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A GUIDE TO CARLESON’S THEOREM

CIPRIAN DEMETER

ABSTRACT. This paper is meant to be a gentle introduc-
tion to Carleson’s theorem on pointwise convergence of Fourier
series.

1. Introduction. Let

Snf(x) =

n∑
k=−n

f̂(k)e2πikx,

be the partial Fourier series of the L1 function f on [0, 1]. In 1966,
Carleson proved the following long standing conjecture.

Theorem 1.1 [5]. For each f ∈ L2([0, 1]), the Fourier series Snf
converges almost everywhere to f .

Soon after that, a slight modification of Carleson’s method allowed
Hunt [11] to extend the result to Lp functions, for p > 1.

Theorem 1.1 has since received many proofs, most notably by Fef-
ferman [10] and by Lacey and Thiele [15]. The impact of Carleson’s
theorem has increased in recent years thanks to its connections with
scattering theory [19], ergodic theory [8, 9], the theory of directional
singular integrals in the plane [1, 2, 6, 7, 13, 14] and the theory
of operators with quadratic modulations [17, 18]. A more detailed
description can be found in [12]. These connections have motivated
the discovery of various new arguments for Theorem 1.1. While these
arguments share some similarities, each of them has a distinct person-
ality. Along these lines, it is interesting to note that, for almost every
specific application of Carleson’s theorem in the aforementioned fields,
only one of the arguments will do the job.
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All the arguments for Theorem 1.1 are technical. To present the main
ideas in a transparent way, we will instead analyze the closely related
Walsh-Fourier series, which we recall below.

For n ≥ 0 the nth Walsh function wn is defined recursively by the
formula

w0 = 1[0,1)

w2n = wn(2x) + wn(2x− 1)

w2n+1 = wn(2x)− wn(2x− 1).

Given f : [0, 1] → C we recall the partial Walsh-Fourier series of f

SW
n f(x) =

n∑
k=0

〈f, wk〉wk(x).

The following theorem was proved by Billard, by adapting Carleson’s
methods.

Theorem 1.2 [4]. For each 1 < p ≤ ∞ and each f ∈ Lp([0, 1]), the
series SW

n f(x) converges almost everywhere to f(x).

We present a few proofs of Theorem 1.2 which are translations of
their Fourier analogues. In each case the translation can be done in
more than one way; the proofs presented reflect the author’s taste.
While a few of the features of the original proofs from the Fourier case
will be lost in translation, the main line of thought will be essentially
preserved intact in the Walsh case. Very little originality is claimed by
the author.

This paper is by no means a complete guide to Carleson’s theorem;
in particular, we shall make no attempt to describe in detail any of its
aforementioned applications. The main goal is to give a self contained
but concise survey of some of the main arguments in the literature.

2. The Walsh phase plane. It turns out that there is a multiscale
description for SW

n f . Let D+ denote the collection of all dyadic
intervals which are subsets of R+ = [0,∞). We call R+ × R+ the
Walsh phase plane.
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Definition 2.1. A tile p = Ip×ωp is a rectangle of area one, such that
Ip, ωp ∈ D+. A bitile P = IP ×ωP is a rectangle of area two, such that
IP , ωP ∈ D+. Let ωPl

, ωPu be the left (or lower) and right (or upper)
halves of ωP . We will denote by Pl = IP × ωPl

and Pu = IP × ωPu

the lower and upper tiles of P . We denote by Pall the collection of all
bitiles.

Given a tile p = [2jm, 2j(m + 1)] × [2−jn, 2−j(n + 1)] we define the
associated Walsh wave packet

Wp(x) = 2−j/2wn(2
−jx−m).

To understand the relevance of the Walsh phase plane, we recall a
few tools from [22], see also [21].

Every x ∈ R+ = [0,∞) can be identified uniquely with a doubly-
infinite set of binary digits an = an(x) such that

x =
∑
n∈Z

an2
n

where an ∈ {0, 1} and lim infn→−∞ an = 0. Note that an is eventually
zero as n→ ∞. We define two operations on R+. First,

x⊕ y :=
∑
n

bn2
n

where
bn := an(x) + an(y) mod 2.

We caution the reader that bn is not always the same as an(x ⊕ y),
as the example x =

∑
n<0:n odd 2

n, y =
∑

n<0:n even 2
n shows. Also,

since 1 = x ⊕ y = x ⊕ z where z = 1 +
∑

n<0:n odd 2
n, (R+,⊕) is not,

strictly speaking a group. We will be content with observing that for
all practical purposes (R+,⊕) can be thought of as being a group, in
the sense that ⊕ behaves like a genuine group operation if we exclude
pairs x, y of zero product Lebesgue measure.

Define the second operation by

x⊗ y :=
∑
n

cn2
n
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where
cn :=

∑
m∈Z

am(x)an−m(y) mod 2.

We note that this sum is always finite. If we neglect zero measure sets,
(R+,⊗,⊕) can be thought of as being a field with characteristic two. It
will be implicitly assumed that various equalities to follow hold outside
zero measure sets.

Define the function eW : R+ → {−1, 1} such that eW (x) = 1 when
a−1(x) = 0 and eW (x) = −1 when a−1(x) = 1. This 1-periodic function
is the Walsh analogue of e2πix. It is easy to check that

wn(x) = eW (x⊗ n)1[0,1](x);

thus, wn can be thought of as being the Walsh analogue of e2πinx. Also,
for each tile p = Ip × ωp, we have

Wp(x) =
1

|Ip|1/2w0

(
x− l(Ip)

|Ip|
)
eW (x ⊗ l(ωp)),

where l(J) denotes the left endpoint of J . A simple computation shows
that for each bitile P

(1) WPl
(x) =WPu(x)eIP (x)

where eI(x) = 1 on Il and eI(x) = −1 on Ir.

The collection of all wave packets Wp where p ranges over all tiles
with fixed scale forms a complete orthonormal system in L2(R+), and
thus

f =
∑

p: |Ip|=2j

〈f,Wp〉Wp.

We introduce the Walsh (also called Walsh-Fourier) transform of a
function f : R+ → C to be

FW f(ξ) = f̂(ξ) :=

∫
e(x⊗ ξ)f(x) dx.

It is easy to see that its inverse F−1
W coincides with FW .
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Arguably, the most important feature that makes the Walsh phase
plane technically simpler than its Fourier counterpart is the absence
of the strong form of the “Uncertainty Principle.” This allows the
existence of functions compactly supported in both time and frequency.
The best example is 1[0,1], which equals its Walsh transform. A quick
computation shows that, for each interval I ∈ D+

(2) 1̂I(ξ) = |I|1[0,|I|−1](ξ)e(ξ ⊗ xI)

where xI is an arbitrary element of I. Similarly,

Ŵp(ξ) =
1

|ωp|1/2w0

(
ξ − l(ωp)

|ωp|
)
eW (ξ ⊗ l(Ip)).

Thus, Wp is spatially supported in Ip, while its Walsh transform is
supported in ωp. An application of Plancherel’s theorem shows that

(3) 〈Wp,Wp′〉 = 0

whenever the tiles p and p′ do not intersect.

The following partial relation of order was introduced by Fefferman
[10].

Definition 2.2 (Order). For two tiles or bitiles P, P ′, we write
P ≤ P ′ if IP ⊂ IP ′ and ωP ′ ⊂ ωP .

Note that P and P ′ are comparable under ≤ if and only if they
intersect as sets. We will refer to maximal (or minimal) tiles (or bitiles)
with respect to ≤ as simply being maximal (or minimal).

Definition 2.3 (Convexity). A collection P of bitiles is called convex
if whenever P, P ′′ ∈ P, P ′ ∈ Pall and P ≤ P ′ ≤ P ′′, we must also have
P ′ ∈ P.

For a collection p of tiles or bitiles we denote by A(p) =
⋃

p∈p Ip×ωp

the region in R2
+ covered by them.

We will use the fact (see [22, Lemma 2.5]) that, for each convex set of
bitiles P, the region A(P) can be written (not necessarily in a unique
way) as a disjoint union of tiles p

(4) A(P) = A(p).
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We can identify any region in the Walsh phase plane which is a finite
union of pairwise disjoint tiles p ∈ p with the subspace of L2(R+)
spanned by (Wp)p∈p. Indeed, it turns out that if two such collections
p and p′ of tiles cover the same area in the phase plane, then (Wp)p∈p

and (Wp)p∈p′ span the same vector space in L2(R+), see [22, Corollary
2.7]. In particular,

(5)
∑
p∈p

〈f,Wp〉Wp(x) =
∑
p∈p′

〈f,Wp〉Wp(x).

The projection operator onto this subspace

Πpf(x) =
∑
p∈p

〈f,Wp〉Wp(x)

will be referred to as the phase space projection onto p. Equation (3)
guarantees that (Wp)p∈p forms an orthonormal basis of the range of
Πp. In particular, if P is a convex union of bitiles and p satisfies (4),
then we abuse notation and define

ΠPf := Πpf.

An easy induction argument proves

Lemma 2.4 [22, Corollary 2.4]. Let p,p′ be a finite collection of
pairwise disjoint tiles such that A(p′) ⊂ A(p). Then there exists a
collection p′′ of pairwise disjoint tiles which includes all the tiles in p′

such that A(p) = A(p′′).

