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ORTHOGONALITIES, TRANSITIVITY OF NORMS
AND CHARACTERIZATIONS OF HILBERT SPACES

HORST MARTINI AND SENLIN WU

ABSTRACT. We introduce three concepts, called I-
vector, IP -vector, and P -vector, which are related to isosce-
les orthogonality and Pythagorean orthogonality in normed
linear spaces. Having the Banach-Mazur rotation problem in
mind, we prove that an almost transitive real Banach space,
whose dimension is at least three and which contains an I-
vector (an IP -vector, a P -vector, or a unit vector whose

pointwise James constant is
√
2, respectively) is a Hilbert

space.

1. Introduction and basic notions. We denote by X a normed
linear space of dimension dimX, with origin o, norm ∥·∥, unit ball
BX and unit sphere SX , and by GX the group of all surjective linear
isometries from X to X. Throughout this paper, the spaces under
consideration are all assumed to be real. For each point x ∈ X, we set

GX(x) := {T (x) : T ∈ GX}.

If, for each pair of unit vectors x and y, there exists an isometry
T ∈ GX such that T (x) = y, then we say that X (or the norm of
X) is transitive; see [8, Definition 2.1]. If there exists a unit vector
x such that GX(x) is dense in SX or, equivalently, GX(z) is dense in
SX for each unit vector z, then we say that X (or the norm of X) is
almost transitive, cf. [8, Definition 2.7 and Proposition 2.8]. In this
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paper, we provide some results related to the Banach-Mazur rotation
problem which is an unsolved problem mentioned already in Banach’s
book [6]. It asks whether each transitive and separable Banach space
is a Hilbert space. The assumption of separability in the hypothesis
of this problem cannot be released (cf., [8, Example 2.3]), and if this
assumption is strengthened to that the space is finite dimensional, then
this problem has an affirmative answer. For more information about
various types of transitivity of Banach spaces and their relations to the
Banach-Mazur rotation problem we refer to [8].

If the Banach-Mazur rotation problem has an affirmative answer, a
natural way to confirm it could be the following: one takes additional
assumptions into consideration, which guarantee that a transitive, sep-
arable Banach space is Hilbert. Making these additional assumptions
step by step weaker, the direct confirmation of this famous problem
might be obtained. One known additional assumption of such a type
is the existence of an isometric reflection vector. A reflection T on X
is an operator on X of the form

T := Tu,u∗ : x 7−→ x− 2u∗(x)u,

where u ∈ X and u∗ ∈ X∗ are two elements satisfying u∗(u) = 1.
If a reflection Tu,u∗ , with u as unit vector in X, is an isometry, then
T is called an isometric reflection and u is said to be an isometric
reflection vector. In this situation, u∗ is uniquely determined by u (cf.,
the beginning of Section 2 in [7]) and called the corresponding isometric
reflection functional. In [20], the following theorem was obtained.

Theorem 1.1. (cf. [20]). If there exists an isometric reflection vector
in an almost transitive Banach space X, then X is a Hilbert space.

It is interesting to observe that the concept of isometric reflection is
closely related to several orthogonality types in normed linear spaces.

Let x and y be two vectors in a normed linear space; x is said to be
Roberts orthogonal to y (denoted by x ⊥R y) if

∥x+ αy∥ = ∥x− αy∥

holds for each real number α, see [19]; x is said to be Birkhoff
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orthogonal to y (denoted by x ⊥B y) if

∥x+ αy∥ ≥ ∥x∥

holds for each real number α, see [9, 13]; x is said to be isosceles
orthogonal to y (denoted by x ⊥I y) if the equality

∥x+ y∥ = ∥x− y∥

holds, see [12]; and x is said to be Pythagorean orthogonal to y if the
equality

∥x− y∥2 = ∥x∥2 + ∥y∥2

holds, see again [12]. Roberts orthogonality is “strong” in the sense
that one can easily verify the following two implications:

x ⊥R y =⇒ x ⊥B y and x ⊥R y =⇒ x ⊥I y.

However, unlike Birkhoff orthogonality and isosceles orthogonality,
Roberts orthogonality does not have the existence property: [12]
contains an example of a normed plane X such that, for x, y ∈ X,
x ⊥R y implies that ∥x∥ · ∥y∥ = 0. See the surveys [2, 4, 5] for more
information about these orthogonality types and the relations between
them.

