤ (p1 + β)

2p1
, 1 ≤ i ≤ k

}
.

Let

Ω5 =

{
x ∈ BCld([t0,∞)T,R)

∣∣∣ (p1 − β)

2p2
≤ x(t)

≤ (p1 + β)

2p1
, t ∈ [t0,∞)T

}
.

It is easy to verify that Ω5 is a bounded, convex and closed subset of
BCld([t0,∞)T,R).

We define two operators U5 and S5 : Ω5 → BCld([t0,∞)T,R) as
follows:

(U5x)(t) =

{
β

p(τ−1(t)) −
x(τ−1(t))
p(τ−1(t)) , t ∈ [t1,∞)T,

(U5x)(t1), t ∈ [t0, t1]T,

(S5x)(t) = (S2x)(t).

The rest of the proof is similar to that of Theorem 3.2 so that we
omit it. The proof is complete. �

Remark 3.6. Theorems 3.1–3.5 extend, unify and improve essentially
some known results in [5, 6, 7, 11, 13, 14, 15] because we do not
assume that fi is Lipschitzian or nondecreasing with xfi(x) > 0 for
x ̸= 0, and allow p(t) and pi(t) to be oscillatory.

3.2. Necessary and sufficient conditions for (1.2). In this sub-
section, we will extend the results given for (1.1) to (1.2). We estab-
lish sufficient and necessary conditions for the existence of bounded
nonoscillatory solutions of (1.2) by some new techniques. For this pur-
pose, we need the following additional hypothesis:
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(H6) F (t, u) is nondecreasing in u with uF (t, u) > 0 for all u ̸= 0 and
t ∈ [t0,∞)T.

Theorem 3.7. Assume that (H6) and (3.2) hold, and that p(t) satisfies
one of the conditions (H1)− (H5). Then (1.2) has a bounded nonoscil-
latory solution x(t) with lim inft→∞ |x(t)| > 0 if and only if there exists
some constant K ̸= 0 such that

(3.3)

∫ ∞

t0

ĝm−1(ρ(s), t0)|F (s,K)|∇s < ∞,

provided that, for the conditions (H2) and (H5), the function τ has the
inverse τ−1 ∈ C(T,T).

Proof. Necessity. Assume that (1.2) has a bounded nonoscillatory
solution x(t) on [t0,∞)T with limt→∞ inf |x(t)| > 0. Without loss of
generality, we assume that there exist a constant K > 0 and some
t1 ≥ t0 such that x(t) > K, x(τ(t)) > K and x(δ(t)) > K for
t ∈ [t1,∞)T. Set

Q(t) = (−1)m
∫ ∞

t

ĝm−1(ρ(s), t)q(s)∇s.

By (3.2) and Lemma 2.3, it is easy to certify that Q(t) is bounded and
Q∇m

(t) = q(t). Let

y(t) = x(t) + p(t)x(τ(t)), z(t) = y(t)−Q(t).

We see that y(t) and z(t) are bounded because x(t), p(t) and Q(t) are
bounded. From (1.2), for all t ∈ [t1,∞)T, we have

z∇
m

(t) = −F (t, x(δ(t))) ≤ −F (t,K) < 0.

Thus, by Lemma 2.5, we know that there exists t2 ≥ t1 such that

(−1)m−j+1z∇
j

(t) > 0 for t ≥ t2 and 1 ≤ j ≤ m. Therefore, for t ≥ t2,
we obtain ∫ ∞

t

ĝm−1(ρ(s), t)F (s,K)∇s

≤ −
∫ ∞

t

ĝm−1(ρ(s), t)z
∇m

(s)∇s

= − lim
s→∞

(−1)m−(m−1)+1z∇
m−1

(s)ĝm−1(s, t)
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+ (−1)2
∫ ∞

t

ĝm−2(ρ(s), t)z
∇m−1

(s)∇s

≤ (−1)2
∫ ∞

t

ĝm−2(ρ(s), t)z
∇m−1

(s)∇s

= − lim
s→∞

(−1)m−(m−2)+1z∇
m−2

(s)ĝm−2(s, t)

+ (−1)3
∫ ∞

t

ĝm−3(ρ(s), t)z
∇m−2

(s)∇s

≤ (−1)3
∫ ∞

t

ĝm−3(ρ(s), t)z
∇m−2

(s)∇s

· · · · · ·

≤ (−1)m
∫ ∞

t

z∇(s)∇s = (−1)mz(s)|∞t < ∞.

By Lemma 2.2, we see that (3.3) holds.

