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ABSTRACT. Each Cantor measure µ with scaling factor
1
2n

has at least one associated orthonormal basis of exponen-

tial functions (ONB) for L2(µ). In the particular case where

the scaling constant for the Cantor measure is 1
4

and two

specific ONBs are selected for L2(µ1/4), there is a unitary
operator U defined by mapping one ONB to the other. This
paper focuses on the case in which one ONB Γ is the original
Jorgensen-Pedersen ONB for the Cantor measure µ1/4 and
the other ONB is 5Γ. The main theorem of the paper states
that the corresponding operator U is ergodic in the sense
that only the constant functions are fixed by U .

1. Introduction.

The factor 4 is a gift of God (or of the other party).
—John von Neumann to Edward Teller, 1946

Infinite Bernoulli convolutions are special cases of affine self-similarity
systems, also called iterated function systems (IFSs). Thus, IFS mea-
sures generalize distributions of Bernoulli convolutions; Bernoulli con-
volutions in turn generalize Cantor measures. For over a decade, it has
been known that a subclass of IFS measures µ have associated Fourier
bases for L2(µ) [27]. If L2(µ) does have a Fourier ONB with Fourier
frequencies Γ ⊂ R, we then say that (µ,Γ) is a spectral pair. In the
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case that a set of Fourier frequencies exist for L2(µ), we say that Γ is a
spectrum for µ; we say µ is a spectral measure. The goal of this paper
is to examine the operator U which scales one spectrum into another
spectrum. We observe how the intrinsic scaling (by 4) which arises in
our set Γ interacts with the spectral scaling (to 5Γ) that defines U . We
call U an operator-fractal due to its self-similarity, which is described
in detail in [26].

The self-similarity property makes the spectrum of U interesting.
The main theorem in this paper is Theorem 4.6, which states that
the only functions which are fixed by U are the constant functions—in
other words, U is an ergodic operator in the sense of Halmos [19].

The spectral connection to scaling factors begun in [27] can be
highly non-intuitive. For example, when the scaling factor is 1

3—that
is, µ 1

3
is the Cantor-Bernoulli measure for the omitted third Cantor

set construction—there is no Fourier basis. In other words, there is no
Fourier series representation in L2(µ1/3). In fact, there can be at most

two orthogonal Fourier frequencies in L2(µ1/3) [27]. But if we modify

the Cantor-Bernoulli construction, using scale 1
4 , as opposed to 1

3 , then

the authors of [27] proved that a Fourier basis does exist in L2(µ1/4).
They showed much more: each of the Cantor-Bernoulli measures µ1/2n

with n ∈ N has a Fourier basis. For each of these measures, there is a
canonical choice for a Fourier spectrum Γ1/2n.

We consider here a particular additional symmetry relation for
the subclass of Cantor-Bernoulli measures that form spectral pairs.
Starting with a spectral pair (µ,Γ), we consider an action which scales
the set Γ. In the special case of µ1/4, we scale Γ by 5. Scaling by 5

induces a natural unitary operator U in L2(µ1/4), and we study the
spectral-theoretic properties of U .

1.1. Bernoulli convolution measures. The Bernoulli convolution
measure with scaling factor λ, denoted µλ, can be constructed with an
iterated function system (IFS) of two affine maps

(1) τ+(x) = λ(x+ 1) and τ−(x) = λ(x− 1).

By Banach’s fixed point theorem, there exists a compact subset of the
line, denoted Xλ and called the attractor of the IFS, which satisfies the
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invariance property

(2) Xλ = τ+(Xλ) ∪ τ−(Xλ).

Hutchinson proved that there exists a unique measure µλ corresponding
to the IFS (1), which is supported on Xλ and is invariant in the sense
that

(3) µλ =
1

2

(
µλ ◦ τ−1

+

)
+

1

2

(
µλ ◦ τ−1

−
)
,

[21, Theorems 3.3(3) and 4.4(1)]. The property in equation (3) defines
the measure µλ and can be used to compute its Fourier transform. The
Fourier transform of µλ is a Riesz-type product:

(4) µ̂λ(t) =
∞∏
k=1

cos(2πλkt).