Concerning the relation of isometric reflection vectors and orthogo-
nality types, a result in [11] shows that a unit vector u is an isometric
reflection vector if and only if there exists a homogeneous hyperplane
(i.e., a hyperplane containing the origin o) H such that u is Roberts
orthogonal to any vector from H. This fact leads us to the following
natural question: can we replace the existence of an isometric reflec-
tion vector in Theorem 1.1 by other conditions which are related to
orthogonality types? We present several such replacements.

2. I-vectors. A unit vector x ∈ SX is said to be an I-vector if
there exists a homogeneous hyperplane Hx such that x ⊥I SX ∩ Hx

(i.e., x is isosceles orthogonal to every vector from SX ∩Hx). It is clear
that an isometric reflection vector in SX is always an I-vector, while
the converse is obviously not true (consider an arbitrary normed plane,
where each unit vector is an I-vector).

For the discussion in this section we also need the concept of Singer
orthogonality. In a normed linear space, a vector x is said to be
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Singer orthogonal to another vector y (denoted by x ⊥S y) if either
∥x∥ · ∥y∥ = 0 or x/ ∥x∥ ⊥I y/ ∥y∥. One of our main tools is the
following lemma.

Lemma 2.1. (cf. [16]). If the Singer orthogonality in a normed linear
space X with dimX ≥ 3 is additive, i.e., x ⊥S y + z holds whenever
x ⊥S y and x ⊥S z, then X is an inner product space.

We also need the existence and uniqueness property of isosceles
orthogonality, which is summarized in the following lemma.

Lemma 2.2. (cf. [1, 14]). Let X be a normed plane, x a point in
X\{o}, and Mx the length of the maximal line segment contained in
SX and parallel to the line passing through −x and x (when there is no
such segment, Mx is set 0). Then, for each number γ ∈ [0, 2 ∥x∥ /Mx]
(γ ∈ [0,+∞), when Mx = 0) there exists a unique point y ∈ γSX

(except for the sign) such that x ⊥I y. Particularly, for each number
γ ∈ [0, ∥x∥], there exists a unique point y ∈ γSX (except for the sign)
such that x ⊥I y.

Lemma 2.3. Let X be a normed linear space, x a unit vector in X,
and C the set of unit vectors which are isosceles orthogonal to x. Then
span ({x} ∪ C) = X.

Proof. Otherwise there exists a unit vector y ∈ X\(span({x} ∪C)).
Then, by Lemma 2.2, there exists a unit vector z ∈ span {x, y} ∩ C.
This implies that y ∈ span ({x} ∪ C), a contradiction. �

Lemma 2.4. Let X be a normed linear space. If x0 ∈ SX is an I-vector
and Hx0 is a homogeneous hyperplane such that x0 ⊥I SX ∩Hx0 , then
each unit vector z satisfying x ⊥I z belongs to Hx0 .

Proof. Suppose the contrary, namely, that there exists a unit vector
z /∈ Hx0 satisfying x0 ⊥I z. Then there exist a vector y ∈ Hx0 ∩ SX

and two numbers α and β such that z = αx0 + βy. By Lemma 2.2,
in the two-dimensional subspace spanned by x0 and y there exists a
unique (except for the sign) unit vector isosceles orthogonal to x0, which
implies that either z = y or z = −y. This is a contradiction. �



CHARACTERIZATIONS OF HILBERT SPACES 291

Lemma 2.4 shows that, if x0 is an I-vector, then there exists a unique
homogeneous hyperplane Hx0

such that x0 ⊥I SX ∩Hx0
.

Lemma 2.5. Let X be a normed linear space, and x ∈ SX an I-vector.
Then, for each T ∈ GX , T (x) is also an I-vector.

Proof. Let Hx be the homogeneous hyperplane associated to the I-
vector x. For each point z ∈ SX ∩T (Hx), it is clear that y := T−1(z) ∈
SX∩Hx. It follows that ∥x+ y∥ = ∥x− y∥. Since T is a linear isometry,
∥T (x) + T (y)∥ = ∥T (x)− T (y)∥ holds, that is, T (x) ⊥I z. This implies
that T (x) is an I-vector. �

Lemma 2.6. Let X be a Banach space. Then the set of I-vectors is
closed.