Lemma 2.4 and (3) will imply that, for each convex collection P of
bitiles and for each P ∈ P,

(6) 〈f,Wp〉 = 〈ΠPf,Wp〉, p ∈ {Pu, Pl}.

Remark 2.5. We mention that the relation of order as well as
concepts such as convexity and phase space projections can be extended
naturally to the two- (or higher) dimensional case. This will be explored
in Section 8.
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Fix now n ≥ 0. Note that SW
n f(x) = Πpnf(x), where pn is the

collection of the tiles [0, 1] × [k, k + 1], 0 ≤ k ≤ n. We will partition
A(pn) = [0, 1] × [0, n + 1] in a different way. Namely, for each point
(x, ξ) ∈ [0, 1] × [0, n + 1], there exists a unique bitile P such that
(x, ξ) ∈ Pl and (x, n+1) ∈ Pu. This bitile is precisely the minimal one
such that n+1, ξ ∈ ωP and x ∈ IP . Note that the tiles Pl corresponding
to all these P will partition [0, 1]× [0, n+ 1]. But then (5) will imply
that

SW
n f(x) =

∑
P∈Pall:n+1∈ωPu

〈f,WPl
〉WPl

(x);

in particular,

sup
n≥0

|SW
n f(x)| = |

∑
P∈Pall

〈f,WPl
〉WPl

(x)1ωPu
(N(x))|

for a suitable function N : R+ → N. The roles of Pu and Pl can
be interchanged, without altering the nature or the difficulty. For
pedagogical reasons, we choose to work with the model sums

CPf(x) =
∑
P∈P

〈f,WPu〉WPu(x)1ωPl
(N(x)),

where P ⊂ Pall and f : R+ → C. Using the standard approximation
argument combined with the almost everywhere convergence of SW

n f(x)
for characteristic functions of intervals, Theorem 1.2 will follow from
the following inequality.

Theorem 2.6. We have, for each 1 < p < ∞, N : R+ → R+ and
f ∈ Lp(R+),

‖CPall
f‖p ≤ Cp‖f‖p.

The constant Cp does not depend on f and N .

Note that, to recover Theorem 1.2, we could restrict attention to
functions f on [0, 1] and to the bitiles spatially supported in [0, 1]. We
will do so in some, but not all, the proofs to follow. We will always
allow the choice function N to take any value in R+, not just integers.

3. Estimates for a single tree. Throughout the paper, we will
denote by Mf the Hardy-Littlewood maximal function of f . The



176 CIPRIAN DEMETER

various implicit constants hidden in the notation � will typically be
allowed to depend on the Hölder exponents p, pi, si, etc.

Fefferman [10] organized the bitiles in structures that he named
trees and forests. The restriction CT to a tree will be a Calderón-
Zygmund object which can be investigated with classical methods.
The contribution of forests is controlled by using various forms of
orthogonality between the tree operators CT . All of the approaches
described in the following sections will rely on this strategy.

Definition 3.1. Let IT ∈ D+ and ξT ∈ R+ \ {n2−k : n, k ∈ Z}. A
tree T with top data (IT , ξT ) is a collection of bitiles such that IP ⊂ IT
and ξT ∈ ωP for each P ∈ T . If PT ∈ Pall is such that P ≤ PT for
each P ∈ T , we call PT a top bitile for T . Note that such a PT is not
unique and T need not contain a top bitile.

A tree is called overlapping if the tiles {Pu : P ∈ T } intersect. A tree
is called lacunary if the tiles {Pl : P ∈ T } intersect.

Each tree can be decomposed as T = Tl ∪ T0 where

Tl = {P ∈ T : ξT ∈ ωPl
}

T0 = {P ∈ T : ξT ⊂ ωPu}.
Note that Tl is lacunary while T0 is overlapping. Moreover, if T is
convex then so are the trees T1 and T0. These observations will allow
us to always assume the tree we deal with is either overlapping or
lacunary.

The classical example of lacunary tree is the Littlewood-Paley tree
consisting of all bitiles of the form P I := I × [0, |I|−1], I ∈ D+. Note
that, for each P I in the Littlewood-Paley tree, we have WP I

u
(x) =

hI(x), where hI is the L2 normalized Haar function equal to |I|−1/2 on
the left half Il and to −|I|−1/2 on the right half Iu. Recall that, if I is
a subset of the Littlewood-Paley tree, we have

(7)

∥∥∥∥ ∑
P I∈I

〈f, hI〉hI
∥∥∥∥
p

� ‖f‖p, 1 < p <∞.

For a lacunary tree T , we denote

OT f(x) =
∑
P∈T

〈f,WPu〉WPu(x).
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We have the following generalization of (7).

Lemma 3.2 (Single tree estimate: singular integral). Let T be a
lacunary tree. Then, for each 1 < p <∞

‖OTf‖p � ‖f‖p.

Proof. Recall that ŴPu is supported in ωPu . Call Ω the collection of
all intervals ωPu , P ∈ T and note that they are pairwise disjoint and
sit within a distance smaller than their length from ξT . By the Walsh
version of the Littlewood-Paley theorem applied to OT f and then to f
we have

‖OT f‖p �
∥∥∥∥
( ∑

ω∈Ω

|F−1
W (1ωFW (OT f))|2

)1/2∥∥∥∥
p

=

∥∥∥∥
( ∑

ω∈Ω

|
∑

P∈T : |ωPu |=|ω|
〈f,WPu〉WPu |2

)1/2∥∥∥∥
p

=

∥∥∥∥
( ∑

P∈T

|〈f,WPu〉|2
|IP | 1IP

)1/2∥∥∥∥
p

� ‖f‖p.

The next lemma shows that the operator CT restricted to a tree T is
a maximal function, if T is overlapping and a maximal truncation of a
discrete Calderón-Zygmund operator, if T is lacunary.

Lemma 3.3 (Single tree estimate: maximal truncations). Let T be
a tree. Then, for each 1 < p <∞,∥∥∥∥ ∑

P∈T

〈f,WPu〉WPu(x)1ωPl
(N(x))

∥∥∥∥
Lp(R+)

� ‖f‖p.

Proof. It suffices to prove the lemma when T is either lacunary or
overlapping. We start with the lacunary case. Note that, for each x,
there is a k = k(x) such that∑

P∈T

〈f,WPu〉WPu (x)1ωPl
(N(x)) =

∑
P∈T

|ωP |≥2k

〈f,WPu〉WPu (x).
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Note that, if P, P ′ ∈ T and |ωP | > |ωP ′ |, then ωPu is disjoint from
and sits on the right of ωP ′

u
. Thus, an interval ω = ω(x) exists which

contains all ωPu with |ωP | ≥ 2k and which will have empty intersection
with all ωPu satisfying |ωP | < 2k. We can thus write

∑
P∈T

|ωP |≥2k

〈f,WPu〉WPu(x) = F−1
W [1ωFW [OT f ]](x).

Using (2) and the fact that x⊕ [0, |ω|−1] is an interval of length |ω|−1

containing x, we get∣∣∣∣∣
∑
P∈T

|ωP |≥2k

〈f,WPu〉WPu(x)

∣∣∣∣ ≤ |ω|
∫
x⊕[0,|ω|−1]

|OT f(y)| dy �M(OT f)(x).

It now suffices to apply Lemma 3.2.

Assume next that T is overlapping. This case is immediate by noting
that, for each x,∣∣∣∣ ∑

P∈T

〈f,WPu〉WPu (x)1ωPl
(N(x))

∣∣∣∣ = |〈f,WPu 〉WPu(x)| �M(f)(x),

where P is the unique (possibly nonexisting) bitile with (x,N(x)) ∈
Pl.

We remark that (6) implies that, whenever T is convex and P ∈ T ,
we have 〈f,WPu〉 = 〈ΠT f,WPu〉. Thus, the result of Lemma 3.3 can
also be written in a localized form

(8) ‖CT f‖p � ‖ΠT f‖p.

We close this section by proving Lp estimates for the phase space
projection associated with a tree.

Proposition 3.4. For each convex tree T and each 1 < p ≤ ∞,

‖ΠT f‖p � ‖f‖p.
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Proof. We first observe that, for each x ∈ IT , ΠT f(x) = ΠP f(x)
where P is the minimal bitile in T with x ∈ IP . Indeed, according to
Lemma 2.4, there exists a collection p′′ of pairwise disjoint tiles which
includes Pu and Pl such that

ΠT f(x) = ΠP f(x) +
∑

p∈p′′\{Pu,Pl}
Πpf(x).

But P is minimal, hence {x} ∩ Ip ∩ IP = ∅ for each p ∈ p′′ \ {Pu, Pl}.
Finally, note that, for each bitile P and each x ∈ IP , we have

|ΠP f(x)| ≤ |IP |−1/2(|〈f,WPu 〉|+ |〈f,WPl
〉|) ≤ 2

|IP |
∫
IP

|f | �Mf(x).

4. Size and pointwise estimates outside exceptional sets. We
are now ready to see the first proof of Theorem 2.6. This argument
bears some resemblance to the original argument of Carleson [5]. A
form of this argument has been used in [19] in the Walsh case, while
the proof of the Fourier case is hidden in [8]. This type of argument
proved instrumental in applications to the Return Times theorem [8]
and the directional Hilbert transform in the plane [7].