Bernoulli convolution measures have been studied in various settings,
long before IFS theory was developed. Some of the earliest papers on
Bernoulli convolution measures date to the 1930s and work with an
infinite convolution definition for µλ; they include [12, 22, 29, 39].
The history of Bernoulli convolutions up until 1998 is detailed in [36].

1.2. Notation and terminology. We will use the notation et(·) to
denote the complex exponential function e2πit(·). Given a set Γ ⊆ R,
we denote by E(Γ) the set {eγ : γ ∈ Γ}. Throughout, we fix λ = 1

4 and
work exclusively with the Bernoulli convolution measure µ1/4, which
we often will denote just as µ. We will work with the set Γ from [27]:

Γ =

{ m∑
i=0

ai4
i : ai ∈ {0, 1},m finite

}
= {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, . . .}.

(5)

Jorgensen and Pedersen showed that Γ is a spectrum for µ—that is,
the set of exponential functions E(Γ) is an orthonormal basis for L2(µ)
[27, Theorem 5.6 and Corollary 5.9].

It is known that other scaling symmetries are possible in L2(µ);
examples are given in [8, 25, 33]. In particular, Dutkay and Jorgensen
have shown that the ONB property is preserved under scaling by powers
of 5—that is, for each n ∈ N, each scaled set 5nΓ is also a spectrum
for a Fourier basis for L2(µ) [8, Proposition 5.1]. This result may be



1884 JORGENSEN, KORNELSON AND SHUMAN

counterintuitive since the resulting scaled set (6) of Fourier frequencies
appears quite “thin.” In this paper, we will restrict our attention to
the case n = 1:

(6) 5Γ = {0, 5, 20, 25, 80, 85, 100, 105, 320, . . .}.

The 5–scaling property for the ONB (5) induces a unitary operator
U in L2(µ), as given in the next definition.

Definition 1.1. Define the operator U on the orthonormal basis E(Γ)
by

(7) U(eγ) := e5γ for all γ ∈ Γ.

In [26], we gave operators such as U the name operator-fractals due
to the self-similarity they exhibit. Due to this self-similar structure,
the spectral representation and the spectral resolution for U are sur-
prisingly subtle. Despite this, we are able to establish ergodic and
spectral-theoretic properties of the unitary operator U .

1.3. Organization of the paper. We begin in Section 1 with a back-
ground discussion of Fourier bases on Cantor measures and motivate
our interest in the operator-fractal U . In Section 2, we list some of the
standard results from spectral theory which will be used later in the
paper. Section 3 presents some of the unique properties of the unitary
operator U . Our main theorem—Theorem 4.6—demonstrates that the
only functions fixed by U are constant functions. In other words, U is
an ergodic operator. Theorem 4.6 is proved in Section 4. In Section 5,
we explore various aspects of the relationships of the scaling factors
(×4) and (×5) inherent in the operator U .

1.4. Recent developments and associated literature. The paper
which started much of the work considered here is [27]. Since then,
a large literature on duality and spectral theory for affine dynamical
systems has evolved. Here, we point out just a few of the most recent
developments in the field. First, the papers of Li study orthogonal
exponential functions with respect to invariant measures [30, 31, 32];
the papers [20, 24, 28, 42] also fit into this framework. Dutkay,
Jorgensen and their coauthors have a range of work pertaining to
Fourier duality: [4, 5, 7, 9, 10, 11]. Spectral measures for affine IFSs
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are also studied in the works [13, 14, 34]. The relationship of wavelets
and frames to self-similar measures is explored in [2, 6]. The works of
Gabardo and his coauthors are also highly relevant: [15, 16, 17, 41].

2. The spectral theorem and some of its consequences. Start-
ing with the spectral pair (µ,Γ), where Γ is given in (5), we study the
unitary operator U in L2(µ) corresponding to a scaling of Γ by 5 in
detail. In order to understand U , we ask for information about its
spectrum. For reference, we list here some results from spectral the-
ory which will be used in the later proofs. Details can be found in [1,
Chapters IX and X], Dunford and Schwartz [3, Chapter X] and Nelson
[35, Chapter 6].

Theorem 2.1. (The spectral theorem for unitary operators) [1, The-
orem 10.10, page 200]. Let U be a unitary operator on H. Then there
exists a unique Borel p.v.m. EU on the Borel space (T,B) such that

(8) U =

∫
σ(U)

z dEU(z ).

