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UPPER BOUNDS FOR SOLUTIONS OF AN
EXPONENTIAL DIOPHANTINE EQUATION

TAKAFUMI MIYAZAKI

ABSTRACT. We consider the exponential Diophantine
equation ax + by = cz in positive integers x, y and z,
where a, b and c are fixed pair-wise relatively prime positive
integers greater than one. In this paper, we obtain several
upper bounds for solutions x, y and z for which two of x, y
and z are even. As their applications, we solve exponential
Diophantine equations in which a, b and c are expressed as
terms of linearly recurrence sequences.

1. Introduction. We consider the exponential Diophantine equa-
tion

(1.1) ax + by = cz

in positive integers x, y and z, where a, b and c are fixed pair-wise
relatively prime positive integers greater than one. It is not easy to solve
(1.1), even if very particular values of a, b and c are given, or under the
abc conjecture. In the study of equation (1.1), the method of coming to
rational points of algebraic curves as used in the studies of the Fermat
equation are not very effective because the exponents of (1.1) vary. By
the theory of Diophantine approximation, we can obtain some general
information on the solutions. Equation (1.1) can be regarded as a kind
of unit equation. Schmidt’s subspace theorem gives upper bounds for
the number of general unit equations. In particular, equation (1.1)
has only finitely many solutions. Also, by means of Baker’s theory for
linear forms in logarithms, we can obtain effectively computable upper
bounds for the size of solutions of (1.1). We remark that these bounds
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are not very useful to determine the solutions of (1.1). Assuming the
Tijdeman-Zagier conjecture on the generalized Fermat equation (cf.,
[7, Chapter 14], [10, Section B19]), we may conclude that equation
(1.1) has no solutions with min{x, y, z} ≥ 3. The conjecture is also
known as Beal’s conjecture, and Beal has offered a prize of $100,000
dollars (the money is held by the AMS and funds the Erdös lecture)
for the solution (cf., [13]).

On the other hand, the study of determining solutions of (1.1)
is more active than that of only estimating them. Originally this
problem was considered for fixed values of a, b and c. Using various
elementary methods in number theory (congruence, factorization in
number fields, etc.), several authors determined complete solutions of
(1.1) for small values of a, b and c. Almost all of the recent work
concerns cases where a, b and c are expressed as terms of various
recurrence sequences. The case of ap+bq = cr for some positive integers
p, q and r has much interest. One of the famous unsolved problems is
due to Jeśmanowicz ([11]). It states that equation (1.1) has the unique
solution x = y = z = 2 if p = q = r = 2.

In this paper, we first obtain several upper bounds for solutions x, y
and z of (1.1) for which two of x, y and z are even. For this, we use the
theory of the ring of Gaussian integers and several p-adic calculations.
One of our results (see (III-1) and (III-2) in Theorem 3.2 below) tells
us that the estimate

max{x, y, z} ≤ 4

log 2
logmax{a, b, c}

holds for all solutions (x, y, z) of (1.1) for which x, y and z are all even,
except for specific values of a, b, c, x, y, z. The above estimate is much
smaller than any other known results. As applications of our results,
we solve equations (1.1) in the case where a, b and c are Fibonacci
numbers. Let {Fn}n≥0 be Fibonacci numbers, defined by F0 = 0,
F1 = 1, Fn+2 = Fn+1 + Fn. Fibonacci numbers have the following
elegant formulas:

F 2
n + F 2

n+1 = F2n+1, F 2
n + F2n+2 = F 2

n+2

for n ≥ 0 (cf., [12, page 79, Corollary 5.4]). It is worth stating that the
formulas of these types seem not to be seen in other linearly recurrence
sequences (see Remarks 5.4 and 5.10 below). In 2002, at a satellite
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meeting of the International Congress of Mathematics, Terai ([17])
proposed studying (1.1) in the case of (a, b, c) = (Fn, Fn+1, F2n+1)
with fixed n ≥ 3, and he asked whether (1.1) has the unique solution
(x, y, z) = (2, 2, 1) or not. We solve his problem as follows.

Theorem F1. For each n ≥ 3, the exponential Diophantine equation

F x
n + F y

n+1 = F z
2n+1

has the unique solution (x, y, z) = (2, 2, 1) in positive integers x, y
and z.

Also, we prove

Theorem F2. For each n ≥ 3, the exponential Diophantine equation

F x
n + F y

2n+2 = F z
n+2

has the unique solution (x, y, z) = (2, 1, 2) in positive integers x, y
and z.

We can extend these results to more general linearly recurrence
sequences (see Theorems P1 and P2 below).

In the next section, we quote preliminary results on Diophantine
equations, the generalized Fermat equation and Catalan equation. In
Section 3, we obtain several upper bounds for solutions x, y and z of
(1.1) for which two of x, y and z are even. In Section 4, using the
results proved in Section 3, we obtain several results related to the case
of a2 + b2 = c or a2 + b = c2. In the final section, we prove Theorems
F1 and F2.

2. Lemmas. In this section, we quote several results on the gener-
alized Fermat equation

(∗) Sp + T q = Ur

in non-zero relatively prime integers S, T and U , where p, q and r are
fixed positive integers greater than one. They are useful for reducing
the divisibility properties of the solutions of (1.1).
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Lemma 2.1. Let r ≥ 2 be a positive integer. If (p, q, r) = (2, 2, r),
then all of the solutions of (∗) in relatively prime positive integers are
given by

S + T
√
−1 = (k + l

√
−1 )r, U = k2 + l2,

where k and l are relatively prime positive integers of different parities
with k > l.

Lemma 2.2. If (p, q, r) = (4, 2, 4), then (∗) has no solutions.

Lemma 2.3 ([5] Theorem 3). Let N ≥ 2 be a positive integer. If
(p, q, r) = (2N, 2, 4), then (∗) has no solutions with Z ≡ 0 (mod 2).

Lemma 2.4 ([6] Lemma 10). Let N ≥ 2 be a positive integer. If
(p, q, r) = (2N, 4, 2), then (∗) has no solutions.

Lemma 2.5 ([7] pages 489–490). Let N ≥ 6 be a positive integer. If
(p, q, r) = (2, N, 4), then (∗) has no solutions.

Lemma 2.6 ([1]). If {p, q, r} = {2, 4, 6}, then (∗) has no solutions.

Lemma 2.7 ([2]). Let N be a positive integer with N ∈ {4, 5}. If
(p, q, r) = (3, 3, N), then (∗) has no solutions.

Lemma 2.8 ([3] Theorem 1.2). If (p, q, r) = (2, 5, 4), then (∗) has no
solutions other than (S, T, U) = (±122,−3,±11), (±7, 2,±3).

Lemma 2.9 ([16]). If (p, q, r) = (3, 4, 5), then (∗) has no solutions.

The following result is on the Catalan’s equation.

Lemma 2.10 ([14]). The equation

XU − Y V = 1

has the unique solution (X,Y, U, V ) = (3, 2, 2, 3) in positive integers
X,Y, U, V ≥ 2.
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3. Estimates of solutions. We consider (1.1) in the case where a,
b and c are relatively prime positive integers greater than one, one of
which is even and the others are odd. In this section we obtain several
upper bounds for solutions x, y and z of (1.1) in terms of a, b and c
for the following cases:

(1) x, y and z are even.
(2) x, y are even and z is odd.
(3) x, z are even and y is odd.

For cases (1) and (2), we should consider the case where c is odd.
Indeed, in the case where c is even, if (1.1) has a solution (x, y, z) for
which x and y are even, then cz is a sum of two squares of odd integers,
so it is exactly divisible by 2, which implies that z = 1.

For a prime number p and a non-zero integer m, we denote ordp(m)
by the exact power of p in m. Also, we define the p-part of m by

m(p) := pordp(m).

For cases (1) and (3), we will use the following elementary fact on
2-adic calculations (cf., [15, page 11; P1.2]).

Lemma 3.1. Let U and V be distinct relatively prime positive odd
integers. Then, for any positive integer e, we have

ord2
(
U2e − V 2e

)
= ord2

(
U + (−1)(UV+1)/2V

)
+ ord2(e) + 1.

Theorem 3.2. We consider the case where b is even. Let (x, y, z)
be a solution of (1.1). Assume that x, y and z are even. We write
x = 2X, y = 2Y and z = 2Z, where X, Y and Z are positive integers.
Then the following (I), (II) and (III) hold.

(I) If a is a prime power, then we have

(X,Y, Z) ∈
{(

log(2b+ 1)

2 log a
, 1,

log(b+ 1)

log c

)
,(

log(2c− 1)

2 log a
,
log(c− 1)

log b
, 1

)}
.
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(II) If b is a power of 2, then we have

(a, c,X, Y, Z) =

(
b2i

4
− 1,

b2i

4
+ 1, 1, i, 1

)
for some i ≥ 1.

(III) We suppose that a is not a prime power, b is not a power of 2,
and

(X,Y, Z) /∈
{(

log(2b+ 1)

2 log a
,1,

log(b+ 1)

log c

)
,(

log(2c− 1)

2 log a
,
log(c− 1)

log b
, 1

)}
,

(a, c,X, Y, Z) ̸=
(

b2i

4
− 1,

b2i

4
+ 1, 1, i, 1

)
for any i ≥ 1. Then the following (III-1) and (III-2) hold.