The proof of sufficiency is similar to that of Theorem 3.1 or Theo-
rem 3.2. So we omit it. The proof is complete. �

Combining Theorem 3.6 with Theorems 3.1–3.5, we can immediately
give sufficient and necessary conditions for the existence of bounded
nonoscillatory solutions of (1.1) under the following additional hypoth-
esis:
(H7) pi(t) ≥ 0 for t ∈ [t0,∞)T and fi is nondecreasing with xfi(x) > 0
for all x ̸= 0.

Corollary 3.8. Assume that (H7) and (3.2) hold and that p(t) satisfies
one of the conditions (H1)–(H5). Then (1.1) has a bounded nonoscil-
latory solution x(t) with lim inft→∞ |x(t)| > 0 if only if (3.1) holds,
provided that for the conditions (H2) and (H5), the function τ has the
inverse τ−1 ∈ C(T,T).

Remark 3.9. An open problem is presented. Can we get unbounded
nonoscillatory solutions of (1.1) or (1.2) provided that, for the condi-
tions (H2) and (H5), the function τ has the inverse τ−1 ∈ C(T,T),
if integration of (3.1), (3.2), (3.3) are +∞? The answer is affirma-
tive, and we need some additional assumptions. In [13], Zhu dis-
cussed the existence of unbounded nonoscillatory solutions of (1.4)
for 2 ≤ m ∈ N. Recall the proofs of Theorems 3.1–3.6 and Corol-
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lary 3.1; similar to [13] we only choose a suitable Banach space
Ω = {x ∈ Cld([t0,∞)T,R) | d1 ≤ x(t) ≤ φ(t), t ∈ [t0,∞)T}, where
d1 > 0 is a constant and φ(t) ∈ C([t0,∞)T,R) with limt→∞ φ(t) = +∞.
The proofs are similar.

3.3. Sufficient conditions for (1.3). Related to (1.1) is the dynamic
equation (1.3) with mixed nabla and delta derivatives

[x(·) + p(·)x(τ(·))]∇
m−1∆(t) +

k∑
i=1

pi(t)fi(x(τi(t))) = q(t).

By [2, Theorem 8.49(ii)] (see also the following Theorem 5.5), for t ∈ Tk

with ρ(σ(t)) = t, the dynamic equation (1.3) can be reduced to the form

[x(·) + p(·)x(τ(·))]∇
m

(σ(t)) +
k∑

i=1

pi(t)fi(x(τi(t))) = q(t),

or

(3.4) [x(·) + p(·)x(τ(·))]∇
m

(t) +
k∑

i=1

pi(ρ(t))fi(x(τi(ρ(t)))) = q(ρ(t)).

Thus, the results of Theorems 3.1–3.5 and Corollary 3.1 can be carried
over (3.4) and then over (1.3).

4. Examples. Let us consider the following two examples to better
understand our results.

Example 4.1. Consider higher-order dynamic equations of the form

(4.1) [x(t)+p(t)x(τ(t))]∇
m

+
k∑

i=1

ai
(ρ(t)− t0)αi

fi(x(τi(t))) =
1

(ρ(t)−t0)α
,

where t ∈ [t0,∞)T, 2 ≤ m ∈ N, α > m, ai, αi > m, i = 1, 2, . . . , k, are
real numbers, τ(t), τi(t) ∈ [t0,∞)T, i = 1, 2, . . . , k, with limt→∞ τ(t) =
limt→∞ τi(t) = +∞, i = 1, 2, . . . , k, and f ∈ C(R,R). For convenience,
take p(t) = r to be a constant satisfying the hypotheses (H1)–(H5).

We first consider the case T = R. In this case, ρ(t) = t, the
nabla derivative is a usual derivative, ρ(s) ≥ t0, by Proposition 2.1
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and (−1)kĥk(t, s) = ĝk(s, t), we have ĝk(ρ(s), t0) ≥ 0, s ∈ [t0,∞)T,

ĝk(t, s) =
(t− s)k

k!
,

∫ ∞

t0

ĝm−1(ρ(s), t0)
|ai|

(ρ(s)− t0)αi
∇s < ∞,

and ∫ ∞

t0

ĝm−1(ρ(s), t0)
1

(ρ(s)− t0)α
∇s < ∞.

Therefore, (4.1) satisfies the conditions of Theorems 3.1–3.5 and equa-
tion (4.1) has a bounded non-oscillatory solution x(t) with lim inft→∞ ×
|x(t)| > 0.

Next, we consider the case T = N. In this case, ρ(t) = t − 1, the
nabla derivative is the backward difference, ρ(s) ≥ t0; by Property 2.1

and (−1)kĥk(t, s) = ĝk(s, t), we have ĝk(ρ(s), t0) ≥ 0, s ∈ [t0,∞)T,

ĝk(t, s) =
(t− s)k̄

k!
,

(t− s)k̄ = (t− s)(t− s+ 1)(t− s+ 2) · · · (t− s+ k − 1),

and ∫ ∞

t0

ĝm−1(ρ(s), t0)
|ai|

(ρ(s)− t0)αi
∇s < ∞,∫ ∞

t0

ĝm−1(ρ(s), t0)
1

(ρ(s)− t0)α
∇s < ∞.