The main tool is the size of a collection of bitiles, a concept introduced
by Lacey and Thiele [16] in the Fourier case and by Thiele [22] (it is
therein referred to as density) in the Walsh case.

Definition 4.1. The size of a collection P of bitiles with respect to
a function f : R+ → C is defined as

sizef (P) = sup
P∈P

‖ΠP f‖2
|IP |1/2 .

The next two propositions record some of the key features of sizef (P).

Proposition 4.2. Let T be a convex tree. Then, for each 1 ≤ p ≤ ∞,

‖ΠT f‖p � sizef (T )|IT |1/p.
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Proof. It suffices to prove that ‖ΠT f‖∞ � sizef (T ). The proof of
Proposition 3.4 shows that, for each x ∈ IT , ΠT f(x) = ΠP f(x) where
P is the minimal bitile in T with x ∈ IP . To close the argument,
observe that, for each bitile P , we have

‖ΠP f‖∞ ≤ |IP |−1/2(|〈f,WPu〉|+ |〈f,WPl
〉|)

≤ |IP |−1/2
√
2(|〈f,WPu 〉|2 + |〈f,WPl

〉|2)1/2
= |IP |−1/2

√
2‖ΠP f‖2.

Proposition 4.3. For each P and f : R+ → C,

sizef (P) � sup
P∈P

infx∈IPM(f)(x).

Proof. This is immediate since, for each P ,

‖ΠP f‖2 = (|〈f,WPu 〉|2 + |〈f,WPl
〉|2)1/2 ≤

√
2

|IP |1/2
∫
IP

|f |.

Definition 4.4. A forest F is a finite collection of bitiles which
consists of a disjoint union of convex trees.

We note that each finite convex collection P of bitiles can be turned
into a forest, possibly in more than one way. Indeed, start with a
maximal element P from P, and construct the maximal tree in P with
top bitile P . Remove this tree T from P and note that P \ T remains
convex. Repeat the procedure with P\T replacing P, to select the next
tree. Iterate this until all the bitiles from the original P are selected.

We will sometimes use the notation NF for the counting function of
a forest F

NF (x) =
∑
T∈F

1IT (x).

A key idea in many of the approaches to Carleson’s theorem is to
split the bitiles into forests with a certain size.
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Lemma 4.5. Let P be a finite convex collection of bitiles, and let
f : R+ → C. Then P = Phi ∪Plo, such that

• both Plo and Phi are convex;

• sizef (Plo) ≤ 1/2 sizef (P);

• Phi is a convex forest with trees T ∈ F satisfying∑
T∈F

|IT | � sizef (P)−2‖f‖22.

Proof. This is a recursive procedure. Set Pstock := P and F = ∅.
Select a maximal bitile t ∈ Pstock such that

‖Πtf‖2|It|−1/2 >
sizef (P)

2
.

Define
T (t) = {P ∈ Pstock : P ≤ t},

and note that since Pstock is convex, both Pstock\T (t) and the tree T (t)
will be convex. Add T (t) to the family F . Reset Pstock := Pstock\T (t),
and restart the procedure.

The algorithm is over when there is no t to be selected. Then define
Phi to consist of the union of all bitiles in all the trees from F , and let
Plo = P \Phi.

The first two needed properties as well as the convexity of F are quite
immediate. By maximality, the selected bitiles t are pairwise disjoint,
and thus the functions Πtf are pairwise orthogonal, thanks to (3). It
follows that∑
T∈F

|IT | =
∑
t

|It| ≤ 4 sizef (P)−2
∑
t

‖Πtf‖22 ≤ 4 sizef (P)−2‖f‖22.

We can iterate the lemma to obtain

Proposition 4.6 (Size decomposition). Let P be a finite convex
collection of bitiles. Then

P =
⋃

2−n≤sizef (P)

Pn ∪Pnull,
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such that

• sizef (Pn) ≤ 2−n;

• Pn is a convex forest with trees T ∈ Fn satisfying

(10)
∑

T∈Fn

|IT | � 22n‖f‖22,

• ΠP f ≡ 0 for each P ∈ Pnull.

We are now ready for the main line of the argument.

Proof of Theorem 2.6. By using restricted type interpolation and a
limiting argument, it suffices to prove

(11) |{x : |CPf(x)| � λ}| � 1

λp
|E|

for each E ⊂ R+ with finite measure, each |f | ≤ 1E , each finite convex
P ⊂ Pall, for each λ > 1, 4 < p < ∞ and also for each 0 < λ ≤ 1,
1 < p < ∞. The implicit constant in the inequality (11) will only
depend on p.

We start with the simpler case λ > 1, 4 < p < ∞. Note that
the bound sizef (P) � 1 follows from Proposition 4.6. Let Pn,Fn with
2−n � 1, be the collections from Proposition 4.6. For each T ∈ Fn with
top bitile PT ∈ T , define the saturation T ∗ = {P ∈ Pn : P ≤ PT }.
Note that the trees T ∗ remain convex, but in general they are not
pairwise disjoint. Call F∗

n the collection of the trees T ∗, and note that
IT∗ = IT .

Define the exceptional set

F =
⋃

2−n�1

⋃
T∗∈F∗

n

{x : |CT∗f(x)| > λ2−n/2}.

Note that, by (8) and (9) we have

|{x : |CT∗f(x)| > λ2−n/2}| � |IT |(λ2n/2)−p.

Combining this with (10) and p > 4, we obtain |F | � 1/λp|E|.
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Thus, it remains to prove that |CPf(x)| � λ on F c. The crucial
observation behind this approach to Theorem 2.6 is that, for each n, the
contribution to each x comes from a single tree T ∗ ∈ F∗

n. Indeed, note
that the contributing bitiles P ∈ Pn satisfy (x,N(x)) ∈ IP ×ωPl

. Since
all these bitiles P contain (x,N(x)), they will be pairwise comparable
under ≤. Call Px the unique maximal bitile among them. Let T ∗

x be
one of the trees in F∗

n containing Px. It follows that all the contributing
bitiles belong to T ∗

x . Thus, if x /∈ F ,

|CPnf(x)| = |CT∗
x
f(x)| ≤ λ2−n/2.

It further follows by linearity that

|CPf(x)| ≤
∑

2−n�1

|CPnf(x)| � λ.

The case 0 < λ ≤ 1 is very similar but we need an additional
exceptional set

G := {x :M(f)(x) > λp}.
Since |G| � 1/λp|E| and since WPl

is supported on IP , it is enough to
prove (11) with P restricted to those bitiles such that P �⊂ G. Another
application of Proposition 4.3 shows that sizef (P) � λp. Let Pn,Fn

with 2−n � λp be the collections from Proposition 4.6 corresponding
to our new P. Define

F =
⋃

2−n�λp

⋃
T∗∈F∗

n

{x : |CT∗f(x)| > λ1/22−
n
2p }.

As before, (8) and (9) imply

|{x : |CT∗f(x)| > λ1/22−n/2p}| � |IT |
(

2−n

λ1/22−n/2p

)p/p−1

.

We immediately get that |F | � |E| ≤ 1/λp|E|. Note also that, if x /∈ F ,

|CPf(x)| ≤
∑

2−n�λp

|CPnf(x)| ≤
∑

2−n�λp

λ1/22−n/2p � λ.
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5. Mass and Fefferman’s argument. The argument in this
section is a translation to the Walsh case of Fefferman’s proof [10].
The key tool used in this proof is mass.

Definition 5.1. The mass of a convex collection P of bitiles is
defined as

mass (P) = sup
P∈P

|E(P )|
|IP | ,

where E(P ) = IP ∩N−1(ωP ).

In some sense the mass of a single bitile P measures (or better said,
it puts an upper bound on, since ωPl

⊂ ωP ) how much P contributes
to CP f(x). Indeed, it suffices to note that, for 1 ≤ p ≤ ∞, we have
‖CP f‖p ≤ mass (P )1/p‖f‖p. We will next extend this inequality to the
case of trees and then to a special type of forests.

We have the following analogue of Lemma 4.5. We will restrict
attention to the bitiles spatially supported in [0, 1]

P[0,1] := {P ∈ Pall : IP ⊂ [0, 1]}.

Lemma 5.2. Let P be a finite convex collection of bitiles in P[0,1].
Then P = Phi ∪Plo, such that

• both Plo and Phi are convex;

• mass (Plo) ≤ 1/2mass (P);

• Phi is a convex forest with trees T ∈ F satisfying∑
T∈F

|IT | � mass (P)−1.

Proof. This is another recursive procedure. Set Pstock := P. Select a
maximal bitile t ∈ Pstock such that

mass (t) >
mass (P)

2
.

Define
T (t) = {P ∈ Pstock : P ≤ t}.
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and note that, since Pstock is convex, both Pstock \ T (t) and the tree
T (t) will be convex. Add T (t) to the family F . Reset the new value
Pstock := Pstock \ T (t), and restart the procedure.

The algorithm is over when there is no t to be selected. Then define
Phi to consist of the union of all bitiles in all the trees from F , and let
Plo = P \Phi.