The measure EU is supported on the spectrum of U , σ(U) ⊆ T.

Next, we recall the functional calculus associated with the spectral
theorem. Given a Borel function ϕ on T, we can study the associated
operator ϕ(U). The construction of ϕ(U) begins with the case where
ϕ is a polynomial (with both positive and negative powers) and then
extends to continuous functions and Borel functions. The next lemma,
which holds for EU -essentially bounded functions ϕ : T → C, can
be extended to suitable Borel functions ϕ by Lemma 2.4. See both
[1, Theorem 10.9] and [3, Chapter X.2], especially Corollaries X.2.8
and X.2.9 and the material between the two corollaries, for more
information about the following lemma.

Lemma 2.2. Suppose U is a unitary operator on the Hilbert space H
with associated p.v.m. EU, so that

U =

∫
σ(U)

z EU(dz).
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Suppose ϕ, ϕ1, ϕ2 : T → C are EU-essentially bounded, Borel-measurable
functions. Define

(9) πU (ϕ) = ϕ(U) =

∫
σ(U)

ϕ(z)EU(dz).

Then

(i) [ϕ(U)]∗ = ϕ(U). In other words, πU is a ∗-homomorphism.
(ii) πU (ϕ1ϕ2) = πU (ϕ1)πU (ϕ2), and as a result, the operators

ϕ1(U) and ϕ2(U) commute.
(iii) If ϕ(z) ≡ 1, then ϕ(U) is the identity operator.
(iv) The operator ϕ(U) is bounded.

We note that the converse of (iv) is true as well: if ϕ(U) is bounded,
then the function ϕ is EU-essentially bounded. Finally, Lemma 2.2 is
also true for normal operators N , with T being replaced by C.

For each vector v ∈ H, there exists a real-valued Borel measure mv

supported on T such that

(10) mv(A) = ⟨EU(A)v, v⟩H,

where EU(A) is the projection
∫
σ(U)

χA(z)E
U(dz). When v is a unit

vector, note that mv is a probability measure [38, (2), page 302].

There is an important isometric connection between operators of the
form ϕ(U) and the measures mv, which we state as the next lemma.

Lemma 2.3. [3, Corollary X.2.9]. Suppose U is a unitary operator
on the Hilbert space H with associated p.v.m. EU. Let mv be the Borel
measure on H defined in equation (10). Suppose ϕ : T → C is an
EU-essentially bounded, Borel-measurable function. Then

(11) ∥ϕ(U)v∥2H =

∫
σ(U)

|ϕ(z)|2 dmv (z ).

For any mv-integrable function ϕ on T,∫
T
ϕ(z) dmv(z) =

⟨∫
T
ϕ(z)EU(dz)v, v

⟩
H

= ⟨ϕ(U)v, v⟩H.
(12)
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We noted earlier that ϕ(U) is a bounded operator if and only if
ϕ is EU-essentially bounded. However, ϕ(U) can be a well-defined
unbounded operator for some unbounded Borel functions ϕ : T → C. In
the case that ϕ(U) is an unbounded operator, we need to be especially
vigilant about the domain of ϕ(U). When ϕ(U) is a well-defined
unbounded operator, the usual formulas discussed in the bounded case
do, in fact, carry over. Moreover, it is also known that the domain of
the operator ϕ(U) is determined by the measures mv, as described in
Lemma 2.4.

Lemma 2.4. Suppose ϕ is a Borel measurable function on T and N
is a normal operator on the Hilbert space H. Let ϕ(N) be the operator
defined by

(13) ϕ(N) =

∫
T
ϕ(z)EN(dz).

Then ϕ(N) is a densely defined operator, and v ∈ dom(ϕ(N )) if and
only if ϕ ∈ L2(mv). In this case, the isometry in (11) holds:

(14) ∥ϕ(N)v∥2 =

∫
T
|ϕ(z)|2 dmv(z) = ∥ϕ∥2L2(mv)

.

From Lemma 2.4, the results of Lemmas 2.2 and 2.3 can be extended
to suitable Borel (not necessarily essentially bounded) functions ϕ on
T.