(III-1) We have the upper estimates

X <
2Y log(b/2)− log 4

log a
, Z <

2Y log(b/2) + log 2

log c
.

(III-2) Suppose that Y > 1. Then we have the upper estimate

Y ≤
logmin

{
a/p(a) + (−1)(a+1)/2p(a), 2

√
c− 1

}
log b(2)

,

where p(a) is the least prime factor of a. Furthermore, if c− 1
is not a square, c− 1 has a prime factor not dividing b, or

Y ̸= ord2(c− 1) + 2

2 ord2(b)
,

then we have

Y − log Y

log b(p)

<
log(2 log(b/2) + 1/2 log 2) + 1/2 log(c− 4)− log log c

log b(p)
,

where p is the odd prime factor of b for which b(p) is minimum.
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Proof. By Lemma 2.1, we can write

aX = k2 − l2, bY = 2kl, cZ = k2 + l2,

where k and l are relatively prime positive integers of different parities
with k > l. Since (k + l)(k − l) = aX and gcd(k + l, k − l) = 1, we can
write

k + l = uX , k − l = vX ,

where u and v are relatively prime positive integers with uv = a.

(I) Assume that v = 1. Then k− l = 1, so cZ − bY = (k− l)2 = 1. It
follows from Lemma 2.10 that Y = 1, Z = 1 or (b, c, Y, Z) = (2, 3, 3, 2).
We remark that k − l = 1 if a is a prime power.

If Y = 1, then cZ = b + 1, that is, Z = [log(b+ 1)]/log c. Since
a2X = c2Z − b2 = 2b+ 1, we have X = [log(2b+ 1)]/2 log a.

If Z = 1, then bY = c − 1, that is, Y = [log(c− 1)]/log b. Since
a2X = c2 − b2Y = 2c− 1, we have X = [log(2c− 1)]/2 log a.

If (b, c, Y, Z) = (2, 3, 3, 2), then a2X = 34−26 = 17, which is absurd.

(II) We assume that l = 1. Then

k2 − aX = 1, cZ − k2 = 1.

Since a is odd, it follows from Lemma 2.10 that X = Z = 1. Hence,
we see that a = k2 − 1 = b2Y/4 − 1 and c = k2 + 1 = b2Y/4 + 1. We
remark that l = 1 if b is a power of 2.

(III) In what follows, we assume that v > 1 and l > 1, in particular,
a is not a prime power and b is not a power of 2. Then v ≥ p(a) (since v
is a divisor of a). We claim that l ≥ 2Y−1. If l is even, then 2l is a Y -th
power of a positive even integer since (2l)k = bY and gcd(k, 2l) = 1, in
particular, l ≥ 2Y−1. If l is odd, then l is a Y -th power of a positive
odd integer since (2k)l = bY and gcd(2k, l) = 1, in particular, l ≥ 3Y .
Hence, the claim is proved.

(III-1) Since l ≥ 2Y−1 and

aX < k2 = b2Y/(4l2), cZ < 2k2 = b2Y/(2l2),

we can obtain the desired upper bounds for X and Z.
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(III-2) Suppose that Y > 1. From Lemmas 2.3 and 2.4, we see that
both X and Z are odd. We will find two upper bounds for Y . Since

4kl = (k + l)2 − (k − l)2 = u2X − v2X ,

we see from Lemma 3.1 that

ord2(b)Y = ord2(b
Y ) = ord2(2kl)

= ord2

(
u2X − v2X

2

)
= ord2

(
u2X − v2X

)
− 1

= ord2
(
u+ (−1)(a+1)/2v

)
≤

log
(
u+ (−1)(a+1)/2v

)
log 2

.

Since a is not a prime power and v ≥ p(a), we see that

u+ (−1)(a+1)/2v = a/v + (−1)(a+1)/2v ≤ a/p(a) + (−1)(a+1)/2p(a);

hence, we obtain the first upper bound for Y :

Y ≤
log

(
a/p(a) + (−1)(a+1)/2p(a)

)
log b(2)

.

On the other hand, we rewrite k2 + l2 = cZ as

(k + l
√
−1)(k − l

√
−1) = cZ .

Since c is odd, we see that two factors on the left-hand side of the above
equality are relatively prime in the ring of Gaussian integers. Hence,
we can write

k + l
√
−1 = (a1 + b1

√
−1 )Z

for some integers a1 and b1 satisfying a 2
1 + b 2

1 = c. We remark that
a1 ̸≡ b1 (mod 2). Since Z is odd, we see that

(3.1)



k = a1

(
aZ−1
1 −

(
Z

Z − 2

)
aZ−3
1 b 2

1 + · · ·

±
(
Z

3

)
a 2
1 bZ−3

1 ± ZbZ−1
1

)
,

l = b1

(
ZaZ−1

1 −
(

Z

Z − 3

)
aZ−3
1 b 2

1 + · · ·

±
(
Z

2

)
a 2
1 bZ−3

1 ± bZ−1
1

)
.
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It is clear that a1 divides k and b1 divides l. In particular, a1 and b1
are relatively prime non-zero integers. Since a1 ̸≡ b1 (mod 2) and z is
odd, we see from (3.1) that k/a1 and l/b1 are odd integers. Hence, we
find that

ord2(b)Y = ord2(b
Y ) = ord2(2kl) = ord2(2a1b1).

We only consider the case where a1 is odd (the case where b1 is odd is

similar). Since b1 is even and |b1| =
√

c− a 2
1 ≤

√
c− 1, we obtain the

second upper bound for Y :

Y =
ord2(2b1)

ord2(b)
≤ log(2|b1|)

ord2(b) log 2
≤ log(2

√
c− 1 )

log b(2)
.

In what follows, we only consider the case where a1 is odd (the case
where b1 is odd is similar). If a1 = ±1, then c = a 2

1 + b 2
1 = 1 + b 2

1 ; in
particular, any prime factor of c− 1 (= b 2

1 ) divides b. Further, we see
that

Y =
ord2(2b1)

ord2(b)
=

ord2(4b
2
1 )

2 ord2(b)
=

ord2(4(c− 1))

2 ord2(b)
=

ord2(c− 1) + 2

2 ord2(b)
.

Finally, we suppose that c − 1 is not a square, or c − 1 has a prime
factor not dividing b, or

Y ̸= ord2(c− 1) + 2

2 ord2(b)
.

Then, by the above remarks, we see that a1 has an odd prime factor,
say p. From the first equation in (3.1), we observe that p divides k, but
p does not divide l since gcd(k, l) = 1. We claim that

ordp(k)Y = ordp(a1) + ordp(Z).

From the first equation in (3.1), it suffices to show that, if Z is divisible
by p, then

ordp

((
Z

i

)
a i−1
1

)
> ordp(Z)

for i = 3, 5, . . . , Z. Since p ≥ 3, i ≥ 3 and

ordp(i!) =
∞∑
j=1

⌊
i

p j

⌋
<

∞∑
j=1

i

p j
=

i

p− 1
,
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where ⌊ · ⌋ is the floor function, we see that

ordp

((
Z

i

)
a i−1
1

)
= ordp

(
Z(Z − 1) · · · (Z − i+ 1)

i!

)
+ ordp

(
a i−1
1

)
= ordp

(
Z(Z − 1) · · · (Z − i+ 1)

)
− ordp(i!)

+ (i− 1) ordp(a1)

> ordp(Z)− i

p− 1
+ i− 1

= ordp(Z) +

(
p− 2

p− 1

)
i− 1

≥ ordp(Z) +
1

2
> ordp(Z).

Hence, the claim is proved. Since bY = 2kl and gcd(2l, p) = 1, we see
that

ordp(b)Y = ordp(b
Y ) = ordp(k) = ordp(a1Z).

Hence,

Y ≤ log(|a1|Z)

log b(p)
.

Since |a1| =
√
c− b 2

1 ≤
√
c− 4, it follows from (III-1) that

Y ≤ 1/2 log(c− 4) + logZ

log b(p)

<
1/2 log(c− 4) + log

(
2Y log(b/2)+log 2

log c

)
log b(p)

≤ log Y

log b(p)
+

log
(
2 log(b/2) + 1/2 log 2

)
+ 1/2 log(c− 4)− log log c

log b(p)
.

This gives the desired conclusion. �

Remark 3.3. Under the assumption of Theorem 3.2, we cannot
generally deduce upper bounds for Y such as Y ≤ C log b, where C
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is an absolute constant. Indeed, the identity(
22q−2 − 1

)2
+ 22q =

(
22q−2 + 1

)2
holds for q ≥ 2.

Theorem 3.4. We consider the case where b is even. Put

M = max

{
2 log a

logα
,

log b

log b(2)

}
,

m = min

{
2 log a

logα
,

log b

log b(2)

}
,

where α is the minimum of a(p) when p runs over the prime factors of
a. Let (x, y, z) be a solution of (1.1). Assume that x, y are even and
z is odd. We write x = 2X and y = 2Y , where X and Y are positive
integers. Then we have the upper estimate

Y ≤ log(c− 1)

2 log b(2)
.