The first two needed properties as well as the convexity of F are quite
immediate. By maximality the selected bitiles t are pairwise disjoint,
and thus the sets E(t) will also be pairwise disjoint. Since E(t) ⊂ [0, 1],
it follows that∑

T∈F
|IT | =

∑
t

|It| ≤ 2mass (P)−1
∑
t

|E(t)| ≤ 2mass (P)−1.

Note that the mass of any collection is trivially bounded by 1. We can
iterate the lemma to obtain the following analogue of Proposition 4.6.

Proposition 5.3 (Mass decomposition). Let P ⊂ P[0,1] be a finite
convex collection of bitiles. Then

P =
⋃
n≥0

Pn ∪Pnull,

such that

• mass (Pn) ≤ 2−n;

• Pn is a convex forest with trees T ∈ Fn satisfying∑
T∈Fn

|IT | � 2n,

• CP f ≡ 0 for each P ∈ Pnull and each f .

It turns out that we have not only L1 but also dyadic BMOΔ control
for NFn . Recall that

‖f‖BMOΔ = sup
I dyadic

1

|I|
∫
I

∣∣∣∣f(x)− 1

|I|
∫
I

f

∣∣∣∣ dx.
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Proposition 5.4. We have

‖NFn‖BMOΔ
� 2n.

In particular, for each I ∈ D+ and λ > 0∣∣∣{x :
∑

T∈Fn:IT ⊂I

1IT (x) ≥ Cλ2n
}∣∣∣ ≤ e−λ|I|,

where C is large enough.

Proof. The first inequality follows since one can easily check that

‖NFn‖BMOΔ
� sup

I∈Δ+

∑
T∈Fn: IT⊂I |IT |

|I| .

The second one is just a consequence of John-Nirenberg’s inequality.

Given a convex tree T with top data (ξT , IT ), define JT to be the
collection of all maximal dyadic intervals J ⊂ IT such that J contains
no IP with P ∈ T . For J ∈ JT , define

GJ = J ∩
( ⋃

P∈T :J⊂IP

E(P )

)
.

We first observe that the intervals of JT form a partition of IT . Note
also that, if J intersects some IP with P ∈ T , then the convexity of
T forces the dyadic parent of each J ∈ JT to equal IP (J), for some
P (J) ∈ T . Thus, GJ ⊂ E(P (J)), which implies the following crucial
Carleson measure type estimate

(12) |GJ | ≤ 2mass (T )|J |,
for each J ∈ JT . We also need to observe that CT f is supported on⋃

J∈JT
GJ .

Proposition 5.5 (Tree estimate). Let T be a convex tree. Then, for
each 1 < p <∞,

‖CT f‖p � (mass (T ))1/p‖f‖p.
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Proof. Assume first that T is overlapping. Note that, for each J ∈ JT

and x ∈ J , if CT f(x) is nonzero, then |CT f(x)| = 1/|IP |1/2|〈f,WPu 〉|
for some P ∈ T with J ⊂ IP . Thus, |CT f(x)| ≤ infy∈JM(f)(y). We
conclude that∫

|CT f(x)|pdx =
∑
J∈JT

∫
GJ

|CT f(x)|pdx

�
∑
J∈JT

|GJ | inf
y∈J

[M(f)(y)]p

≤ 2 mass (T )
∑
J∈JT

∫
J

|Mf(x)|pdx

= 2 mass (T )‖Mf‖pLp(IT )

� mass (T )‖f‖pp.

On the other hand, if T is lacunary, we reason as in the proof of
Lemma 3.3 to write

CT f(x) = F−1
W (1ωFW (OT f))(x),

where the interval ω is any interval which contains all ωPu with x ∈ IP .
Recall, however, that |IP | ≥ 2|J | for all such P and, hence, since
ξT ∈ ωPl

, all ωPu will be contained in the interval [ξT , ξT + |J |−1].
Thus,

|CT f(x)| ≤ 1

|J |
∫
x⊕[0,|J|]

|OT f |(y) dy � inf
y∈J

M(OT f)(y).

A repetition of the argument from the overlapping case combined with
Lemma 3.2 ends the proof.

The proof of this proposition shows that, for each J ∈ JT ,

(13) ‖CT f‖L∞(J) ≤ inf
x∈J

M(VT f)(x),

where VT f = ΠT f if T is overlapping and VT f = OT (ΠT f) is T is
lacunary.
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Definition 5.6. We call F a Fefferman forest if two bitiles from any
two distinct trees in F are pairwise disjoint.

It turns out that, outside a small exceptional set, each forest F can
be written as a disjoint union of a small number of Fefferman forests.

Lemma 5.7 (The Fefferman trick). Assume that P is a convex set
in P[0,1], which is organized as a forest F . For each K > 1, there is an
exceptional set F with |F | ≤ e−K such that

•
(14)

∥∥∥∥ ∑
T∈F :IT �⊂F

1IT

∥∥∥∥
∞

� K‖NF‖BMOΔ
;

• the bitiles in PF :=
⋃

T∈F :IT �⊂F {P : P ∈ T } can be partitioned into
O(log(K‖NF‖BMOΔ

)) Fefferman forests.

Proof. Define F = {x :
∑

T∈F 1IT (x) > CK‖NF‖BMOΔ
}, for large

enough C. Note that |F | ≤ e−K by John-Nirenberg’s inequality. Call
FF := {T ∈ F : IT �⊂ F}. Then (14) is immediate. Let PT be any top
bitile for T . Define, for each l ∈ N with 1 ≤ 2l ≤ CK‖NF‖BMOΔ

,

Pl
F := {P ∈ PF : 2l ≤ #{T ∈ FF : P ≤ PT } < 2l+1}.

It remains to prove that Pl
F is a Fefferman forest. Note that Pl

F is
convex, in part because P is convex. For each maximal element t ∈ Pl

F ,
let T (t) = {P ∈ Pl

F : P ≤ t}. Obviously, each tree T (t) is convex.
Assume, for contradiction, P ≤ P ′ for some P ∈ T (t), P ′ ∈ T (t′) with
t �= t′. Then P ≤ t′, in addition to P ≤ t. Thus, It intersects It′ .
But then, since t and t′ are pairwise incomparable under ≤, the sets
{T ∈ FF : t ≤ PT } and {T ∈ FF : t′ ≤ PT } must be pairwise disjoint.
Note that

{T ∈ FF : t ≤ PT } ∪ {T ∈ FF : t′ ≤ PT } ⊂ {T ∈ FF : P ≤ PT },
and this will force the contradiction 2l + 2l < 2l+1.

We will repeatedly use the fact that, if T, T ′ are trees in a Fefferman
forest, then CT f and CT ′f are disjointly supported while ΠT f and
ΠT ′f are orthogonal.
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Proposition 5.8 (Forest estimate). Let F be a Fefferman forest.
Then, for each 1 < p <∞, there exists δ(p) < 1/p such that

‖CFf‖p � (mass (F))1/p(‖NF‖∞)δ(p)‖f‖p.

When p ≥ 2, we can take δ(p) = 0.

Proof. First let p ≥ 2. Consider the vector-valued operator V f =
(ΠT f)T∈F . Proposition 3.4 shows that ‖V ‖L∞→l∞(L∞) � 1. On
the other hand, the pairwise orthogonality of ΠT f implies the bound
‖V ‖L2→l2(L2) � 1. Interpolation [3] now gives

(15) ‖V ‖Lp→lp(Lp) � 1.

Using Proposition 5.5, we get

‖CFf‖pp =
∑
T∈F

‖CT f‖pp �
∑
T∈F

mass (T )‖ΠT f‖pp ≤ mass (F)‖f‖pp.

Assume next that p < 2. Split F into ‖NF‖∞ forests Fk so that, for
each k and each T, T ′ ∈ Fk, we have IT ∩ IT ′ = ∅. Note that we have,
as before,

‖CFf‖pp =
∑
k

∑
T∈Fk

‖CT f‖pp �
∑
k

∑
T∈Fk

mass (T )‖f1IT ‖pp

≤ mass (F)
∑
k

‖f‖pp = mass (F)‖NF‖∞‖f‖pp.

To close the argument, interpolate the Lp and L2 bounds for the
operator f �→ CFf .

We are now ready to prove the following variant of Theorem 2.6.
Note that this weaker version is enough to prove Theorem 1.2 via the
standard approximation argument. Then, in the case 1 < p ≤ 2,
one can actually use Stein’s continuity principle [20] to show that
Theorem 1.2 implies the stronger Theorem 2.6. The author is not
aware of any substitute argument which proves the same implication
for p > 2. However, in Section 7, we present a recent delicate refinement
of Fefferman’s argument due to Lie [18] which closes this gap.
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Theorem 5.9. For each 1 < q < p <∞, we have

‖CP[0,1]
f‖q � ‖f‖p.