Proof. The cases when the set of I-vectors is empty or finite are
trivial. Let {xn}∞n=1 be a sequence of I-vectors converging to a vector
x0. Clearly, x0 ∈ SX . We denote by C the set of unit vectors that are
orthogonal to x0.

By Lemma 2.3, span ({x0} ∪ C) = X. Thus, spanC contains a
homogeneous hyperplane. Next we show that spanC ̸= X. It suffices
to show that spanC∩SX ⊆ C. Let Hn be the homogeneous hyperplane
satisfying xn ⊥I SX ∩Hn. Then, for any two vectors u and v in C and
each number n ∈ N, there exist two unit vectors un, vn ∈ Hn and four
numbers αn, α

′
n ∈ R and βn, β

′
n ≥ 0 such that

u = αnxn + βnun and v = α′
nxn + β′

nvn.

By choosing subsequences, if necessary, we may assume that there exist
four numbers α0, α

′
0, β0, and β′

0 such that

lim
n→∞

αn = α0, lim
n→∞

α′
n = α′

0,

lim
n→∞

βn = β0, and lim
n→∞

β′
n = β′

0.

We claim that β0, β
′
0 > 0. Take, for example, the case of β0. If

β0 = 0, then from the inequalities

|αn| − βn ≤ 1 = ∥u∥ = ∥αnxn + βnun∥ ≤ |αn|+ βn
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it follows that |α0| = 1. Thus,

∥u− x0∥ = ∥u+ x0∥ = lim
n→∞

∥u− αnxn∥ = lim
n→∞

∥βnun∥ = 0,

which is in contradiction to the inequality

∥u+ x0∥ =
1

2
(∥u+ x0∥+ ∥u− x0∥) ≥ 1.

Now set

u0 := lim
n→∞

1

βn
(u− αnxn) = lim

n→∞
un

and

v0 := lim
n→∞

1

β′
n

(v − α′
nxn) = lim

n→∞
vn.

Thus, u = α0x0 + β0u0 and v = α′
0x0 + β′

0v0. Clearly, we have the
equalities

∥x0 + u0∥ = lim
n→∞

∥xn + un∥ = lim
n→∞

∥xn − un∥ = ∥x0 − u0∥

and

∥x0 + v0∥ = lim
n→∞

∥xn + vn∥ = lim
n→∞

∥xn − vn∥ = ∥x0 − v0∥ .

Equivalently, we have x0 ⊥I u0 and x0 ⊥I v0. Then, by Lemma 2.2
and the fact that β0, β

′
0 > 0, we have u = u0 and v = v0. Thus, for

each pair of real numbers γ and η such that ∥γu+ ηv∥ ̸= 0, we have∥∥∥∥x0 +
γu+ ηv

∥γu+ ηv∥

∥∥∥∥ = lim
n→∞

∥∥∥∥xn +
γun + ηvn
∥γun + ηvn∥

∥∥∥∥
= lim

n→∞

∥∥∥∥xn − γun + ηvn
∥γun + ηvn∥

∥∥∥∥
=

∥∥∥∥x0 −
γu+ ηv

∥γu+ ηv∥

∥∥∥∥ .
Thus, spanC ∩ SX ⊆ C, and therefore spanC ̸= X. This implies
that spanC is contained in a homogeneous hyperplane. It follows
that Hx0 := spanC is a hyperplane, and C = Hx0 ∩ SX is an
easy consequence of the existence and uniqueness property of isosceles
orthogonality on the unit sphere. Hence, x0 is an I-vector. �
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Since an isometric reflection vector is an I-vector and the converse
is not true, the following theorem improves Theorem 1.1.

Theorem 2.7. Let X be a Banach space with dimX ≥ 3. If X is
almost transitive and contains an I-vector x0, then X is a Hilbert space.

Proof. By Lemma 2.1, we need only to show that Singer orthogo-
nality is additive on X. Since the norm on X is almost transitive, the
closure of G(x0) is SX . Moreover, since the set of I-vectors is closed,
G(x0) = SX , which means that each unit vector of X is an I-vector.
Assume that x, y and z are three points in X satisfying x ⊥S y and
x ⊥S z. If ∥x∥ · ∥y∥ · ∥z∥ = 0, then it is clear that x ⊥S y + z. In the
following, we assume that ∥x∥ · ∥y∥ · ∥z∥ ̸= 0 and ∥y + z∥ ̸= 0. By the
definition of Singer orthogonality we have

x

∥x∥
⊥I

y

∥y∥
and

x

∥x∥
⊥I

z

∥z∥
.