Hence, (4.1) satisfies the conditions of Theorems 3.1–3.5 and equation
(4.1) has a bounded nonoscillatory solution x(t) with lim inft→∞ |x(t)| >
0.

Likewise, for general time scales T, it is not difficult for us to
check that (4.1) also satisfies the conditions of Theorems 3.1–3.5
and equation (4.1) has a bounded nonoscillatory solution x(t) with
lim inft→∞ |x(t)| > 0.

In particular, x(t) ≡ c (a constant) is a solution of equation (4.1), if

αi = α, i = 1, 2, . . . , k,
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and

k∑
i=1

aifi(x(τi(t))) =
k∑

i=1

aifi(c) ≡ 1.

Example 4.2. Consider the higher-order dynamic equations of the
form

(4.2)

[
x(t) +

(
r +

2

t+ 4

)
x(t− 1)

]∇m

+
k∑

i=1

ai|x(τi(t))|βix(τi(t))

(σ(t)− t0)αi + gi(t)

=
(ρ(t))n

(σ(t) + t0)α+n + g(t)
,

where t ∈ [t0,∞)T, 2 ≤ m ∈ N, n ∈ N, α > m, ai > 0, βi > 0, αi > m
(i = 1, 2, . . . , k) are real numbers, τi(t) ∈ [t0,∞)T, i = 1, 2, . . . , k, with
limt→∞ τi(t) = +∞ (i = 1, 2, . . . , k), and g(t), gi(t) ∈ C(T, (0,∞)T),
fi(x) = |x|βix ∈ C(R,R), i = 1, 2, . . . , k, σ(t) is the forward jump
operator. For convenience, take r to be a constant such that p(t) =
r + 2/(t+ 4) satisfies the hypotheses (H1)–(H5).

Now we check that equation (4.2) satisfies hypothesis (H7). In fact,

pi(t) =
ai

(σ(t)− t0)αi + gi(t)
> 0,

i = 1, 2, . . . , k, for all t ∈ [t0,∞)T,

and
xfi(x) > 0, for x ̸= 0, i = 1, 2, . . . , k,

which implies that hypothesis (H7) is satisfied.

On one hand, on time scale [t0,∞)T, we have∫ ∞

t0

ĝm−1(ρ(s), t0)
(ρ(t))n

(σ(t) + t0)α+n + g(t)
∇s

<

∫ ∞

t0

ĝm−1(ρ(s), t0)

(ρ(t) + t0)α
· (ρ(t))n

(ρ(t) + t0)+n
∇s < ∞,

which implies that (3.2) holds.
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On the other hand, on time scale [t0,∞)T, we obtain∫ ∞

t0

ĝm−1(ρ(s), t0)
ai

(σ(t)− t0)αi + gi(t)
∇s

<

∫ ∞

t0

ai · ĝm−1(ρ(s), t0)

(ρ(s)− t0)αi
∇s < ∞,

which implies that (3.1) holds.

It is clear that the function τ(t) = t − 1 has inverse function
τ−1(t) = t+1. According to Corollary 3.1, equation (4.2) has a bounded
nonoscillatory solution x(t) with lim inft→∞ |x(t)| > 0.

Besides, we also obtain the same result by using Remark 3.9. We
only check that the equation[

x(t) +

(
r +

2

t+ 4

)
x(t− 1)

]∇m

+
k∑

i=1

ai|x(τi(t))|βix(τi(t))

(σ(t)− t0)αi

=
(ρ(t))n

(σ(t) + t0)α+n

has a bounded nonoscillatory solution x(t) with lim inft→∞ |x(t)| > 0.
In fact, it is true.

5. Appendix.

5.1. Preliminaries on time scales. For convenience, we recall some
concepts related to time scales. More details can be found in [2, 3].

Definition 5.1. A time scale is an arbitrary nonempty closed subset
of the set R of real numbers with the topology and ordering inherited
from R. Let T be a time scale; for t ∈ T, the forward jump operator is
defined by σ(t) := inf{s ∈ T : s > t}, the backward jump operator
by ρ(t) := sup{s ∈ T : s < t}, and the graininess function by
µ(t) := σ(t) − t, where inf ∅ := supT and sup ∅ := inf T. If σ(t) > t,
t is said to be right-scattered; otherwise, it is right-dense. If ρ(t) < t,
t is said to be left-scattered; otherwise, it is left-dense. The sets Tκ

and Tκ are defined as follows. If T has a left-scattered maximum m or
right-scattered minimum m, then Tκ = T − {m} and Tκ = T − {m};
otherwise, Tκ = T and Tκ = T.
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Definition 5.2. For a function f : T → R and t ∈ Tκ (t ∈ Tκ), we
define the delta-derivative f∆(t) or the nabla-derivative f∇(t) of f(t)
to be the number (provided it exists) with the property that, given any
ε > 0, there is a neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T for
some δ) such that∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

∣∣ ≤ ε|σ(t)− s| for all s ∈ U

or ∣∣[f(ρ(t))− f(s)]− f∇(t)[ρ(t)− s]
∣∣ ≤ ε|ρ(t)− s| for all s ∈ U.