Proof. By invoking a limiting argument, it suffices to prove the
estimate with P[0,1] replaced by a finite convex collection P ⊂ P[0,1],
as long as the implicit constant in the inequality is independent of
P. Apply Proposition 5.3 to P to get Pn, Fn. Apply Lemma 5.7
to each Fn with K = Kn := (n + 1)L, L ≥ 2 to be determined
later. We get exceptional sets |Fn| ≤ e−L(n+1) and the partitions of
FFn,n := {T ∈ Fn : IT �⊂ Fn} into O(n+ logL) Fefferman forests Fn,k.
Define F = ∪nFn and note that |F | � e−L. Also let P∗ be the bitiles
in the trees from ∪nFFn,n. Note that CPf(x) = CP∗f(x) on F c. By
Proposition 5.8 and linearity, we get

‖CPf‖Lp(F c) ≤
∑
n

∑
k

‖CFn,k
f‖Lp([0,1])

�
∑
n

2−n/p(n+ logL)(n2nL)δ(p)‖f‖p

� L1/p‖f‖p.
Thus, for each λ > 1,

|{x ∈ [0, 1] : |CPf(x)| > λ}| � L

(‖f‖p
λ

)p

+ e−L.

By optimizing L, we get that, for each s < p,

|{x ∈ [0, 1] : |CPf(x)| > λ}| �
(‖f‖p

λ

)s

.

A simple integration argument finishes the proof of the theorem.

6. Combining mass and size: The Lacey-Thiele argument.
The Fourier version of this argument is due to Lacey and Thiele [15].
It uses both mass and size and thus it combines elements of the two
proofs we have seen in earlier sections. The interplay between mass
and size made this approach particularly well suited for applications to
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the problem of singular integrals along vector fields [1, 2, 13] since it
opened the door to the use of Kakeya type maximal functions.

The definition of size (P) will remain the same as in Section 4. Let
F be a finite measure subset of R+. We slightly modify the definition
of mass.

Definition 6.1. The mass of a convex collection P of bitiles relative
to F is defined as

massF (P) = sup
P∈P

|EF (P )|
|IP |

where now EF (P ) = F ∩ IP ∩N−1(ωP ).

We have the following version of Proposition 5.3.

Proposition 6.2 (Mass decomposition). Let P ⊂ Pall be a finite
convex collection of bitiles. Then

P =
⋃
m≥0

P∗
m ∪P∗

null,

such that

• massF (P
∗
m) ≤ 2−m;

• P∗
m is a convex forest with trees T ∈ F∗

m satisfying

∑
T∈F∗

m

|IT | � 2m|F |;

• CP f ≡ 0 for each P ∈ P∗
null and each f : R+ → C.

Proposition 6.3 (Tree estimate). Let T be a convex tree. Then, for
each f ∈ L2(R+),

|〈CT f, 1F 〉| � |IT | massF (T ) sizef (T ).
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Proof. For J ∈ JT , define as before GJ = J ∩ (
⋃

P∈T :J⊂IP
EF (P )).

Recall that CT f1F restricted to J is supported on GJ . We then
estimate as in the proof of Proposition 5.5,

|〈CT f, 1F 〉| ≤
∑
J∈JT

∫
GJ

|CT f |

≤ massF (T )
∑
J∈JT

∫
J

M(VT (f))

≤ massF (T )
∑
J∈JT

|J |1/2
(∫

J

|M(VT (f))|2
)1/2

≤ massF (T )|IT |1/2‖VT (f)‖2,
where VT f = ΠT f if T is overlapping and VT = OT (ΠT f) is T is
lacunary. The result now follows from (9) and Lemma 3.2.

Proof of Theorem 2.6. By using a restricted type interpolation and
a limiting argument, it suffices to prove that, given 1 < p < ∞, p �= 2,
with dual exponent p′ and, given finite measure subsets E,G of R+,
there exists an F ⊂ G with |F | ≥ |G|/2 such that

(16) |〈CPf, 1F 〉| � |E|1/p|F |1/p′

for each |f | ≤ 1E and each finite convex P ⊂ Pall.

We first analyze the case p > 2, when we can take F = G. Note
that sizef (P) � 1. Apply to P Propositions 4.6 and 6.2 to get
Pn,P

∗
m,Fn,F∗

m for m ≥ 0 and 2−n � 1. Define Pn,m := Pn∩P∗
m. We

organize the bitiles in Pn,m into a forest in two different ways. Call
Fn,m the trees T ∩ P∗

m with T ∈ Fn, and call F∗
n,m the trees T ∩ Pn

with T ∈ F∗
m. Note that the resulting trees are convex and∑

T∈Fn,m

|IT | � 22n|E|
∑

T∈F∗
n,m

|IT | � 2m|F |.

Thus, using Proposition 6.3 with the two partitions above, we get

|〈CPn,mf, 1F 〉| � 2−n2−mmin(22n|E|, 2m|F |).
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We conclude that

|〈CPf, 1F 〉| ≤
∑

2−n�1,m≥0

|〈CPn,mf, 1F 〉|

�
∑
n,m

2−n2−m(22n|E|)1/p(2m|F |)1/p′

� |E|1/p|F |1/p′
.

Now consider the case p < 2. We define

F := G \
{
x :M(1E)(x) > 10

|E|
|G|

}
.

Note that |F | ≥ |G|/2. Call P∗ = {P ∈ P : IP �⊂ F c}, and
note that 〈CPf, 1F 〉 = 〈CP∗f, 1F 〉. Proposition 4.3 implies the bound
sizef (P

∗) � |E|/|F |.
Proceeding as before, with the two partitions this time for P∗, we

obtain

|〈CP∗f, 1F 〉| ≤
∑

2−n�|E|/|F |
m≥0

|〈CPn,mf, 1F 〉|

�
∑

2−n�|E|/|F |
m≥0

2−n2−m(22n|E|)1/p′
(2m|F |)1/p

� |E|1/p|F |1/p′
.

7. A direct proof of strong Lp bounds. All three arguments
presented earlier rely on proving weak type bounds and using interpo-
lation. Moreover, as observed in Section 5, Fefferman’s argument does
not imply strong type Lp bounds for the operator CP[0,1]

when p ≥ 2.
The recent argument of Lie [18] proves that

(17) ‖CP[0,1]
f‖p � ‖f‖Lp[0,1]

directly, without any interpolation that restricts f to special classes
of functions (such as sub-characteristic). The case p = 2 will require
no interpolation in the argument, while the case p �= 2 will rely on
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vector-valued interpolation for various operators relevant to the proof.
We will restrict attention to p ≥ 2.

This argument, while also interesting in itself, has been developed in
[18] in order to solve a conjecture of Stein on the boundedness of the
quadratic Carleson operator.

We will keep the notation for mass from Section 5 and restrict atten-
tion to the bitiles in P[0,1]. Recall (see Lemma 5.7) that Fefferman’s
approach consisted of decomposing every forest into a small number of
Fefferman forests, outside a small exceptional set. The lemma below
shows how to iterate the Fefferman trick inside the exceptional set, un-
til all bitiles are exhausted. Each stage of the iteration creates more
layers of Fefferman forests, but the size of their spatial support will get
exponentially smaller.

Lemma 7.1. Let P ⊂ P[0,1] be a finite convex collection of bitiles.
Then we have the following partitions

P =
⋃
k≥0

Pk(18)

Pk =
⋃
m≥1

Qm
k(19)

Qm
k =

⋃
1≤n�k

Fm,n
k(20)

where each Fm,n
k is a Fefferman forest such that

(21) ‖NFm,n
k

‖∞ � k2k

and

(22) mass

(
P \

k−1⋃
i=0

Pi

)
≤ 21−k.

Moreover, there are sets (Em
k )m,k≥0 which are finite disjoint unions Jm

k

of dyadic intervals such that

Em+1
k ⊂ Em

k and |Em+1
k ∩ J | ≤ e−10k|J |, for J ∈ Jm

k

(23)

P ∈ Qm+1
k =⇒ IP ⊂ Em

k , IP �⊂ Em+1
k(24)

P ∈ Qm+1
k =⇒ |IP ∩ Em+2

k | ≤ e−10k|IP |.(25)
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Proof. Set P0 := ∅. Assume that, given k > 0, each Pi has been
defined for each 0 ≤ i ≤ k − 1 so that it satisfies (19) (25).

Let us see how to define Pk. For the rest of the argument, set
Pstock = P \ (∪0≤i≤k−1Pi). Let P0

k,max be the maximal bitiles in the
set

{P ∈ Pstock : mass (P ) ≥ 2−k}.
Define E0

k := [0, 1],

P0
k = {P ∈ Pstock : P ≤ P ′ for some P ′ ∈ P0

k,max}

N0
k (x) =

∑
P∈P0

k,max

1IP (x),

and the exceptional set

E1
k = {x : N0

k (x) ≥ C1k2
k}

where C1 is a large enough constant to be determined later. Note
that, since the sets EP are pairwise disjoint for P ∈ P0

k,max, it follows

that ‖N0
k‖BMOΔ

≤ 2k. This and John-Nirenbeg in turn imply (23) for
m = 0. Define

Q1
k = {P ∈ P0

k : IP �⊂ E1
k},

and note that (24) holds for m = 0.