Further, we suppose that c − 1 is not a square, c − 1 has a prime
factor not dividing b, or the inequality

log b

ord2(b)
<

log(c− 1)

ord2(c− 1)
,

holds, or

Y ̸= ord2(c− 1)

2 ord2(b)
.

Then we may conclude that only one of the following estimates (I) and
(II) holds.
(I)

X ≤ log(c− 4)

logα
, z ≤ min

{
log(c− 1)

log c
M +

1

(c− 1)M−m log c
,
√
c− 4

}
,

(II)

X ≤ 2 log z

logα
,

z

log z
<

2M

log c
+

2

(c− 1)M−m log c log(c− 1)
, z ≥

√
c− 1.
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Estimate (I) is also valid if the inequality

M <

√
c− 1 log c

log(c− 1)
− 1

(c− 1)M−m log(c− 1)

holds.

Proof. Since cz = a2X + b2Y is a sum of two powers of relatively
prime integers, we may assume that c does not have any prime factors
congruent to 3 modulo 4, particularly, c ≡ 1 (mod 4).

We rewrite (1.1) as

(aX + bY
√
−1 )(aX − bY

√
−1 ) = cz.

Since c is odd, we see that two factors on the left-hand side of the above
equality are relatively prime in the ring of Gaussian integers. Hence,
we can write

aX + bY
√
−1 = (a2 + b2

√
−1 )z

for some integers a2 and b2 satisfying a 2
2 + b 2

2 = c. We remark that
a2 ̸≡ b2 (mod 2). Since z is odd, we see that

(3.2)



aX = a2

(
a z−1
2 −

(
z

z − 2

)
a z−3
2 b 2

2 + · · ·

±
(
z

3

)
a 2
2 b z−3

2 ± zb z−1
2

)
,

bY = b2

(
za z−1

2 −
(

z

z − 3

)
a z−3
2 b 2

2 + · · ·

±
(
z

2

)
a 2
2 b z−3

2 ± b z−1
2

)
.

It is clear that a2 divides aX and b2 divides bY . In particular, a2 and
b2 are relatively prime non-zero integers. Then a2 is odd since a is odd,
so b2 is even. We can observe from the second equation in (3.2) that
bY/ b2 is an odd integer, in particular,

Y =
ord2(b2)

ord2(b)
.

Since |b2| =
√
c− a 2

2 ≤
√
c− 1, we obtain

Y ≤ log(c− 1)

2 log b(2)
.
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We will consider the cases |a2| = 1 and |a2| > 1 separately. First, we
assume that |a2| = 1. Then c = a 2

2 + b 2
2 = 1 + b 2

2 , in particular,
any prime factor of c − 1 (= b 2

2 ) divides b. Further, we see that
b2Y/(c− 1) = (bY/ b2)

2 is a positive odd integer, in particular,

log(c− 1)

2 log b
≤ Y =

ord2(c− 1)

2 ord2(b)
.

We suppose that c− 1 is not a square, c− 1 has a prime factor not
dividing b, or the inequality

log b

ord2(b)
<

log(c− 1)

ord2(c− 1)
,

holds, or

Y ̸= ord2(c− 1)

2 ord2(b)
.

Then, by the preceding remarks, we see that |a2| > 1. We remark that
c ̸= 5, so c ≥ 13 (since c does not have any prime factors congruent
to 3 modulo 4). Then a2 has an odd prime factor, say p. From the
first equation in (3.2), we see that p divides a, but p does not divide
b2 since gcd(a2, b2) = 1. Similarly to an observation in the proof of
Theorem 3.2, we see from the first equation in (3.2) that

ordp(a)X = ordp(a2) + ordp(z).

Then, since |a2| ≤
√

c− b 2
2 ≤

√
c− 4, we see that

ordp(a)X ≤ log |a2|
log p

+
log z

log p

≤ 2 logmax{|a2|, z}
log p

≤ 2 logmax{z,
√
c− 4}

log p
,

so

X ≤ 2 logmax{z,
√
c− 4}

log a(p)
.

We put
a′ = a2/ log a(p) , b′ = b1/ log b(2) .
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We remark that M = logmax{a′, b′} and m = logmin{a′, b′}.

We assume that z ≤
√
c− 4. Then we obtain

X ≤ log(c− 4)

log a(p)
.

Since

cz = a2X + b2Y < a′ log(c−1) + b′ log(c−1)

= max{a′, b′}log(c−1)

(
1 +

(
min{a′, b′}
max{a′, b′}

)log(c−1))
= max{a′, b′}log(c−1)

(
1 +

1

(c− 1)M−m

)
,

we see that

(log c) z < M log(c− 1) + log

(
1 +

1

(c− 1)M−m

)
< M log(c− 1) +

1

(c− 1)M−m
,

so we obtain

z <
log(c− 1)

log c
M +

1

(c− 1)M−m log c
.

Hence, case (I) holds.

Finally, we assume that z >
√
c− 4. We remark that z ≥

√
c− 1.

In fact, if
√
c− 4 < z <

√
c− 1, then 1 < c− z2 < 4. But this does not

hold since c ≡ 1 (mod 4) and z is odd. Hence, we have

X ≤ 2 log z

log a(p)
, Y ≤ log(c− 1)

2 log b(2)
≤ log z

log b(2)
.

Since
cz = a2X + b2Y ≤ a′ 2 log z + b′ 2 log z,

we can observe that the above yields

z ≤ 2M

log c
log z +

1

z2(M−m) log c
.



UPPER BOUNDS FOR SOLUTIONS OF ax + by = cz 317

Since z ≥
√
c− 1, we obtain

z

log z
≤ 2M

log c
+

1

(log c) z2(M−m) log z

≤ 2M

log c
+

2

(c− 1)M−m log c log(c− 1)
.

Hence, case (II) holds. Furthermore, since z ≥
√
c− 1 ≥ 2

√
3 > exp(1),

it follows that

2
√
c− 1

log(c− 1)
=

√
c− 1

log
√
c− 1

≤ 2M

log c
+

2

(c− 1)M−m log c log(c− 1)
,

so

M ≥
√
c− 1 log c

log(c− 1)
− 1

(c− 1)M−m log(c− 1)
.

�

Theorem 3.5. We consider the case where b is odd and b ≥ 5. Let
(x, y, z) be a solution of (1.1). Assume that x and z are even and y
is odd. We write x = 2X and z = 2Z, where X and Z are positive
integers. Suppose that (a, b, c,X, y, Z) ̸= (2, 17, 3, 3, 1, 2). Then the
following (I) and (II) hold.

(I) If b is a prime power, then we have

(X, y, Z) ∈
{(

1,
log(2a+ 1)

log b
,
log(a+ 1)

log c

)
,(

log(c− 1)

log a
,
log(2c− 1)

log b
, 1

)}
.

(II) If b is not a prime power, and

(X, y, Z) /∈
{(

1,
log(2a+ 1)

log b
,
log(a+ 1)

log c

)
,(

log(c− 1)

log a
,
log(2c− 1)

log b
, 1

)}
,

then we have

X <
y log(b/p(b))− log 2

log a
,
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Z <
log(b/p(b))

log c
y,

y ≤ log a

log
(√

b+ 1− 1
) X + 1,

where p(b) is the least prime factor of b. Furthermore, we have

X ≤
log

(
b/p(b) + (−1)(b+1)/2p(b)

)
− log 2

log a(2)
if a is even,

Z ≤
log

(
b/p(b) + (−1)

b+1
2 p(b)

)
− log 2

log c(2)
if c is even.

Proof. From (1.1), we define positive odd integers D and E as
follows:

by = DE,

where D = cZ + aX and E = cZ − aX . It is easy to see that
gcd(D,E) = 1. Hence, we can write

D = sy, E = ty,

where s and t are relatively prime positive integers with st = b. Then

sy + ty = 2cZ , sy − ty = 2aX .

We will consider the cases t = 1 and t > 1 separately.

(I) If t = 1, then cZ − aX = E = 1. Since (a, b, c,X, y, Z) ̸=
(2, 17, 3, 3, 1, 2), we see from Lemma 2.10 that X = 1 or Z = 1.
Similarly to the proof of (I) in Theorem 3.2, we obtain the desired
conclusion. We remark that t = 1 if b is a prime power.

(II) We assume that t > 1. Then b is not a prime power and
t ≥ p(b) (since t is a divisor of b). Since aX < D/2, cZ < D and
D = by/E, E ≥ p(b)y, we can obtain the desired upper bounds for X
and Z.

We claim that s ≥
√
b+ 1 + 1. Indeed, since s ≥ t + 2 and st = b,

we find that s2 ≥ b+ 2s, so (s− 1)2 ≥ b+ 1. Hence,

2aX = sy − ty = sy −
(

b

s

)y

≥
(√

b+ 1 + 1
)y−(√

b+ 1− 1
)y ≥ 2y

(√
b+ 1− 1

)y−1
,



UPPER BOUNDS FOR SOLUTIONS OF ax + by = cz 319

so (√
b+ 1− 1

)y−1 ≤ aX .