3. The unitary operator U . In this section we present more
details about the unitary operator U on H = L2(µ) defined by Ueγ =
e5γ for all γ ∈ Γ. We observe that U has a number of intriguing
properties which make it of interest from the spectral theoretic point
of view.

3.1. Properties of U . Given the definition of U on exponential
functions, one might ask whether there is a straightforward way to
compute powers of U . Equations (5) and (6) show that 5Γ is not
contained in Γ, though, so it would be surprising if U behaved well
with respect to iteration—and in fact, it does not.

Proposition 3.1. The formula Ukeγ = e5kγ does not hold in general.
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Proof. It is sufficient to prove inequality for a specific example:
consider the case γ = 1 and k = 3. We have U(e1) = e5, and since
5 ∈ Γ, U2(e1) = e25. However, 25 /∈ Γ, so we expand e25 in terms of
E(Γ) to compute U(e25):

U(e25) = U

(∑
γ∈Γ

µ̂1/4(25− γ)eγ

)
=

∑
γ∈Γ

µ̂1/4(25− γ)e5γ

=
∑
γ∈Γ

µ̂1/4(25− γ)

(∑
ξ∈Γ

µ̂1/4(5γ − ξ)eξ

)
=

∑
ξ,γ∈Γ

µ̂1/4(25− γ)µ̂1/4(5γ − ξ)eξ.

(15)

On the other hand,

(16) e125 =
∑
ξ∈Γ

µ̂1/4(125− ξ)eξ.

Now compare the ξ = 5 term in equations (15) and (16). In equation
(16), the coefficient of e5 is µ̂1/4(120) = µ̂1/4(30) ≈ 0.50. In equation
(15), the coefficient of e5 is∑

γ∈Γ

µ̂1/4(25− γ)µ̂1/4(5γ − 5) ≈ 0.58.

The approximations were made with 512 terms of Γ(1/4) in Mathemat-
ica. �

Corollary 3.2. U is not implemented by a transformation of the form
U(f) = f ◦ τ where τ(x) = 5x (mod 1).

In Section 5, we will further see that the operator U cannot be
spatially implemented by any point transformation. The distinction
between the behavior of unitary operators which are implemented by
such a transformation τ and the behavior of the unitary operator U
is one of the motivations for why we study U in detail. Theorem 4.6
states that the only functions fixed by U are the constant functions.
While our unitary operator U is not spatially implemented, we can
still form Cesaro means of its iterations, and one of the corollaries of
Theorem 4.6 is an application of the von Neumann ergodic theorem in
Section 5.
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Another motivation to study this particular operator U comes from
the relationship U has with the representation of the Cuntz algebra O2,
which is realized by the two operators

S0(eγ) = e4γ and S1(eγ) = e4γ+1

defined on the ONB E(Γ). The operator U commutes with S0 but
does not commute with S1. The fact that U does not commute with
S1 makes its spectral theory harder to understand, but the commuting
with S0 gives us a foothold into its spectral theory. The relationship
between U and operators forming the representation of O2 is studied
in detail in [26].

We make a preliminary observation about how U scales elements of
the ONB E(Γ).

Lemma 3.3. Suppose γ ∈ Γ and λ ∈ T are such that

(17) Ueγ = λeγ ∈ L2(µ1/4).

Then γ = 0 and λ = 1.

Proof. Suppose γ ∈ Γ\{0}. If Ueγ = λeγ , then

0 = ∥Ueγ − λeγ∥2L2(µ)

= ∥e5γ − λeγ∥2L2(µ)

= ∥e4γ − λe0∥2L2(µ) = 2

(18)

since e0 and e4γ are distinct elements of the ONB E(Γ) and |λ| = 1.
Therefore, we have a contradiction. �

Remark 1. We note here the special property that the scaling factor
5 plays in the argument above, in particular that (5 − 1)eγ is always
also an element of Γ. This sets 5 apart from many other odd scale
factors. Lemma 3.3 replicated for another odd integer p requires both
that pΓ also be a spectrum for µ (which is not always the case and
is not generally easy to check) and that p be of the form p = 4k + 1.
Thus, we have chosen to concentrate on the generic case p = 5.