We continue the construction of the sets Em
k , Qm

k inductively. Fix
m0 ≥ 1. Assume E0

k , . . . , E
m0

k andQ1
k, . . . ,Q

m0

k have been constructed
so that (23) (24) hold for each 0 ≤ m ≤ m0 − 1 and so that (25) holds
for each m ≤ m0 − 2. Define Pm0

k,max to be the maximal bitiles in the
set

{P ∈ Pstock : IP ⊂ Em0

k , mass (P ) ≥ 2−k}.
Also let

Pm0

k = {P ∈ Pstock : P ≤ P ′ for some P ′ ∈ Pm0

k,max},

Nm0

k (x) =
∑

P∈P
m0
k,max

1IP (x),
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and the exceptional set

Em0+1
k = {x : Nm0

k (x) ≥ C1k2
k}.

Finally, define

Qm0+1
k = {P ∈ Pm0

k : IP �⊂ Em0+1
k }.

Note that (23) (24) hold when m = m0, for the same reasons as before.
To check (25) for m = m0 − 1, let P ∈ Qm0

k . Since Ip �⊂ Em0

k , we have
that either IP ∩Em0

k = ∅, or IP ∩Em0

k is a finite disjoint union of dyadic
intervals J ∈ Jm0

k . Note that John-Nirenberg’s inequality guarantees
that, for each J ∈ Jm0

k we have

|J ∩ Em0+1
k | ≤ e−10k|J |,

which immediately implies (25) for m = m0 − 1.

It is easy to see that each Qm
k is convex. It can be organized into a

forest of trees with tops in

{
P ∈ Pm−1

k,max : IP �⊂ Em
k

}
.

Note that the counting function has a favorable L∞ bound∥∥∥∥ ∑
P∈Pm−1

k,max
:IP �⊂Em

k

1IP

∥∥∥∥
∞

≤ C1k2
k.

The forests Fm,n
k are now obtained via the Fefferman trick.

It is immediate that the collections Qm
k are pairwise disjoint for fixed

k, because of (24). Note that the algorithm (for fixed k) will end with
a finite value of m. We set Qm

k to be empty for all larger values of m
and define Pk =

⋃
m≥1 Q

m
k . Finally, observe that, when the algorithm

for fixed k is over, there cannot be any P left in ∈ Pstock \ Pk with
mass (P ) ≥ 2−k. Indeed, note that IP ⊂ E0

k trivially. While IP ⊂ Em
k ,

the algorithm will continue to run. But, by (23), there should exist an
m such that IP ⊂ Em

k , IP �⊂ Em+1
k . Thus, if mass (P ) ≥ 2−k, then P

gets automatically selected in Qm+1
k .
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A distinct feature of the approach in this section is the almost
orthogonality between a function with small support and a function
locally constant on this support.

Lemma 7.2 (Almost orthogonality). Let J be a collection of pairwise
disjoint intervals, and let f : ∪J∈JJ → C such that |f | is constant on
each J ∈ J. Assume that EJ ⊂ J satisfies |EJ | ≤ α|J | for each J ∈ J.
Then, for each g : ∪J∈JEJ → C, we have

|〈f, g〉| ≤ α1/2‖f‖2‖g‖2.

Proof.

|〈f, g〉| ≤
∑
J

∫
EJ

|f ||g|

≤
∑
J

|EJ |1/2 sup
x∈J

|f(x)|‖g‖L2(J)

≤ α1/2
∑
J

‖f‖L2(J)‖g‖L2(J)

≤ α1/2‖f‖2‖g‖2.

Proposition 7.3 (Almost orthogonality between forests). Fix k. For
each m ≥ 0, let Fm denote one of the forests Fm,n

k from Lemma 7.1.
Define

ΠFmf =
∑

T∈Fm

ΠT f.

Then, for each m′ ≥ m+ 2,

|〈ΠFmf,ΠFm′ f〉| � e−(m′−m−2)k/2‖f‖22.

Proof. Note that, due to (21), we can split Fm into layers Fm =⋃
l�k2k Fm(l), so that for each l, the trees T in Fm(l) have pairwise

disjoint intervals IT .

Arguing as in the proof of Proposition 3.4 we first observe that, for
each x, we have

∑
T∈Fm(l) ΠT f(x) = ΠP f(x), where P is the minimal
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bitile in ∪T∈Fm(l)T such that x ∈ IP . Second, by (24), for each interval
J ∈ Jm

k and each P ∈ ∪T∈Fm(l)T , J cannot contain either the right or
the left halves of IP . Third, (1) guarantees that each |ΠP f | is constant
on both the right and the left halves of IP . We now conclude that
the function |∑T∈Fm(l) ΠT f | is constant on each J ∈ Jm

k . Applying

Lemma 7.2 to (
∑

T∈Fm(l) ΠT f)1Em
k

and ΠFm′ f , by virtue of (23), we
get

|〈ΠFmf,ΠFm′f〉| ≤
∑
l

|〈ΠFm(l)f,ΠFm′f〉|

� k2ke−10(m′−m−1)k/2‖ΠFm′f‖2‖ΠFmf‖2
� e−(m′−m−2)k/2‖f‖22.

Lemma 7.4 (Schur’s test). Let Tm be a sequence of operators on
L2([0, 1]) with adjoints T ∗

m such that, for each m,m′,

‖Tm′T ∗
m‖2�→2 ≤ c|m′−m|

where ∑
n≥0

cn = c <∞.

Then ∑
m

‖Tmf‖22 ≤ c‖f‖22.

Proof. We have∑
m

‖Tmf‖22 =
∑
m

〈T ∗
m′Tmf, f〉

≤ ‖
∑
m

T ∗
mTmf‖2‖f‖2

=

( ∑
m,m′

〈T ∗
mTmf, T

∗
m′Tm′f〉

)1/2

‖f‖2

≤
( ∑

m,m′
‖Tm′T ∗

m‖2�→2‖Tmf‖2‖Tm′f‖2
)1/2

‖f‖2.
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It now suffices to note that this can further be bounded via Cauchy-
Schwartz by

c1/2
(∑

m

‖Tmf‖22
)1/2

‖f‖2.

Corollary 7.5. With the notation in Proposition 7.3, we have, for
each 2 ≤ p <∞,

∑
m

‖ΠFmf‖pp � (k2k)p−2‖f‖pp.

Proof. To get the p = 2 case apply Schur’s test to the families of

operators Tm = ΠF3m+i with i ∈ {0, 1, 2}. Note that Π∗
Ff = ΠF (f) for

each forest F .

We next get an L∞ bound. Since by (21) each forest consists
of O(k2k) layers, Proposition 3.4 implies the bound ‖ΠFmf‖∞ �
k2k‖f‖∞. Then we use interpolation [3] for the vector-valued operator
V f = (ΠFmf)m≥1 as in the proof of Proposition 5.8.

Lemma 7.6. With the notation in Proposition 7.3, we have for each
2 ≤ p <∞, ∑

m

‖CFmf‖pp � 2−k‖f‖pp.

Proof. Using that Fm is a Fefferman forest and the tree estimate
Proposition 5.5 we get

‖CFmf‖pp =
∑

T∈Fm

‖CT f‖pp � 2−k
∑

T∈Fm

‖ΠT f‖pp.

Consider the vector-valued operator V f = (ΠT f)T∈∪mFm . Note that

‖V f‖L2(l2) =

(∑
m

‖ΠFmf‖22
)1/2

� ‖f‖2,
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by Corollary 7.5, and also that

‖V f‖L∞(l∞) = sup
T∈∪mFm

‖ΠT f‖∞ � ‖f‖∞,

by virtue of Proposition 3.4. Interpolation [3] finishes the proof.

The proof of (17) when p ≥ 2 will now immediately follow from the
next estimate, by invoking the triangle inequality.

Proposition 7.7. Let 2 ≤ p <∞. For each f ∈ Lp([0, 1]), we have

‖CPk
f‖p � 2−Lk‖f‖p,

for some L = L(p) > 0 independent of k.

Proof. Fix k. We can assume p is an integer and then use interpola-
tion. The value of L will change throughout the argument. For each
m ≥ 0, let Fm denote one of the forests Fm,n

k from Lemma 7.1. By
the triangle inequality, it will suffice to prove that

∑
m

‖CFmf‖pp +
∑

m1≤m2≤···≤mp

p2+m1<mp

∫
|CFm1 f |

p∏
i=2

|CFmi f | � 2−Lk‖f‖pp.

Note that the first term is taken care of by Lemma 7.6. We next focus
on the second term. The restriction p2 +m1 < mp in the summation
can be achieved by splitting the integers in classes of residues modulo
p2 and using the triangle inequality. This separation will be used to
achieve extra decay.

For each T ∈ Fm1 , let, as before, JT be the collection of all maximal
dyadic intervals J ⊂ IT such that J contains no IP with P ∈ T . Denote
by ST the support ⋃

P∈T

(IP ∩N−1(ωP ))

of CT f . Recall that the sets ST are pairwise disjoint.

Since, for each P ∈ T , we have IP ⊂ Em1−1
k , (23) (25) will imply

that
|IP ∩ (suppCFmp f)| ≤ e−(mp−m1−1)k|IP |.
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Since the dyadic parent of J must equal IP for some P ∈ T , we conclude
also that

(26) |J ∩ (suppCFmp f)| ≤ e−(mp−m1−1)k|J |.
Thus,

∑
m1≤m2≤···≤mp

m1+p2<mp

∫
|CFm1f |

p∏
i=2

|CFmi f |

≤
∑

m1≤m2≤···≤mp

m1+p2<mp

∑
T∈Fm1

∑
J∈JT

∫
J

|CT f |
p∏

i=2

|CFmif |

=
∑

m1≤m2≤···≤mp

m1+p2<mp

∑
T∈Fm1

∑
J∈JT

∫
J∩(suppCFmp f)

|CT f |
p∏

i=2

|1STCFmif |.