Since b ≥ 5, we have

y ≤ log a

log
(√

b+ 1− 1
) X + 1.

Since 4aXcZ = s2y − t2y and

s+ (−1)(b+1)/2t = b/t+ (−1)(b+1)/2t ≤ b/p(b) + (−1)(b+1)/2p(b),

we see from Lemma 3.1 that

ord2(a)X + ord2(c)Z = ord2(a
XcZ)

= ord2(s
2y − t2y)− 2

= ord2
(
s+ (−1)(b+1)/2t

)
− 1

≤
log

(
s+ (−1)(b+1)/2t

)
log 2

− 1

≤
log

(
b/p(b) + (−1)(b+1)/2p(b)

)
− log 2

log 2
.

This gives the desired conclusions. �

In a similar manner to Theorems 3.2-3.5, we can also prove the
following result. Actually, we can further conclude that y = 1 if we use
the result in [8].

Proposition 3.6. We consider the case where b is even. Let (x, y, z)
be a solution of (1.1). Assume that x and z are divisible by 4. We
write x = 4X and z = 4Z, where X and Z are positive integers. Then
we have

y <
log b

log b(2)
, X <

log(b/b(2))

2 log a
y, Z <

log(2b/b(2))

2 log c
y.

Proof. By Lemma 2.2, we may assume that y is odd. From (1.1),
we define positive even integers D and E as follows:

by = DE,
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where D = c2Z + a2X and E = c2Z − a2X . It is easy to see that
gcd(D,E) = 2, and that D is exactly divisible by 2 since it is a sum of
two squares of odd integers. Hence, we can write

D = 2sy, E = 2βy−1ty,

for some relatively prime positive odd integers s and t satisfying
2βst = b, where β = ord2(b) ≥ 1. We can easily show that s ≥ 5.

Since a2X < D/2, c2Z < D and D ≤ by/2βy−1, we can obtain the
desired upper bounds for X and Z.

We claim that β ≥ 2 or t ≥ 3. Indeed, if β = 1 and t = 1, then
2y−1 = (cZ + aX)(cZ − aX), so cZ + aX = 2y−2. This implies that
2sy = D < (cZ + aX)2 = 22y−4, so s < 4. This is absurd.

We rewrite c2Z + a2X = 2sy as

(cZ + aX
√
−1 )(cZ − aX

√
−1 ) = (1 +

√
−1 )(1−

√
−1 )sy.

It is easy to see that two factors on the left-hand side of the above
equality are relatively prime in the ring of Gaussian integers. Hence,
we can write

cZ + aX
√
−1 = (1 + ε

√
−1 )(d1 + e1

√
−1 )y

for some integers d1 and e1 satisfying d 2
1 + e 2

1 = s, where ε = ±1. Note
that d1 ̸≡ e1 (mod 2). Let I and J be the real part and the imaginary
part of (d1 + e1

√
−1 )y, respectively, that is,

I = d1

(
d y−1
1 −

(
y

2

)
d y−3
1 e 2

1 + · · · ± ye y−1
1

)
,

J = e1

(
yd y−1

1 −
(
y

3

)
d y−3
1 e 2

1 + · · · ± e y−1
1

)
.

Then aX = εI + J and cZ = I − εJ . Hence,

2βy−1 ty = E = (cZ + εaX)(cZ − εaX) = −4εIJ.

Since y is odd and d1 ̸≡ e1 (mod 2), we see that I/d1 and J/e1 are odd
integers. It follows that

βy = ord2(4εIJ) + 1 = ord2(4d1e1) + 1

= ord2(d1e1) + 3 ≤ log |d1e1|
log 2

+ 3
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<
log

(
b/( 2β+1 t)

)
log 2

+ 3 =
log b

log 2
−
(
β +

log t

log 2

)
+ 2

≤ log b

log 2
,

where we used the fact that 2|d1e1| < d 2
1 + e 2

1 = s = b/(2βt), and that
β ≥ 2 or t ≥ 3. �

4. Applications. In this section, we apply Theorems 3.2–3.5 to the
case of a2+b2 = c or a2+b = c2. As a result, we obtain several sufficient
conditions for which equation (1.1), with divisibility properties, has a
unique solution. We begin by showing a basic, actually important,
lemma.

Lemma 4.1. Let A, B and C be positive integers greater than one
such that A + B = C. Let x, y and z be positive integers satisfying
Ax +By = Cz. If z = 1 or max{x, y} ≤ z, then x = y = z = 1.

Proof. It is clear that x = y = 1 if z = 1. If max{x, y} ≤ z, then

Az +Bz ≤ (A+B)z = Cz = Ax +By ≤ Az +Bz.

This gives that Az +Bz = (A+B)z, so z = 1; hence, x = y = 1.

First, we consider the case of a2 + b2 = c. It is easy to see that the
inequality

M <

√
c− 1 log c

log(c− 1)
− 1

(c− 1)M−m log(c− 1)
,

which appears at the end of the statement of Theorem 3.4, holds if
a2 + b2 = c. �

In what follows, we denote the ceiling function by ⌈ · ⌉. Using
Theorems 3.2 and 3.4, we prove the following result.

Proposition 4.2. Let a, b and c be pair-wise relatively prime positive
integers greater than one such that a2 + b2 = c and b is even. Assume
that c − 1 is not a square, or c − 1 has a prime factor not dividing b,
or the inequality

log b

ord2(b)
<

log(c− 1)

ord2(c− 1)
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holds. We further assume at least one of the following conditions (i)–
(iv) :

(i) a > b,

⌈
log(7a2)

2 log b

⌉
≥

log
(
1 + (a/b)2

)
2 log b(2)

.

(ii) a is a prime power, and the inequalities

a < b,

⌈
log(2b2)

2 log a

⌉
≥

log
(
1 + (b/a)2

)
log a

hold.

(iii) a is not a prime power and the inequalities

a < b,

⌈
log(2b2)

2 log a

⌉
≥ max

{
2 log

(
a/p(a)+(−1)(a+1)/2p(a)

)
log(b/2)

log a log b(2) log c
,

1

logα

}
log

(
1 + (b/a)2

)
hold, where p(a) is the least prime factor of a and α is the minimum
of a(p) when p runs over the prime factors of a.

(iv) b ≥
√
2a3.

Then the exponential Diophantine equation

a2X + b2Y = cz

has the unique solution X = Y = z = 1 in positive integers X, Y
and z.

Proof. Let (X,Y, z) be a solution of the equation

(4.1) a2X + b2Y = cz

where X, Y , z are positive integers. Since max{a2X , b2Y } < cz, we see
that

X − z < X − 2 log a

log c
X =

log(c/a2)

log c
X =

log
(
1 + (b/a)2

)
log c

X,
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Y − z < Y − 2 log b

log c
Y =

log(c/b2)

log c
Y =

log
(
1 + (a/b)2

)
log c

Y.

We will obtain upper bounds for X and Y by using Theorems 3.2 and
3.4.

We claim that

(X,Y, z) ̸=
(
log(2c− 1)

2 log a
,
log(c− 1)

log b
, 2

)
.

Suppose that a2X = 2c− 1, bY = c− 1 and z = 2. Then

a2 + b2 = c =
a2X + 1

2
= bY + 1.

From this, we easily observe that X > 1 and Y > 2. If a ≥ b, then the
above implies that 4a2 − 1 ≥ a2X , which implies X = 1. If b ≥ a, then
the above implies that 2b2 − 1 ≥ bY , which implies Y ≤ 2. This is a
contradiction. The claim is proved.

If

(X,Y, z) =

(
log(2b+ 1)

2 log a
, 1,

2 log(b+ 1)

log c

)
,

then a2X = 2b+ 1, Y = 1 and cz = b2 + 2b+ 1. Then

(a2 + b2)z = cz = b2 + 2b+ 1.

From this, we easily observe that z = 1. Hence, a2 = 2b+1, so X = 1.

First we assume that a is a prime power. By the above remarks, we
see from (I) in Theorem 3.2 that z has to be odd. Then, by Theorem 3.4,
we have

X ≤ log(c− 4)

log a
, Y ≤ log(c− 1)

2 log b(2)
.

Next we assume that a is not a prime power. If z is odd, then we
see from Theorem 3.4 that

X ≤ log(c− 4)

logα
, Y ≤ log(c− 1)

2 log b(2)
.

Since
a/p(a) + (−1)(a+1)/2p(a) ≤ a/3 + 3 < a <

√
c− 1,
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we see from (III-1) in Theorem 3.2 that, if z is even, then we have

X <
2 log(b/2)

log a

(
≤ log(c− 4)

logα

)
, Y = 1,

or

X <
2 log

(
a/p(a) + (−1)(a+1)/2p(a)

)
log(b/2)

log a log b(2)
,

Y ≤
log

(
a/p(a) + (−1)(a+1)/2p(a)

)
log b(2)

.

Therefore, we may conclude that

X ≤ max

{
2 log

(
a/p(a) + (−1)(a+1)/2p(a)

)
log(b/2)

log a log b(2)
,
log(c− 4)

logα

}
,

Y ≤ log(c− 1)

2 log b(2)
.

On the other hand, taking equation (4.1) modulo b2, we find that

a2X ≡ a2z (mod b2).