Since x/ ∥x∥ is an I-vector, there exists a homogeneous hyperplane
Hx such that x/ ∥x∥ ⊥I Hx ∩ SX . From Lemma 2.4, it follows that
y/ ∥y∥, z/ ∥z∥ ∈ Hx. Thus,

x

∥x∥
⊥I

y + z

∥y + z∥
.

This implies that x ⊥S y + z. Thus, Singer orthogonality is additive
on X. �

3. IP - and P -vectors in normed linear spaces. A unit vector x
is said to be an IP -vector if, for each unit vector y isosceles orthogonal
to x, the equality ∥x+ y∥ = ∥x− y∥ =

√
2 holds (or, equivalently, y

and −y are both Pythagorean orthogonal to x).

Lemma 3.1. Let X be a normed linear space and x an IP -vector in
X. Then, for each linear isometry T ∈ GX , T (x) is also an IP -vector.

Proof. Denote by C the set of unit vectors that are isosceles orthogo-
nal to x. Let z be an arbitrary unit vector which is isosceles orthogonal
to T (x). Then∥∥x+ T−1(z)

∥∥ = ∥T (x) + z∥ = ∥T (x)− z∥ =
∥∥x− T−1(z)

∥∥ .
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This implies that T−1(z) ∈ C. Since x is an IP -vector, ∥T (x) + z∥ =√
2. Hence T (x) is also an IP -vector. �

Lemma 3.2. The set of IP -vectors in a normed linear space is closed.

Proof. We denote by IP the set of IP -vectors in X. The cases
when IP is empty or finite are clear. Suppose again that {xn}∞n=1 is
an arbitrary converging sequence contained in IP and x0 = lim

n→∞
xn.

Let y0 be an arbitrary unit vector isosceles orthogonal to x0. For each
natural number n ≥ 1, denote by Cn the set of unit vectors isosceles
orthogonal to xn. Clearly, Cn is symmetric with respect to the origin
o. By Lemma 2.3, span ({xn} ∪ Cn) = X holds for each n ≥ 1. Then,
for each n ≥ 1, there exist a vector yn ∈ Cn and two numbers αn ∈ R
and βn ≥ 0 such that y0 = αnxn + βnyn. By choosing subsequences,
if necessary, we may assume that {αn}∞n=1 converges to a number α0

and {βn}∞n=1 converges to a number β0 ≥ 0. We show that β0 > 0.
Otherwise, from

|αn| − βn ≤ 1 = ∥y0∥ ≤ |αn|+ βn

it would follow that |α0| = 1. Thus,

∥y0 + x0∥ = ∥y0 − x0∥ = lim
n→∞

∥y0 − αnxn∥ = 0,

which is impossible. Therefore,

y′0 := lim
n→∞

1

βn
(y0 − αnxn) =

1

β0
(y0 − α0x0) = lim

n→∞
yn

exists. It is clear that y0 = α0x0 + β0y
′
0 and x0 ⊥I y′0. By Lemma 2.2

and the fact that β0 > 0, we obtain y′0 = y0. Thus,

∥x0 + y0∥ = lim
n→∞

∥xn + yn∥ =
√
2.

This completes the proof. �

The following lemma proved in [10] is helpful for our investigations.

Lemma 3.3. (cf. [10]). Let X be a normed linear space with dimX
≥ 3 and ε ∈ (0, 2) a fixed number. Then X is an inner product space
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if and only if

δX(ε) := inf

{
1− 1

2
∥x+ y∥ : x, y ∈ SX , ∥x− y∥ = ε

}
≥ 1− 1

2

√
4− ε2.

Since it was proved in [18] that

δX(ε) ≤ 1− 1

2

√
4− ε2

holds for each ε ∈ (0, 2), the inequality sign in Lemma 3.3 can be
replaced by the equality sign. In [3], it was proved that, when

λ = ε/
√
4− ε2, the equality

δX(ε) = 1− 1

2

√
4− ε2

is equivalent to the implication

x, y ∈ SX , x ⊥I y ⇒ ∥x+ λy∥2 = 1 + λ2.