By invoking (13), (26), Lemma 3.2 and Hölder’s inequality this can
further be bounded by∑
m1≤m2≤···≤mp

m1+p2<mp

∑
T∈Fm1

∑
J∈JT

|J ∩ (suppCFmp f)|1/p

× inf
x∈J

M(VT f)(x)

p∏
i=2

(∫
J

|1STCFmif |p
)1/p

≤
∑

m1≤m2≤···≤mp

m1+p2<mp

e−(mp−m1−1)k/p
∑

T∈Fm1

∑
J∈JT

(∫
J

[M(VT f)]
p

)1/p

×
p∏

i=2

(∫
J

|1STCFmif |p
)1/p

�
∑

m1≤m2≤···≤mp

m1+p2<mp

e−(mp−m1−1)k/p
∑

T∈Fm1

‖ΠT f‖p

×
p∏

i=2

(∫
|1STCFmi f |p

)1/p
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≤
∑

m1≤m2≤···≤mp

m1+p2<mp

e−(mp−m1−1)k/p

( ∑
T∈Fm1

‖ΠT f‖pp
)1/p p∏

i=2

‖CFmif‖p.

In the last line we have used the orthogonality of ΠT f and the disjoint-
ness of ST .

Using (15), the forest estimate in Proposition 5.8, Hölder’s inequality
and the fact that

CFmf = CFm(ΠFmf),

we upgrade the last estimate to

∑
m1≤m2≤···≤mp

m1+p2<mp

∫
|CFm1f |

p∏
i=2

|CFmi f |

� 2−[k(p−1)]/p
∑

m1≤m2≤···≤mp

m1+p2<mp

e−(mp−m1−1)k/p

p∏
i=1

‖ΠFmif‖p

� e−kp
∑
m

‖ΠFmf‖pp.

Proposition 7.7 now follows from Corollary 7.5.

8. A proof without any appeal to the choice function Let
ψ, φ be Schwartz functions supported on T = [−1/2, 1/2) such that∫
ψ = 1,

∫
φ = 0. Define the kernel

K(t, s) =
∑
k<0

ψk(t)φk(s),

where ψk(t) = 2−kψ(t2−k) and φk(s) = 2−kφ(s2−k). Consider the
trilinear form

Λ(F1, F2, F3) =

∫
T4

F1(x+t, y+s)F2(x+s, y)F3(x, y)K(t, s) dx dy dt ds,

where + denotes the summation modulo one on the torus. This is an
example of a dualized two dimensional bilinear Hilbert transform.



A GUIDE TO CARLESON’S THEOREM 203

Motivated in part by questions from Ergodic Theory, in [9] it is proved
that

(27) |Λ(F1, F2, F3)| � ‖F1‖p1‖F2‖p2‖F3‖p3 ,

whenever 1/p1 + 1/p2 + 1/p3 = 1 and 2 < pi <∞.

Interestingly, this implies the Lp, p > 2 boundedness of the Carleson
operator defined as

Cf(x) = sup
N∈N

∣∣∣∣
∫
T

f(x+ s)eiNs ds

s

∣∣∣∣,
and, in particular, the almost everywhere convergence of the Fourier
series Snf(x) in the p > 2 regime. To see this, it suffices to apply (27) to
F1(x, y) = f(y), F2(x, y) = eixN(y)g(y), F3(x, y) = e−ixN(y)h(y) with
‖g‖p2 = ‖h‖p3 = 1 and to an appropriate φ such that

∑
k<0 φk(s) = 1/s

for s ∈ [−1/4, 1/4] \ {0}.
We will prove the Walsh model analogue of (27) for the dyadic kernel

KW (t, s) =
∑
k≥0

23k/21Ik(t)hIk(s),

where Ik = [0, 2−k] and hIk is the L2 normalized Haar function. Now
define

ΛW(F1, F2, F3)

=

∫
[0,1]4

F1(x⊕ t, y ⊕ s)F2(x⊕ s, y)F3(x, y)K
W (t, s) dx dy dt ds.

Theorem 8.1.

|ΛW (F1, F2, F3)| � ‖F1‖p1‖F2‖p2‖F3‖p3 ,

whenever 1/p1 + 1/p2 + 1/p3 = 1 and 2 < pi <∞.

The definition of Λ(F1, F2, F3) involves no choice function N(x), so
we recover a proof of the boundedness of the Carleson operator which
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makes no mention of it! The proof of Theorem 8.1 is very close in spirit
to the proof of the boundedness of the Walsh model of the bilinear
Hilbert transform [16]. This shows once more the deep connection
between these two operators.

Define the projection operators

π1
ωF (x, y) = F−1

W [1ω(ξ)FW (F )(ξ, η)](x, y)

π2
ωF (x, y) = F−1

W [1ω(η)FW (F )(ξ, η)](x, y).

It can be easily checked that

ΛW (F1, F2, F3) =

∫
[0,1]2

∑
ω∈D+:|ω|≥2

π1
[0,|ω|/2]π

2
ωl

× F1(x, y)π
1
ωu
F2(x, y)π

1
ωu
F3(x, y) dx dy

+

∫
[0,1]2

∑
ω∈D+:|ω|≥2

π1
[0,|ω|/2]π

2
ωu

× F1(x, y)π
1
ωl
F2(x, y)π

1
ωl
F3(x, y) dx dy,

where ωl, ωu denote the left and right halves of ω.

By symmetry, it will suffice to estimate the first integral, which we
denote by ΛW,1(F1, F2, F3). Let Ω be a collection of intervals in D+.
Define

ΛΩ(F1, F2, F3)

=

∫
[0,1]2

∑
ω∈Ω

π1
[0,|ω|/2]π

2
ωl
F1(x, y)π

1
ωu
F2(x, y)π

1
ωu
F3(x, y) dx dy.

The first case of interest is when the intervals in Ω are nested. This
will be a precursor of the tree estimate in Lemma 8.6.

Proposition 8.2. Let Ω be a collection of intervals in D+ which
contain a point ξ. Then

|ΛΩ(F1, F2, F3)| � ‖F1‖p1‖F2‖p2‖F3‖p3 ,

whenever 1/p1 + 1/p2 + 1/p3 = 1 and 1 < pi <∞.
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Proof. By splitting Ω in two parts, it suffices to assume that either
ξ ∈ ωl for all ω or ξ ∈ ωu for all ω. In the first case, note that
the intervals ωu are pairwise disjoint. We estimate using Hölder’s
inequality and the boundedness of the square function S associated
with the intervals ωu on the first component

|ΛΩ(F1, F2, F3)| �
∫
[0,1]2

sup
ω

|π1
[0,|ω|/2]π

2
ωl
F1(x, y)|

×
( ∑

ω∈Ω

|π1
ωu
F2(x, y)|2

)1/2

×
( ∑

ω∈Ω

|π1
ωu
F3(x, y)|2

)1/2

dx dy

≤ ‖M(F1)‖p1‖SF2‖p2‖SF3‖p3

� ‖F1‖p1‖F2‖p2‖F3‖p3 .

In the second case, note that ωl are pairwise disjoint. We will run a
standard telescoping argument. Denote by Ω̃ the collection of all set
differences between intervals ωu of consecutive length. Note that each
ω̃ = ω′

u \ωu ∈ Ω̃ is the union of at most two intervals whose length is at
least |ωu|. We call ωext the complement (in R+) of the largest interval
ωu, ω ∈ Ω, and F ext

i = π1
ωextFi for i = 2, 3. Note that, trivially, for

each ω ∈ Ω,

π1
ωu
Fi = F ext

i −
∑

ω̃∈Ω̃: ω̃ �⊂ωu

π1
ω̃Fi, i = 2, 3.

We can now write

ΛΩ(F1, F2, F3)

=

∫
[0,1]2

∑
ω∈Ω

π1
[0,|ω|/2]π

2
ωl
F1(x, y)F

ext
2 (x, y)F ext

3 (x, y) dx dy

(28)

−
∫
[0,1]2

∑
ω∈Ω

∑
ω̃∈Ω̃: ω̃ �⊂ωu

π1
[0,|ω|/2]π

2
ωl
F1(x, y)F

ext
2 (x, y)π1

ω̃F3(x, y) dxdy

(29)
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−
∫
[0,1]2

∑
ω∈Ω

∑
ω̃∈Ω̃: ω̃ �⊂ωu

π1
[0,|ω|/2]π

2
ωl
F1(x, y)π

1
ω̃F2(x, y)F

ext
3 (x, y)dxdy

(30)

+

∫
[0,1]2

∑
ω∈Ω

∑
ω̃∈Ω̃: ω̃ �⊂ωu

∑
ω̃′∈Ω̃: ω̃′ �⊂ωu

(31)

× π1
[0,|ω|/2]π

2
ωl
F1(x, y)π

1
ω̃F2(x, y)π

1
ω̃′F3(x, y) dx dy.