Since gcd(a, b) = 1, it follows that

a2|X−z| ≡ 1 (mod b2).

Suppose that X − z > 0. Then a2(X−z) ≥ 1 + 2b2, so

X − z ≥
⌈
log(2b2)

2 log a

⌉
.

Therefore, we see that if a is a prime power. Then⌈
log(2b2)

2 log a

⌉
<

log
(
1 + (b/a)2

)
log a

,

and that if a is not a prime power, then⌈
log(2b2)

2 log a

⌉
< max

{
2 log

(
a/p(a) + (−1)

a+1
2 p(a)

)
log(b/2)

log a log b(2) log c
,

1

logα

}
log

(
1 + (b/a)2

)
.
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We can easily observe that both the above two inequalities do not hold
if a > b since the values of their right-hand side are less than 1. We
remark that both the values of their right-hand sides are greater than
or equal to ρ := log(1 + (b/a)2)/log a. Furthermore, if b ≥

√
2a3, then

ρ >
2 log(b/a)

log a
=

log(b4/a4)

2 log a
≥ log(2a2b2)

2 log a

=
log(2b2)

2 log a
+ 1 >

⌈
log(2b2)

2 log a

⌉
.

Therefore, we may conclude that X ≤ z if a > b or b ≥
√
2a3. Also,

taking equation (4.1) modulo a2, we find that

b2|Y−z| ≡ 1 (mod a2).

Suppose that Y −z > 0. Then b2(Y−z) ≥ 1+7a2 (since a2 ≡ 1 (mod 8)
and b2(Y−z) ≡ 0 (mod 8)), so

Y − z ≥
⌈
log(7a2)

2 log b

⌉
.

This implies that ⌈
log(7a2)

2 log b

⌉
<

log
(
1 + (a/b)2

)
2 log b(2)

.

We remark that the above inequality does not hold if a < b since the
value of the right-hand side is less than 1. Therefore, we may conclude
that Y ≤ z if a < b. To sum up, under each of the assumptions (i),
(ii), (iii) and (iv), we obtain X = Y = z = 1 by Lemma 4.1. �

From Proposition 4.2, we may obtain the following corollary.

Corollary 4.3. Let a, b and c be pair-wise relatively prime positive
integers greater than one such that a2 + b2 = c and b is even. Assume
that c − 1 is not a square, c − 1 has a prime factor not dividing b, or
the inequality

log b

ord2(b)
<

log(c− 1)

ord2(c− 1)



326 TAKAFUMI MIYAZAKI

holds. We further assume at least one of the following conditions:
(i)

1√
b 4
(2) − 1

≤ b/a ≤

{√
a2 − 1 if a is a prime power,√
min{α, b(2)}2 − 1 if a is not a prime power,

where α is the minimum of a(p) when p runs over the prime factors
of a.

(ii)
1√
15

≤ b/a ≤
√
3.

(iii)
√
2a3 ≤ b.

Then, the exponential Diophantine equation

a2X + b2Y = cz

has the unique solution X = Y = z = 1 in positive integers X, Y
and z.

Proof. Case (ii) is an immediate consequence of case (i). Further,
case (iii) is just (iv) in Proposition 4.2, so we only consider case (i).

Assume that s := a/b > 1. If s ≤
√
b 4
(2) − 1, then we see that

log(1 + s2)

2 log b(2)
≤ 2 ≤

⌈
log(7a2)

2 log b

⌉
,

so the desired conclusion follows from Proposition 4.2 (i).

Assume that t := b/a > 1. Suppose that a is a prime power. If

t ≤
√
a2 − 1, then we see that

log
(
1 + t2

)
log a

≤ 2 ≤
⌈
log(2b2)

2 log a

⌉
,

so the desired conclusion follows from Proposition 4.2 (ii).

Suppose that a is not a prime power. Since a ≥ 15, p(a) ≥ 3, b = at
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and c = a2(t2 + 1), we see that

2 log
(
a/p(a) + (−1)(a+1)/2p(a)

)
log(b/2)

log a log b(2) log c

≤ log(a/3 + 3)

log a

log(a2t2/4)

log
(
a2(t2 + 1)

) 1

log b(2)

<
1

log b(2)
.

Hence, if t ≤
√
min{α, b(2)}2 − 1, then we find that

max

{
1

logα
,

1

log b(2)

}
log(1 + t2) =

log(1 + t2)

logmin{α, b(2)}
≤2≤

⌈
log(2b2)

2 log a

⌉
,

so the desired conclusion follows from Proposition 4.2 (iii). �

Next, we consider the case of a2 + b = c2. Using Theorems 3.2 and
3.5, we prove the following result.

Proposition 4.4. Let a, b and c be pair-wise relatively prime positive
integers greater than one such that a2+b = c2 and b is odd. We assume
at least one of the following conditions (i)–(iv) :

(i) c ≡ 2 (mod 4).
(ii) b is a prime power.
(iii) b is not a prime power, a is even and the inequalities

max

{⌈
log(3b)

2 log a

⌉
, 2

}
≥

log
(
b/p(b)− p(b)

)
log a(2) log c

log(c/a),⌈
log(2a2)

2 log c

⌉
≥

2 log(a/2) log
(
b/p(b)− p(b)

)
log a(2) log b log c

log

(
1 +

1

(c/a)2 − 1

)
hold, where p(b) is the least prime factor of b.

(iv) b is not a prime power, c is even and the inequalities

max

{⌈
log(8b)

2 log a

⌉
, 2

}
≥

log
(
b/p(b) + p(b)

)
− log 2

log a log c(2)
log(c/a),
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max

{⌈
log(7a2)

2 log c

⌉
, 2

}
≥

log
(
b/p(b) + p(b)

)
− log 2

log b log c(2)
log

(
1 +

1

(c/a)2 − 1

)
hold, where p(b) is the least prime factor of b. Then the exponen-
tial Diophantine equation

a2X + by = c2Z

has the unique solution X = y = Z = 1 in positive integers X, y
and Z.

Proof. Let (X, y, Z) be a solution of the equation

(4.2) a2X + by = c2Z

where X, y, Z are positive integers. We remark that Z < 2y. This
follows from the relation

c2y > (c2 − a2)y = by = (cZ + aX)(cZ − aX) ≥ cZ + aX > cZ .

In particular, we find that X = y = Z = 1 if y = 1.

(i) We assume that c ≡ 2 (mod 4). Then we see that b = c2 − a2 ≡
4 − 1 ≡ 3 (mod 8). Taking equation (4.2) modulo 8, we find that
1+3y ≡ 4Z (mod 8). If Z > 1, then 3y ≡ −1 (mod 8), which does not
hold. Hence Z = 1, so X = y = 1 by Lemma 4.1.

(ii) We assume that b is a prime power. From Lemma 2.1, we see
that y has to be odd if c is even. Then, by (I) in Theorem 3.2 and (I)
in Theorem 3.5, we have

(X, y, Z) ∈
{(

1,
log(2a+ 1)

log b
,
log(a+ 1)

log c

)
,(

log(c− 1)

log a
,
log(2c− 1)

log b
, 1

)}
.

Since
b = c2 − a2 ≥ c2 − (c− 1)2 = 2c− 1 ≥ 2a+ 1,

we conclude that c = a+ 1 and X = y = Z = 1.
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In what follows, we assume that b is not a prime power. Also, by
the above remarks, we may assume that

(X, y, Z) ̸=
(
1,

log(2a+ 1)

log b
,
log(a+ 1)

log c

)
,

(
log(c− 1)

log a
,
log(2c− 1)

log b
, 1

)
.

(iii) We assume condition (iii). Next we remark that b ≡ 1 (mod 4).
Since max{a2X , by} < c2Z , we see that

X − Z < X − log a

log c
X =

X

log c
log(c/a),

y − Z < y − log b

2 log c
y =

log(c2/b)

2 log c
y

=
y

2 log c
log

(
1 +

1

(c/a)2 − 1

)
.

We will obtain upper bounds for X and y by using Theorems 3.2 and
3.5.

Suppose that y is odd. By Theorem 3.5 (II), we have

X ≤
log

(
b/p(b)− p(b)

)
log a(2)

, y ≤
log a log

(
b/p(b)− p(b)

)
log a(2) log

(√
b+ 1− 1

) + 1.

Suppose that y is even. From Lemma 2.1, we see that c has to be odd.
By Theorem 3.2 (III-1), we have

X = 1, y <
4 log(a/2)

log b
,

or

X ≤
logmin

{
b/p(b)− p(b), 2

√
c− 1

}
log a(2)

,

y <
4 log(a/2) logmin

{
b/p(b)− p(b), 2

√
c− 1

}
log a(2) log b

.

If the former case holds, then since b ≥ 2a+ 1, we see that

y <
4 log(a/2)

log b
≤ 4 log(a/2)

log(2a+ 1)
< 4,

so y = 2. This implies that a2 + b2 = (a2 + b)Z . But this clearly does
not hold. Hence, the latter case holds. To sum up, we may conclude
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that

X ≤
log

(
b/p(b)− p(b)

)
log a(2)

, y <
4 log(a/2) log

(
b/p(b)− p(b)

)
log a(2) log b

.