By putting these facts together, we obtain the following lemma.

Lemma 3.4. (cf. [5, page 170]). A normed linear space X with dim
X ≥ 3 is an inner product space if and only if

x, y ∈ SX , x ⊥I y =⇒ ∥x+ y∥ =
√
2.

Theorem 3.5. Let X be a Banach space with dimX ≥ 3. If X is
almost transitive and contains an IP -vector, then X is a Hilbert space.

Proof. By Lemma 3.4, we only need to show that, for each pair of
unit vectors x and y which are isosceles orthogonal, ∥x+ y∥ =

√
2

holds. It suffices to show that each unit vector is an IP -vector. By
Lemma 3.1, G(x0) is a set of IP -vectors. Since the norm is almost
transitive and the set of IP -vectors is closed, SX = G(x0). This
completes the proof. �

Let x be a unit vector in a normed linear space X. If there exists
a homogeneous hyperplane Hx such that x ⊥P SX ∩Hx, then we say
that x is a P -vector.
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Lemma 3.6. Each P -vector in a normed linear space X is an IP -
vector as well as an I-vector.

Proof. Let x be a P -vector and Hx a homogeneous hyperplane such
that x ⊥P SX ∩ Hx. For each vector y ∈ SX ∩ Hx, it is clear that
−y ∈ SX ∩ Hx. Thus, x ⊥P y and x ⊥P −y hold simultaneously. It
follows that

∥x− y∥2 = ∥x∥2 + ∥y∥2 = 2 = ∥x+ y∥2 .

This implies that x ⊥I SX ∩Hx. Therefore, x is an I-vector.

Suppose that z is an arbitrary unit vector isosceles orthogonal to x.
From Lemma 2.4, it follows that z ∈ Hx. Thus,

∥x+ z∥ = ∥x− z∥ =
√
2,

which implies that x is an IP -vector. �

The following result is an immediate consequence of Theorem 3.5
and Lemma 3.6.

Corollary 3.7. If a Banach space X with dimX ≥ 3 is almost
transitive and contains a P -vector, then X is a Hilbert space.

4. The pointwise James constant. In this section, we improve
Theorem 3.5 by weakening the hypothesis with the help of the pointwise
James constant. The James (or non-square) constant J(X) of a normed
linear space X is defined by

J(X) := sup {min {∥x+ y∥ , ∥x− y∥} : x, y ∈ SX}.

In [15], the equality

J(X) = sup {∥x+ y∥ : x, y ∈ SX , x ⊥I y}

was proved. For each unit vector x in a normed linear space X we call
the constant

JX(x) := sup{∥x+ y∥ : y ∈ SX , x ⊥I y}

the pointwise James constant of x, cf., [21].



CHARACTERIZATIONS OF HILBERT SPACES 297

Lemma 4.1. Let X be a normed linear space, and let T ∈ GX . If x is
a unit vector such that JX(x) =

√
2, then JX(T (x)) =

√
2.

Proof. Denote by C the set of unit vectors which are isosceles
orthogonal to x and by C ′ the set of unit vectors which are isosceles
orthogonal to T (x). For each vector z ∈ C ′, we have∥∥x− T−1(z)

∥∥ = ∥T (x)− z∥ = ∥T (x) + z∥ =
∥∥x+ T−1(z)

∥∥ ,
which implies that T−1(z) ∈ C. Thus,

∥T (x) + z∥ =
∥∥x+ T−1(z)

∥∥ ≤ JX(x) =
√
2.

It follows that JX(T (x)) ≤
√
2.

Since JX(x) =
√
2, there exists a sequence {zn}∞n=1 ⊂ C such that

lim
n→∞

∥x+ zn∥ = lim
n→∞

∥x− zn∥ =
√
2.

Clearly, {T (zn)}∞n=1 ⊂ C ′ and

lim
n→∞

∥T (x) + T (zn)∥ = lim
n→∞

∥x+ zn∥ =
√
2.

Thus, JX(T (x)) =
√
2. �

Lemma 4.2. Let X be a Banach space. Then the set

A := {x : x ∈ SX , JX(x) =
√
2}

is closed.