We say that f is delta-differentiable (or in short, differentiable) on Tκ,
provided f∆(t) exists for all t ∈ Tκ and f is nabla-differentiable (or in
short, differentiable) on Tκ, provided f∇(t) exists for all t ∈ Tκ.

It is easily seen that, if f is continuous at t ∈ T and t is right-
scattered or left-scattered, then f is delta-differentiable or nabla-
differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
,

f∇(t) =
f(t)− f(ρ(t))

ν(t)
=

f(t)− f(ρ(t))

t− ρ(t)
.

Moreover, if t is right-dense or left-dense, then f is differential at t if
and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
or f∇(t) = lim

s→t

f(t)− f(s)

t− s
.

In addition, if f∆ ≥ 0 or f∇ ≥ 0, then f is nondecreasing. Two useful
formulas are

fσ(t) = f(t) + µ(t)f∆(t), where fσ(t) := f(σ(t))

and
fρ(t) = f(t)− ν(t)f∇(t), where fρ(t) := f(ρ(t)).
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We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g (where ggσ ̸= 0 or
ggρ ̸= 0) of two differentiable functions f and g:

(5.1) (fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ(
f

g

)∆

=
f∆g − fg∆

ggσ
.

and

(5.2) (fg)∇ = f∇g + fρg∇ = fg∇ + f∇gρ(
f

g

)∇

=
f∇g − fg∇

ggρ
.

Definition 5.3. Let f : T → R be a function, f is called right-dense
continuous (rd-continuous) if it is continuous at right-dense points
in T and its left-sided limits exist (finite) at left-dense points in T.
A function F : T → R is called an antiderivative of f provided
F∆(t) = f(t) holds for all t ∈ Tk. By the antiderivative, the Cauchy
integral of f is defined as∫ b

a

f(s)∆s = F (b)− F (a),

and ∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

Definition 5.4. Let f : T → R be a function, f is called left-dense
continuous (ld-continuous) if it is continuous at left-dense points in
T, and its right-sided limits exist (finite) at right-dense points in T.
A function F : T → R is called an antiderivative of f , provided
F∇(t) = f(t) holds for all t ∈ Tk. By the antiderivative, the

Cauchy integral of f is defined as
∫ b

a
f(s)∇s = F (b) − F (a), and∫∞

a
f(s)∇s = limt→∞

∫ t

a
f(s)∇s.

Let Crd(T,R) denote the set of all rd-continuous functions and
Cld(T,R) denote the set of all ld-continuous functions mapping T to R.
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It is shown in [2] that every rd-continuous (or ld-continuous) function
has an antiderivative.

Two integration by parts formulas are

(5.3)

∫ b

a

f(t)g∆(t)∆t = [f(t)g(t)]
∣∣∣b
a
−
∫ b

a

f∆(t)gσ(t)∆t

and

(5.4)

∫ b

a

f(t)g∇(t)∇t = [f(t)g(t)]
∣∣∣b
a
−
∫ b

a

f∇(t)gρ(t)∇t.

Theorem 5.5. Assume that f : T → R is nabla differentiable on Tκ.
Then f is delta differentiable at t and

(5.5) f∆(t) = f∇(σ(t))

for t ∈ Tκ such that ρ(σ(t)) = t. If, in addition, f∇ is continuous on
Tκ, then f is delta differentiable at t and (5.5) holds for any t ∈ Tκ.

Theorem 5.6. If f , f∆ and f∇ are continuous, then

(i) [
∫ t

a
f(t, s)∆s]∆ =

∫ t

a
f∆(t, s)∆s+ f(σ(t), t);

(ii) [
∫ t

a
f(t, s)∆s]∇ =

∫ t

a
f∇(t, s)∆s+ f(ρ(t), ρ(t));

(iii) [
∫ t

a
f(t, s)∇s]∆ =

∫ t

a
f∆(t, s)∇s+ f(σ(t), σ(t));

(iv) [
∫ t

a
f(t, s)∇s]∇ =

∫ t

a
f∇(t, s)∇s+ f(ρ(t), t).
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