Therefore, we see that

X − Z <
log

(
b/p(b)− p(b)

)
log a(2) log c

log(c/a),

y − Z <
2 log(a/2) log

(
b/p(b)− p(b)

)
log a(2) log b log c

log

(
1 +

1

(c/a)2 − 1

)
.

On the other hand, taking equation (4.2) modulo b, we find that

a2X ≡ a2Z (mod b).

Since gcd(a, b) = 1, it follows that

a2|X−Z| ≡ 1 (mod b).

Suppose that X − Z > 0. We will observe that this leads to a
contradiction. Then a2(X−Z) ≥ 1 + 3b (since a is even and b ≡ 1
(mod 4)). We will show that X − Z ≥ 2. Suppose that X − Z = 1.
We remark that y ≥ 2 and Z ≥ 2 (since (X, y, Z) = (1, 1, 1) if y = 1
or Z = 1). It is clear that X or Z is even. Then y ≤ 3 by Lemmas
2.2, 2.5 and 2.8. If y = 2, then, and since Z < 2y ≤ 4, we find that
(X,Z) ∈ {(3, 2), (4, 3)}. This contradicts Lemma 2.6. If y = 3, then
(X,Z) ∈ {(3, 2), (4, 3), (5, 4), (6, 5)}. This contradicts Lemmas 2.7 and
2.9. It follows that X − Z ≥ 2. Hence,

X − Z ≥ max

{⌈
log(3b)

2 log a

⌉
, 2

}
.

This implies that

max

{⌈
log(3b)

2 log a

⌉
, 2

}
<

log
(
b/p(b)− p(b)

)
log a(2) log c

log(c/a).

But this contradicts our assumptions. Hence, X ≤ Z. Also, taking
equation (4.2) modulo a2, we find that

c2|y−Z| ≡ 1 (mod a2).
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Suppose that y − Z > 0. Then c2(y−Z) ≥ 1 + 2a2. It follows that

y − Z ≥
⌈
log(2a2)

2 log c

⌉
.

This implies that⌈
log(2a2)

2 log c

⌉
<

2 log(a/2) log
(
b/p(b)− p(b)

)
log a(2) log b log c

log

(
1 +

1

(c/a)2 − 1

)
.

But this contradicts our assumptions. Hence, y ≤ Z. Therefore, we
obtain X = y = Z = 1 by Lemma 4.1.

(iv) We assume condition (iv). We remark that b ≡ 3 (mod 4).
From Lemma 2.1, we see that y has to be odd (since c is even). Then,
by (II) in Theorem 3.5, we have

Z ≤
log

(
b/p(b) + p(b)

)
− log 2

log c(2)
.

Since max{a2X , by} < c2Z , we see that

−Z <
log c

log a
Z − Z =

Z

log a
log(c/a)

≤
log

(
b/p(b) + p(b)

)
− log 2

log a log c(2)
log(c/a),

y − Z <
2 log c

log b
Z − Z =

log(c2/b)

log b
Z =

Z

log b
log

(
1 +

1

(c/a)2 − 1

)
≤

log
(
b/p(b) + p(b)

)
− log 2

log b log c(2)
log

(
1 +

1

(c/a)2 − 1

)
.

Suppose that X − Z > 0. Similarly to (iii), we can observe that
a2(X−Z) ≥ 1+8b and X−Z ≥ 2. But this contradicts our assumptions.
Hence, X ≤ Z.

Suppose that y − Z > 0. We will observe that this leads to a
contradiction. Similarly to (iii), we can observe that c2(y−Z) ≥ 1+7a2.
We will show that y − Z ≥ 2. Suppose that y − Z = 1. Since y is odd,
we see that Z is even. Then y ≤ 3 by Lemmas 2.2, 2.5 and 2.8. Hence,
y = 3 and Z = 2. Since a2 + b = c2 and a2X + b3 = c4, we see that

(4b2<) a2X + b3 = (a2 + b)2 ≤ 4max{a2, b}2.
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This implies that a2 > b. Taking the above modulo a2, we see that
b3 ≡ b2 (mod a2), so b ≡ 1 (mod a2) since gcd(a, b) = 1. This is a
contradiction since a2 > b and b > 1. It follows that

y − Z ≥ max

{⌈
log(7a2)

2 log c

⌉
, 2

}
.

This implies that

max

{⌈
log(7a2)

2 log c

⌉
, 2

}
<

2 log(a/2) log
(
b/p(b)− p(b)

)
log a(2) log b log c

log

(
1 +

1

(c/a)2 − 1

)
.

But this contradicts our assumptions. Hence, y ≤ Z. Therefore, we
obtain X = y = Z = 1 by Lemma 4.1. �

From Proposition 4.4, we may obtain the following corollary.

Corollary 4.5. Let a, b and c be pair-wise relatively prime positive
integers greater than one such that a2 + b = c2 and b is odd. We
assume at least one of the following conditions (i), (ii) and (iii):

(i) a ≡ 0 (mod 2),

√
1 +

1
√
a(2) − 1

≤ c/a ≤ a(2).

(ii) c ≡ 0 (mod 2),

√
1 +

1

c 2
(2) − 1

≤ c/a ≤ √
c(2).

(iii)
4
√
2 ≤ c/a ≤ 2.

Then the exponential Diophantine equation

a2X + by = c2Z

has the unique solution X = y = Z = 1 in positive integers X, y and Z.

Proof. By Proposition 4.4 (i), we observe that case (iii) is an imme-
diate consequence of cases (i) and (ii). So we only consider cases (i)
and (ii). By Proposition 4.4 (ii), we may assume that b is not a prime
power.
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We assume that a is even. If u := c/a ≤ a(2), then, since

b/p(b)− p(b) ≤ b/3− 3 < b < c2, we see that

log
(
b/p(b)− p(b)

)
log a(2) log c

log u <
2 log u

log a(2)
≤ 2.

Also, if u ≥
√
1 + (1/

√
a(2) − 1), then, since b/p(b) − p(b) < b, we see

that

2 log(a/2) log
(
b/p(b)− p(b)

)
log a(2) log b log c

log

(
1+

1

u2 − 1

)
<

log(a2/4)

log a(2) log c
log

√
a(2)

=
log(a2/4)

2 log c
<

⌈
log(2a2)

2 log c

⌉
,

so the desired conclusion follows from (iii) in Proposition 4.4.

We assume that c is even. If u := c/a ≤ √
c(2), then, since

b/p(b) + p(b) ≤ b/3 + 3 < b, we see that

log
(
b/p(b) + p(b)

)
− log 2

log a log c(2)
log u <

log b

log a log c(2)
log

√
c(2)

=
log b

2 log a
<

⌈
log(8b)

2 log a

⌉
.

Also, if u ≥
√
1 + (1/c 2

(2) − 1), then we see that

log
(
b/p(b) + p(b)

)
− log 2

log b log c(2)
log

(
1 +

1

u2 − 1

)
<

1

log c(2)
log c 2

(2) = 2,

so the desired conclusion follows from Proposition 4.4 (iv). �

5. Proofs of Theorems F1 and F2. In this section, we prove
Theorems F1 and F2. Let {Fn}n≥0 be Fibonacci numbers, defined by
F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn. In the proofs of Theorems F1 and
F2, we will use Cassini’s identity :

F 2
n = (−1)n+1 + Fn−1Fn+1

for n ≥ 1 (cf., [12, page 74, Theorem 5.3]). This will play a crucially
important role in the proofs. In the study of Fibonacci numbers we
often observe that Lucas numbers {Ln}n≥0 work well, as well as in the
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proofs of Theorems F1 and F2. They are defined by L0 = 2, L1 = 1,
Ln+2 = Ln+1 + Ln.

5.1. Proof of Theorem F1. Let n ≥ 3. We first note that Fn, Fn+1

and F2n+1 are pair-wise relatively prime positive integers greater than
one. Let (x, y, z) be a solution of the equation

(5.1) F x
n + F y

n+1 = F z
2n+1

where x, y and z are positive integers. First, we determine the
parities of x and y by using congruence reductions. Further, we
obtain congruence relations among x, y and z. Actually, we do not
use statement (ii) in the following lemma (see Remark 5.4).

Lemma 5.1. The following hold :

(i) x and y are even.
(ii) X ≡ z (mod Fn+1) and Y ≡ z (mod Fn), where X = x/2 and

Y = y/2.

Proof. We first consider the case of n = 3. In this case, we rewrite
(5.1) as

(5.2) 2x + 3y = 13z.

Taking (5.2) modulo 3, we have (−1)x ≡ 1 (mod 3), so x is even. Then,
taking (5.2) modulo 4, we have (−1)y ≡ 1 (mod 4), so y is even. By
Corollary 4.3, we have X = Y = z = 1; in particular, (ii) also holds.
Hence the lemma holds for n = 3. Similarly, we can prove the lemma
for n = 4. Hence, it suffices to consider the case of n ≥ 5.

For any m ≥ 4, we see that Fm+1 − Fm = Fm−1 ≥ F3 = 2 > 1 and
Fm > 1. Hence, Fm ̸≡ ±1 (mod Fm+1). In particular, we find that

Fn ̸≡ ±1 (mod Fn+1), Fn+1 ≡ Fn−1 ̸≡ ±1 (mod Fn).