Proof. The cases when A is empty or finite are clear. Again, let
{xn}∞n=1 ⊂ A be a sequence converging to a unit vector x. We denote
by C the set of unit vectors that are isosceles orthogonal to x and, for
each integer n ≥ 1, we denote by Cn the set of unit vectors that are
isosceles orthogonal to xn.

For each integer n ≥ 1, there exists a vector yn ∈ Cn such that

0 ≤
√
2− ∥xn ± yn∥ ≤ 1

n
.

From the inequalities

∥xn ± yn∥ − ∥x− xn∥ ≤ ∥x± yn∥ ≤ ∥xn ± yn∥+ ∥x− xn∥
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it follows that
lim
n→∞

∥x± yn∥ =
√
2.

Replacing yn by −yn, if necessary, we may assume that there exist two
numbers αn, βn ≥ 0 and a vector zn ∈ C such that yn = αnx + βnzn.
By the Monotonicity lemma (cf., [17, Proposition 31]), we obtain

∥x− yn∥ ≤ ∥x− zn∥ = ∥x+ zn∥ ≤ ∥x+ yn∥ ,

from which it follows that

lim
n→∞

∥x+ zn∥ =
√
2.

Thus, JX(x) ≥
√
2.

Next we show that JX(x) ≤
√
2. Otherwise, there exists a point

z ∈ C such that
∥z + x∥ = ∥z − x∥ >

√
2.

For each integer n ≥ 1, there exist two numbers αn ∈ R and βn ≥ 0 and
a vector yn ∈ Cn such that z = αnxn + βnyn. From the Monotonicity
lemma, it follows that

∥xn + yn∥ = ∥xn − yn∥
∈ [min {∥xn − z∥ , ∥xn + z∥},max {∥xn − z∥ , ∥xn + z∥}],

and from the inequalities

lim
n→∞

∥xn − z∥ = ∥x− z∥ >
√
2

and
lim

n→∞
∥xn + z∥ = ∥x+ z∥ >

√
2

it follows that

lim
n→∞

∥xn + yn∥ = lim
n→∞

∥xn − yn∥ >
√
2.

Thus, when n is sufficiently large, we have JX(xn) >
√
2, a contradic-

tion. �

The following theorem improves Theorem 3.5 since the pointwise
James constant JX(x) of an IP -vector x is

√
2.
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y

xo x

y

x′

y′

x′′

y′′ x+ y

x− y

x′ + y′

x′
− y′

x′′ + y′′

x′′
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SX

√

2SX

Figure 1. A counterexample.

Theorem 4.3. Let X be a Banach space with dimX ≥ 3. If X is
almost transitive and contains a unit vector x such that JX(x) =

√
2,

then X is a Hilbert space.

Proof. By Lemma 3.4, we only need to show that, for each pair of
unit vectors u and v which are isosceles orthogonal to each other, the
equality ∥u+ v∥ =

√
2 holds. Since X is almost transitive, the closure

of GX(x) is equal to SX . By Lemma 4.2, GX(x) = SX . This implies

that JX(u) =
√
2. Thus ∥u+ v∥ ≤

√
2.

Suppose the contrary, namely, that ∥u+ v∥ <
√
2. Set u′ = (u +

v)/ ∥u+ v∥ and v′ = (u − v)/ ∥u− v∥. Then JX(u′) = JX(v′) =
√
2.

However,

∥u′ + v′∥ =
2

∥u+ v∥
>

√
2,

which is a contradiction. The proof is complete. �

Remark 4.4. A subset R of a topological space T is said to be rare
in T if the interior of the closure of R in T is empty. Guerrero and
Palacios [7] proved that if the set of all isometric reflection vectors in
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a Banach space X is not rare in SX , then X is a Hilbert space. In
this result, we cannot replace isometric reflection vectors by P -vectors.
Consider the three-dimensional Banach space X whose unit sphere is
obtained by rotating the closed convex curve given in Figure 1 around
the y-axis. Replacing certain circular arcs by line segments, this curve
is constructed from a circle centered at the origin. Then the set of P -
vectors in X is not rare in SX , and the set of unit vectors x satisfying
JX(x) =

√
2 is also not rare in SX . However, X is clearly not a Hilbert

space. From this point of view, our Theorem 2.7 is strictly stronger
than Theorem 1.1.
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