The term (28) is controlled by Hölder’s inequality and the boundedness
of the two-dimensional singular integral operator TF =

∑
ω∈Ω π

1
[0,|ω|/2] ×

π2
ωl
F . To control (31) we note that the term corresponding to a triple

ω, ω̃, ω̃′ is nonzero only when ω̃, ω̃′ are adjacent to each other. This
is a simple computation involving the Walsh transform that will diag-
onalize the sum. Then use Cauchy-Schwartz and the boundedness of
the square function (

∑
ω̃∈Ω̃ |π1

ω̃F |2)1/2 and of the maximal truncation
operator

T ∗F = sup
δ>0

|
∑

ω∈Ω: |ω|>δ

π1
[0,|ω|/2]π

2
ωl
F |.

A similar argument will take care of terms (29) and (30); the details
are left to the reader.

The next step is to discretize the form Λ in both time and frequency.

Definition 8.3. A one and a half dimensional bitile (tile) P =
RP × ωP , for short 3/2-bitile (tile), is a product of a dyadic square
RP = IP×JP ∈ D2

+ and a dyadic interval ωP ∈ D+ with |ωP | = 2|IP |−1

(|ωP | = |IP |−1). If P is a 3/2-bitile, we define as before the upper and
lower 3/2-tiles Pu = RP × ωPu , Pl = RP × ωPl

.

Call P
3/2
all the entire collection of 3/2-bitiles. There is a natural partial

order on P
3/2
all which, by abusing earlier notation will be denoted by

≤. The reader can correctly anticipate that P ≤ P ′ will stand for

RP ⊂ RP ′ and ωP ′ ⊂ ωP . Convexity on P
3/2
all will be understood with

respect to this order.
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Definition 8.4. Let RT ⊂ D2
+ be a dyadic square, and let ξT ∈ R+.

A 3/2-tree T with top data (RT , ξT ) is a collection of 3/2-bitiles in

P
3/2
all such that RP ⊂ RT and ξT ∈ ωP for each P ∈ T .

With each 3/2-bitile P we will identify two regions in the phase space

R4
+ = R2

+ × R̂2
+. One is the region covered by the two-dimensional

bitile RP × [0, |ωP |] × ωP . The other one is RP × ωP ×R+, which is
the union of two dimensional bitiles of the form RP ×ωP ×ω. We will
denote by CP the collection of all these two-dimensional bitiles. It is

easy to check that if P ⊂ P
3/2
all is convex, then both collections of bitiles

{RP × [0, |ωP |] × ωP : P ∈ P} and ∪P∈PCP are convex with respect

to the two-dimensional order. We will denote by Π2
PF and Π

3/2
P F the

phase space projections associated with the two collections (cf. Remark
2.5).

Note that Π
3/2
P F can be thought of as being a 1-1/2-dimensional

projection, since this operator produces no localization on the second
frequency component. For example, if p is a 3/2-tile, then

Π3/2
p F (x, y) =

[∫
F (x′, y)WIp×ωp(x

′) dx′
]
WIp×ωp(x)1Jp(y)

=
∑

|ω|=|ωp|
〈F,WIp×ωpWJp×ω〉WIp×ωp(x)WJp×ω(y).

For a convex 3/2-tree T , define

ΛT (F1, F2, F3) =

∫
[0,1]2

∑
P∈T

1RP (x, y)π
1
[0,|ωP |/2]π

2
ωPl

× F1(x, y)π
1
ωPu

F2(x, y)π
1
ωPu

F3(x, y) dx dy,

and observe that variants of (6) will imply that

ΛT (F1, F2, F3) = ΛT (Π
2
T (F1),Π

3/2
T (F2),Π

3/2
T (F3)).

An argument very similar to the one in Proposition 8.2 will prove

|ΛT (F1, F2, F3)| � ‖F1‖s1‖F2‖s2‖F3‖s3 ,
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whenever 1/s1 + 1/s2 + 1/s3 = 1 and 1 < si < ∞. Combining these,
we get

(32) |ΛT (F1, F2, F3)| � ‖Π2
T (F1)‖s1‖Π3/2

T (F2)‖s2‖Π3/2
T (F3)‖s3 .

Definition 8.5. Let P ⊂ P
3/2
all be a collection of 3/2-bitiles. For

F : R2
+ → C, define

sizeF,2(P) = sup
P∈P

‖Π2
PF‖2

|RP |1/2

sizeF,3/2(P) = sup
P∈P

‖Π3/2
P F‖2

|RP |1/2 .

Lemma 8.6 (Tree estimate). Let T ⊂ P
3/2
all be a convex 3/2-tree.

Then

‖Π2
TF‖p � |RT |1/psizeF,2(T ), for each 1 ≤ p ≤ ∞.

If, in addition, ‖F‖∞ ≤ 1, then

‖Π3/2
T F‖p � |RT |1/p(sizeF,3/2(T ))

2/p, for each 2 ≤ p ≤ ∞.

Proof. The crucial observation in both cases is that

(33) Πi
TF (x, y) = Πi

PF (x, y),

for each i ∈ {3/2, 2}, where P is the minimal 3/2-bitile in T such that
(x, y) ∈ RP . This follows as in the proof of Proposition 3.4. The first
inequality then follows by noting that ‖Π2

PF‖∞ � ‖Π2
PF‖2, as in the

one-dimensional case.

Let us now analyze the second inequality. Let PT be the collection
of all 3/2-bitiles in T such that, for each P ∈ PT , there is (x, y) such
that P is the minimal 3/2-bitile in T with (x, y) ∈ RP . It is easy to
see that

(34)
∑

P∈PT

|RP | � |RT |.
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Indeed, if P ∈ PT , by the convexity of T at least one of the four dyadic
children of RP will contain no RP ′ with P ′ ∈ PT .

Next we observe that, for each 3/2-bitile P ,

(35) ‖Π3/2
P F‖∞ ≤ ‖F‖∞,

which together with Hölder’s inequality gives, if ‖F‖∞ ≤ 1 and
2 ≤ p ≤ ∞

‖Π3/2
P F‖p ≤ |RP |1/p(sizeF,3/2(P ))

2/p.

The result now follows by combining this with (33) and (34).

The proof of Proposition 4.6 applies with essentially no modification
to prove the following variant.

Proposition 8.7 (Size decomposition). Let i be either 2 or 3/2. Let
F : R2

+ → C. Let P be a finite convex collection of 3/2-bitiles.

Then
P =

⋃
2−n≤sizeF,i(P)

Pn ∪Pnull,

such that

• sizeF,i(Pn) ≤ 2−n;

• Pn is a convex forest with convex 3/2-trees T ∈ Fn satisfying∑
T∈Fn

|RT | � 22n‖F‖22;

• Πi
PF ≡ 0 for each P ∈ Pnull.

Proof of Theorem 8.1. By multilinear restricted type interpolation it
suffices to prove

|ΛW,1(F1, F2, F3)| � |E1|1/p1 |E2|1/p2 |E3|1/p3

whenever |Fi| ≤ 1Ei for finite measure subsets Ei of R
2
+. Fix 2 < pi <

∞ for the rest of the proof. We begin by observing that

ΛW,1(F1, F2, F3) =
∑

P∈P
3/2

all

ΛP (F1, F2, F3),
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and thus it further suffices to prove∣∣∣∣ ∑
P∈P

ΛP (F1, F2, F3)

∣∣∣∣ � |E1|1/p1 |E2|1/p2 |E3|1/p3 ,

for all convex, finite P ⊂ P
3/2
all .

Note that by (35) and the natural two-dimensional extension of
Proposition 4.3, we have

sizeF1,2(P), sizeF2,3/2(P), sizeF3,3/2(P) � 1.

Let P
(1)
n , P

(2)
n and P

(3)
n be the collections provided by Proposition 8.7,

relative to sizeF1,2(P), sizeF2,3/2(P) and sizeF3,3/2(P), respectively.

Define Pn1,n2,n3 = P
(1)
n1 ∩P

(2)
n2 ∩P

(3)
n3 . Note that

(36)∑
P∈P

ΛP (F1, F2, F3) =
∑

2−n1 ,2−n2 ,2−n3�1

∑
P∈Pn1,n2,n3

ΛP (F1, F2, F3).

Reasoning as in the proof of Theorem 2.6 from Section 6, we organize
Pn1,n2,n3 as a forest in three different ways, with the L1 norm of
the counting function of the tops bounded by 22n1 |E1|, 22n2 |E2| and
22n3 |E3|, respectively.
Now pick 1 > α > max{2/p2, 2/p3}. Using (36) and (32) with

s2 = s3 = 2/α, along with Lemma 8.6, we get∣∣∣∣ ∑
P∈P

ΛP (F1, F2, F3)

∣∣∣∣ = ∑
2−n1 ,2−n2 ,2−n3�1

2−n1−n2α−n3α

×min(22n1 |E1|, 22n2 |E2|, 22n3 |E3|)
≤

∑
2−n1 ,2−n2 ,2−n3�1

2−n1−n2α−n3α(22n1 |E1|)1/p1

× (22n2 |E2|)1/p2 (22n3 |E3|)1/p3

� |E1|1/p1 |E2|1/p2 |E3|1/p3 .

The argument is now complete.
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