We write x = 2X + x1, where X is a non-negative integer and
x1 ∈ {0, 1}. By Cassini’s identity, we see that

F 2
n = δ + Fn−1Fn+1 ≡ δ − FnFn+1 (mod F 2

n+1),

where δ = (−1)n+1. Hence, we observe that

F 2X
n = F 2X

n F x1
n
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≡ (δ − FnFn+1)
XF x1

n

≡ (δX − δX−1FnFn+1)F
x1
n (mod F 2

n+1), F
z
2n+1 =

(
F 2
n + F 2

n+1

)z
≡ F 2z

n

≡ (δ − FnFn+1)
z

≡ δz − δz−1FnFn+1z (mod F 2
n+1).

It follows from (5.1) that

(δX − δX−1FnFn+1)F
x1
n + F y

n+1 ≡ δz − δz−1FnFn+1z (mod F 2
n+1).

Reducing this modulo Fn+1, we have

δXF x1
n ≡ δz (mod Fn+1).

If x1 = 1, then Fn ≡ ±1 (mod Fn+1), which is absurd. Hence, x1 = 0,
that is, x = 2X. Then, δX ≡ δz (mod Fn+1). This implies that
δX = δz since δ = ±1 and Fn+1 ≥ 3. Hence, we find that

−δX−1FnX + F y−1
n+1 ≡ −δX−1Fnz (mod Fn+1).

Similarly, we can prove that y is even by taking (5.1) modulo F 2
n (for

this, we use the congruences F 2
n+1 ≡ −δ + FnFn+1 (mod F 2

n ) and
Fn+1 ̸≡ ±1 (mod Fn)), and that

F x−1
n + (−δ)Y−1Fn+1Y ≡ (−δ)Y−1Fn+1z (mod Fn),

where Y = y/2. Since x ≥ 2 and y ≥ 2, it follows from the above two
congruences that X ≡ z (mod Fn+1) and Y ≡ z (mod Fn).

By Lemma 5.1, we can write x = 2X and y = 2Y , where X and Y
are positive integers.

It suffices to consider the case where F2n+1 is odd. Indeed, if F2n+1 is
even, then Fn and Fn+1 are odd, so F z

2n+1 = F 2X
n +F 2Y

n+1 ≡ 2 (mod 4).
This gives that z = 1; hence, X = Y = 1 (by Lemma 4.1). �

In what follows, we consider the case where F2n+1 is odd. In order
to use Corollary 4.3, we show the following lemma.

Lemma 5.2. F2n+1 − 1 has prime factors not dividing Fn and Fn+1,
respectively.
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Proof. We first remark that both Fn and Ln are prime to Fn+1, and
that both Fn+1 and Ln+1 are prime to Fn. Since F2n+1 = F 2

n + F 2
n+1

and Lm = Fm+1 + Fm−1 for all m ≥ 1, we see from Cassini’s identity
that

F2n+1 − 1 =

{
FnLn+1 if n is even,

LnFn+1 if n is odd.

This proves the lemma. �

Since Fn+1/Fn ≤ 3/2, combining Corollary 4.3 (ii) with Lemma
5.1 (i) and Lemma 5.2, we obtain X = Y = z = 1. This completes the
proof of Theorem F1. �

Remark 5.3. Although we show in Lemma 5.2 that a condition of
Corollary 4.3 (essentially, of Theorem 3.4) holds, we can actually verify
the other conditions. Using the result in [9] (see also [4]), which states
that all of Fibonacci numbers being a square increased by 1 are given
by F1 = F2 = 1, F3 = 2 and F5 = 5, we may conclude that F2n+1 − 1
is not a square. Further, by easy calculations of 2-adic valuations of
Fibonacci and Lucas numbers, for example, in the case where Fn+1 is
even, we can prove the inequality

ord2(F2n+1 − 1)

ord2(Fn+1)
≤ 2

(
<

log(F2n+1 − 1)

logFn+1

)
.

Also, if the equality Y = (ord2(F2n+1 − 1))/(2 ord2(Fn+1)) holds, then
we have Y = 1 by the above inequality. Then, by means of Baker’s
theory of liner forms in (two) logarithms, we can estimate the value of
X as X = O(logFn). But the implied constant is much larger than the
one obtained from Theorems 3.2 and 3.4.

Remark 5.4. For a positive integer t, let {fn(t)}n≥0 be the linearly
recurrence sequence defined by f0(t) = 0, f1(t) = 1, fn+2(t) =
t fn+1(t) + fn(t). It is clear that fn(1) = Fn. According to [12,
Chapters 37, 38], the formula

fn(t)
2 + fn+1(t)

2 = f2n+1(t)

holds for n ≥ 0. Also {fn(t)}n≥0 has a formula similar to Cassini’s
identity. Similarly to the proof of Theorem F1 (with congruence
relations similar to Lemma 5.1) (ii), we can prove the following result.
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Theorem P1. For each n ≥ 3 and positive integer t, the exponential
Diophantine equation

fn(t)
x + fn+1(t)

y = f2n+1(t)
z

has the unique solution (x, y, z) = (2, 2, 1) in positive integers x, y
and z.

This is a generalization of Theorem F1. We omit the proof.

5.2. Proof of Theorem F2. Let n ≥ 3. We first note that Fn, Fn+2

and F2n+2 are pair-wise relatively prime positive integers greater than
one. We remark that F2n+2 = Fn+1Ln+1. Let (x, y, z) be a solution of
the equation

(5.3) F x
n + F y

2n+2 = F z
n+2

where x, y, z are positive integers. We prepare several lemmas. First,
we determine the parities of x and z by using congruence reductions.
Further, we obtain congruence relations among x, y and z.

Lemma 5.5. The following hold :

(i) x and z are even.
(ii) 3(X − y) ≡ 0 (mod Fn+2) and 3(Z − y) ≡ 0 (mod Fn), where

X = x/2 and Z = z/2.

Proof. We first consider the case of n = 3. In this case, we rewrite
(5.3) as

(5.4) 2x + 21y = 5z.

Taking (5.4) modulo 3, we have (−1)x ≡ (−1)z (mod 3), so x ≡ z
(mod 2). Also taking (5.4) modulo 5, we have 2x ≡ −1 (mod 5),
so x is even; hence, z is even. By Proposition 4.4 (iii), we have
X = y = Z = 1; in particular, (ii) also holds. Hence, the lemma
holds for n = 3. Similarly, we can prove the lemma for n = 4. Hence,
it suffices to consider the case of n ≥ 5. Then, as observed in the
proof of Lemma 5.1, we see that Fn (≡ −Fn+1) ̸≡ ±1 (mod Fn+2) and
Fn+2 (≡ Fn+1) ̸≡ ±1 (mod Fn).
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We write x = 2X + x2, where X is a non-negative integer and
x2 ∈ {0, 1}. By Cassini’s identity, we easily see that

F 2
n ≡ −δ + 3FnFn+2 (mod F 2

n+2),

where δ = (−1)n+1. Hence, we observe that

F x
n = F 2X

n F x2
n

≡ (−δ + 3FnFn+2)
XF x2

n

≡
(
(−δ)X + (−δ)X−13FnFn+2X

)
F x2
n (mod F 2

n+2),

F y
2n+2 =

(
F 2
n+2 − F 2

n

)y
≡ (−F 2

n )y

≡ (δ − 3FnFn+2)
y

≡ δy − δy−13FnFn+2 y (mod F 2
n+2).

It follows from (5.3) that(
(−δ)X + (−δ)X−13FnFn+2 X

)
F x2
n

≡ −δy + δy−13FnFn+2 y + F z
n+2 (mod F 2

n+2).

Reducing this modulo Fn+2, we have

(−δ)XF x2
n ≡ −δy (mod Fn+2).

If x2 = 1, then the above implies that Fn ≡ ±1 (mod Fn+2), which
is absurd. Hence, x2 = 0, that is, x is even. Then (−δ)X ≡ −δy

(mod Fn+2). This implies that (−δ)X = −δy since δ = ±1 and
Fn+2 ≥ 3. Hence, we find that

(−δ)X−13FnFn+2 X ≡ (−δ)X−13FnFn+2 y + F z
n+2 (mod F 2

n+2),

so
(−δ)X−13Fn(X − y) ≡ F z−1

n+2 (mod Fn+2).

Similarly, we can prove that z is even by taking (5.3) modulo F 2
n (for

this, we use the congruences F 2
n+2 ≡ −δ + 3FnFn+1 (mod F 2

n ) and
Fn+2 ̸≡ ±1 (mod Fn)), and that

(−δ)X−13Fn+2(Z − y) ≡ F x−1
n (mod Fn),
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where Z = z/2. Since x ≥ 2 and z ≥ 2, it follows from the above
two congruences that 3(X − y) ≡ 0 (mod Fn+2) and 3(Z − y) ≡ 0
(mod Fn). �

By Lemma 5.5 (i), we can write x = 2X and z = 2Z, where X and Z
are positive integers. We recall that, if y = 1, then X = Z = 1 (which
has already been shown at the beginning of the proof of Proposition
4.4).