3.2. Cyclic subspaces of U . A key component in the proof of
Theorem 4.6 is the correspondence between the U -cyclic subspaces
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of L2(µ) and the Hilbert spaces L2(mv) with respect to the scalar
measures generated by U . We now define the cyclic subspaces of the
unitary operator U and present this correspondence with the spaces
L2(mv). For more details about the structure of the cyclic subspaces,
see [35, 37].

Definition 3.4. Let v ∈ L2(µ). Then

(19) H(v) = spanL2(µ){U kv | k ∈ Z}.

In other words, if ϕ(z) is the polynomial ϕ(z) =
∑N

k=−N ckz
k where

ck ∈ C, k = −N, . . . , N and z ∈ T, then the vectors ϕ(U)v are dense
in H(v).

The U -cyclic subspace H(v) is the smallest closed subspace which
contains v and is invariant under U and U∗ [35]. There is also another
characterization of the cyclic subspaces which directly connects H(v)
to the space L2(mv). Recall that ϕ ∈ L2(mv) if and only if v belongs
to the domain of ϕ(U), by Lemma 2.4. The map from ϕ ∈ L2(mv) to
the vector ϕ(U)v ∈ L2(µ) is an isometry, and in fact, is bijective [37,
Thm. 2.1, Cor. 2.5].

Theorem 3.5. Given v ∈ L2(µ) with ∥v∥ = 1, the map ϕ 7→ ϕ(U)v
is an isometric isomorphism between the Hilbert space L2(mv) and the
cyclic subspace H(v).

Every element w of the cyclic subspaceH(v) can therefore be written
uniquely in the form w = ψ(U)v. Further, given w ∈ H(v), we also
know the corresponding function ψ given Theorem 3.5.

Theorem 3.6. [37, Corollary 2.5] Let w ∈ H(v), and let ψ ∈ L2(mv)
be such that w = ψ(U)v. Then

(20) ψ =

√
dmw

dmv
.

4. Spectral properties of U . In this section, we prove that the
unitary operator U on L2(µ) defined from the 5-scaled ONB 5Γ acts
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ergodically, with ergodicity defined relative to µ in the sense of Halmos
[19]. Specifically, only the constant functions are invariant under U .

Lemma 4.1. Let U be a unitary operator on a Hilbert space H, and
let v ∈ H with ∥v∥ = 1. The spectral measure mv with respect to U and
v is a Dirac mass supported at 1 if and only if Uv = v.

Proof. (⇒). Assume mv = δ1, and consider the norm ∥Uv − v∥2.
By separating the inner product, we get

∥v − Uv∥2 =
⟨
v − Uv, v − Uv

⟩
= ∥Uv∥2 + ∥v∥2 − ⟨v, Uv⟩ − ⟨v, Uv⟩.

(21)

Since U is unitary and ∥v∥ = 1, we have

(22) ∥v − Uv∥2 = 2− ⟨v, Uv⟩ − ⟨v, Uv⟩.

Now we take advantage of the measure mv:

∥v − Uv∥2 = 2− ⟨v, Uv⟩ − ⟨v, Uv⟩

= 2−
∫
z dmv(z)−

∫
z dmv(z)

= 2−
∫
z dδ1(z)−

∫
z dδ1(z)

= 2− 1− 1 = 0.

(23)

Therefore, ∥v − Uv∥ = 0, hence v = Uv.

(⇐). Suppose Uv = v. For any f ∈ L2(mv),

(24) f(U) =

∫
f(z)EU (dz).

Since Uv = v, we find that

(25) f(U)v = f(1)v.

To see this, start with a polynomial: if f(U) =
∑ℓ

k=−ℓ ckU
k, then

f(U)v =

( ℓ∑
k=−ℓ

ckU
k

)
v =

ℓ∑
k=−ℓ

ckU
kv =

( ℓ∑
k=−ℓ

ck

)
v = f(1)v.
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We then use the polynomials as the starting point for approximating
all other functions in L2(mv). In particular, let f be a characteristic
function χA for a Borel subset A of the circle T. The right hand side
above is χA(1). Then by equation (25),

mv(A) = ⟨χA(1)v, v⟩ =
{
1 1 ∈ A
0 1 /∈ A.

In other words, mv is the Dirac mass δ1. �

Corollary 4.2. Let U be unitary on H, and suppose v ∈ H with
∥v∥ = 1. Then Uv = λv for some λ ∈ T if and only if mv is a
Dirac mass supported at λ.