We first consider the case where Fn+1 is odd. Then F2n+2 is also
odd. In this case, we can use Corollary 4.5.

Lemma 5.6. If Fn+1 is odd, then X = y = Z = 1.

Proof. Assume that Fn+1 is odd. First we assume that Fn+1 ≡ 1
(mod 4). Then, Fn or Fn+2 is divisible by 8. Since Fn+2/Fn ≤ 5/2, by
Corollary 4.5 (i), (ii) , we have X = y = Z = 1.

Next we assume that Fn+1 ≡ 3 (mod 4). Then Fn ≡ 2 (mod 4) or
Fn+2 ≡ 2 (mod 4). By Proposition 4.4 (i), we may assume that Fn ≡ 2
(mod 4). We claim y is odd. Suppose that y is even. We will observe
that this leads to a contradiction. We can write y = 2Y , where Y is
a positive integer. We remark that Fn+2 has to be odd, so Fn ≡ 2
(mod 4). Then, we observe from Lemma 5.5 (ii) that Z is even. Hence,
Y is odd by Lemma 2.2. By Lemma 2.1, we can write

F Y
2n+2 = k2 − l2, F Z

n+2 = k2 + l2

for some relatively prime integers k and l. Since F2n+2 = F 2
n+2−F 2

n ≡ 5
(mod 8), and Z is even, we see from the above two equations that

2l2 = (F 2
n+2)

Z/2 − F Y
2n+2 ≡ 1Z/2 − 5Y ≡ 4 (mod 8),

so l2 ≡ 2 (mod 4). But this does not hold. Hence, the claim is proved.
Since F2n+2 ≡ 5 (mod 8) and Fn+2 is odd, it follows from (5.3) that
4X ≡ 4 (mod 8). This implies that X = 1. By Theorem 3.5 (II), we
find that

y ≤ logFn

log(
√
F2n+2 + 1− 1)

+ 1 < 2,

so y = 1; hence, Z = 1. �
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Finally, we consider the case where Fn+1 is even. We shall first show
the following lemma.

Lemma 5.7. If Fn+1 is even, then X and Z are odd.

Proof. We assume that Fn+1 is even. Suppose that X or Z is even.
We will observe that this leads to a contradiction. We remark that
y > 1. By Cassini’s identity, we see that

F 2
n = δ + Fn−1Fn+1 ≡ δ − FnFn+1 (mod F 2

n+1),

F 2
n+2 = δ + Fn+1Fn+3 ≡ δ + FnFn+1 (mod F 2

n+1),

where δ = (−1)n+1. Hence, we observe that

F 2X
n ≡ (δ − FnFn+1)

X ≡ δX − δX−1FnFn+1X (mod F 2
n+1),

F 2Z
n+2 ≡ (δ + FnFn+1)

Z ≡ δZ + δZ−1FnFn+1Z (mod F 2
n+1).

Since F2n+2 = Fn+1Ln+1 and y > 1, it follows from (5.3) that

δX − δX−1FnFn+1X ≡ δZ + δZ−1FnFn+1Z (mod F 2
n+1).

Reducing this modulo Fn+1, we have δX ≡ δZ (mod Fn+1). This
implies that δX = δZ since δ = ±1 and Fn+1 ≥ 3. It follows from
the above congruence that

δX−1Fn(X + Z) ≡ 0 (mod Fn+1).

This implies that X + Z ≡ 0 (mod Fn+1). In particular, we see that
X + Z ≥ Fn+1 and X ≡ Z (mod 2). Hence, both X and Z are even.
Applying Proposition 3.6 to the case of (a, b, c) = (Fn, F2n+2, Fn+2),
we have

y <
logF2n+2

3 log 2
,

X <
log(F2n+2/8)

logFn
y < 2y,

Z <
log(F2n+2/4)

logFn+2
y < 2y.

This yields

X + Z ≤ 4y − 4 <
4 logF2n+2

3 log 2
− 4 < Fn+1.
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This is a contradiction. We conclude that X and Z are odd.

From (5.3), we define positive even integers D and E as follows:

(5.5) F y
2n+2 = DE,

where D = F Z
n+2 + F X

n and E = F Z
n+2 − F X

n . It is easy to see that
gcd(D,E) = 2. �

We will consider the cases Fn+1 ≡ 2 (mod 4) and Fn+1 ≡ 0 (mod 4)
separately. Those cases can be handled by use of Cassini’s identity.

Lemma 5.8. If Fn+1 ≡ 2 (mod 4), then X = y = Z = 1.

Proof. We assume that Fn+1 ≡ 2 (mod 4). We remark that Fn+1 ≡
2 (mod 8) since Fm ̸≡ 6 (mod 8) for all m ≥ 0. It is easy to see
that Fn ≡ 1 (mod 4), Fn+2 ≡ −1 (mod 4) and ord2(F2n+2) = 3. By
Lemma 5.7, we know that X and Z are odd. Hence, D = F Z

n+2+F X
n ≡

(−1)Z + 1 ≡ 0 (mod 4). Since gcd(D,E) = 2, we see from (5.5) that
there exist relatively prime positive odd integers S and T such that

D = F Z
n+2 + F X

n = 23y−1S, E = F Z
n+2 − F X

n = 2T.

Since the square of an odd integer is congruent to 1 modulo 8, we see
from the second equation above that

2T = F Z
n+2 − F X

n ≡ Fn+2 − Fn = Fn+1 ≡ 2 (mod 8),

that is, T ≡ 1 (mod 4). Therefore, we find that

23y−2S = F Z
n+2 − T ≡ 2 (mod 4).

This implies that y = 1, so X = Z = 1. �

Lemma 5.9. If Fn+1 ≡ 0 (mod 4), then X = y = Z = 1.

Proof. We assume that Fn+1 ≡ 0 (mod 4). Then n ≥ 5 and
Ln+1 is even. It is easy to see that Fn ≡ Fn+2 ≡ 1 (mod 4) and
β := ord2(F2n+2) ≥ 3. Since gcd(D,E) = 2 and D = F Z

n+2 + F X
n ≡ 2

(mod 4), we see from (5.5) that E is divisible by 2βy−1, in particular,
divisible by 4 (since βy − 1 ≥ 3y − 1 ≥ 2).
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By Lemma 5.7, we can write X = 2X ′ + 1 and Z = 2Z ′ + 1, where
X ′ and Z ′ are non-negative integers. Then we find that

E = F Z
n+2 − F X

n ≡ F Z
n − F X

n =
(
F 2Z′

n − F 2X′

n

)
Fn (mod Fn+1).

By Cassini’s identity, we easily observe that F 2
n ≡ δ (mod Fn+1),

where δ = (−1)n+1. Hence,

E ≡
(
δZ

′
− δX

′)
Fn (mod Fn+1).

Reducing this modulo 4, we have δZ
′−δX

′ ≡ 0 (mod 4), so δZ
′−δX

′
=

0 since δ = ±1. Hence, E ≡ 0 (mod Fn+1). This implies that D/2 is
prime to Fn+1. We can rewrite (5.5) as(

D

2

)
E = 2y−1F y

n+1

(
Ln+1

2

)y

.

SinceD/2 is prime to 2Fn+1, we see thatD/2 divides (Ln+1/2)
y; hence,

E is divisible by 2y−1F y
n+1. It follows that

1 <
D

E
≤ 2(Ln+1/2)

y

2y−1F y
n+1

= 4

(
Ln+1

4Fn+1

)y

= 4

(
1

4
+

Fn

2Fn+1

)y

≤ 4

(
9

16

)y

,

where we used the facts that Ln+1 = Fn+1 + 2Fn and Fn/Fn+1 ≤ 5/8.
The above gives that y ≤ 2. Since F Z

n+2 + Fn ≤ D ≤ 2(Ln+1/2)
2, we

have

Z ≤
log

(
2(Ln+1/2)

2 − Fn

)
logFn+2

< 2,

so Z = 1. Hence, X = y = 1 by Lemma 4.1.

Lemmas 5.6, 5.8 and 5.9 complete the proof of Theorem F2. �

Remark 5.10. For a positive integer t, let {Bn(t)}n≥0 be the linearly
recurrence sequence defined by B0(t) = 0, B1(t) = 1, Bn+2(t) =
tBn+1(t) − Bn(t). It is clear that Bn(3) = F2n. According to [12,
Chapter 41], the formula

Bn(t)
2 +B2n+1(t) = Bn+1(t)

2

holds for n ≥ 0. Also, {Bn(t)}n≥0 has a formula similar to Cassini’s
identity. Similarly to the proof of Theorem F2, with the theory of linear
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forms in (two) logarithms (instead of the arguments in the proofs of
Lemmas 5.8 and 5.9), we can prove the following result.

Theorem P 2. For each n ≥ 2 and positive integer t ≥ 3, the
exponential Diophantine equation

Bn(t)
x +B2n+1(t)

y = Bn+1(t)
z

has the unique solution (x, y, z) = (2, 1, 2) in positive integers x, y and
z.

This is a partial generalization of Theorem F2. We omit the proof.
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