Proof. Replace “1” in the proof above by “λ”. �

Assume now that v is a non-constant function which is fixed by U .
By Lemma 3.3, v cannot actually be one of the ONB elements eγ for
any γ ∈ Γ\{0}. We next consider whether v can belong to a cyclic
subspace generated by one of the eγ functions.

Proposition 4.3. Let U : eγ 7→ e5γ for all γ ∈ Γ. Suppose v ∈ L2(µ)
is a nonconstant function with ∥v∥ = 1. Choose any γ ∈ Γ\{0} such
that ⟨v, eγ⟩ ̸= 0. If Uv = v, then v is not in the U -cyclic subspace
H(eγ) generated by eγ .

Proof. By Lemma 3.3, we know v ̸= eγ ; hence, 0 < |⟨v, eγ⟩| < 1.
Assume that v ∈ H(eγ)—i.e., by Theorem 3.5,

(26) v = f(U)eγ ,

for a unique f ∈ L2(meγ ). Since Uv = v, we have Uf(U)eγ =
f(U)eγ . Therefore, using the isometric isomorphism between H(eγ)
and L2(meγ ), we have

(27) zf(z) = f(z), or f(z)(z − 1) = 0

almost everywhere meγ on T. In other words, since U fixes v, we know
that f is fixed by multiplication by z.

We know that f is a nonzero function from L2(meγ ), so f(z) must
be nonzero at z = 1, and f is 0 almost everywhere meγ on T \ {1}.
This also implies that meγ ({1}) > 0.
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Claim 4.4. ([37, Corollary 2.5]). The measures meγ and mv satisfy :

(28) |f(z)|2dmeγ (z) = dmv(z) = dδ1(z).

To verify the claim, let ϕ ∈ C(T). Then∫
T
|f(z)|2ϕ(z)dmeγ (z) = ⟨f(U)f(U)ϕ(U)eγ , eγ⟩L2(µ)

= ⟨ϕ(U)f(U)eγ , f(U)eγ⟩L2(µ)

= ⟨ϕ(U)v, v⟩L2(µ)

=

∫
ϕ(z) dmv(z).

(29)

Then, by Lemma 4.1, mv = δ1.

Since |f |2meγ = δ1 is a probability measure supported at 1 and f is
zero almost everywhere meγ except at z = 1, we know that

(30)

∫
T
f(z) dmeγ = f(1),

and

(31) |f(1)|2 = 1.

Next, let k(z) = f(z)− f(1) for z ∈ T.

(32) ∥f(U)eγ − f(1)eγ∥2L2(µ)) = ∥k(U)eγ∥2L2(µ) = ∥k(z)∥2L2(meγ )

Now, we look at the inner product defining ∥k(z)∥2L2(meγ ):∫
T
k(z)k(z) dmeγ

=

∫
T
|f(z)|2dmeγ +

∫
T
|f(1)|2dmeγ − 2Ref(1)

∫
T
f(z) dmeγ

= 1︸︷︷︸
Claim

+ 1︸︷︷︸
Eqn (31)

− 2Ref(1)f(1)︸ ︷︷ ︸
Eqn (30)

= 0.

(33)

This proves that, if we assume Uv = v and v ∈ H(eγ), then we must
have

v = f(1)eγ .
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But U cannot fix any scalar multiple of an exponential function for
γ ̸= 0 by Lemma 3.3. Therefore, v cannot belong to any cyclic subspace
H(eγ) for γ ∈ Γ \ {0}. �

Lemma 4.5. Suppose U is a unitary operator on L2(µ). Suppose
v, w ∈ L2(µ). If v ⊥ H(w), then H(v) ⊥ H(w).

Proof. Let f ∈ L2(mw), and let x = f(U)w. Let k ∈ Z. Consider
the inner product

(34) ⟨Ukv, f(U)w⟩ = ⟨v, U−kf(U)w⟩.

Since f ∈ L2(mw) and mw is supported on the circle T, we also have
z−kf(z) ∈ L2(mw). Theorem 3.5 then gives U−kf(U)w ∈ H(w). Since
v is orthogonal to H(w),

(35) ⟨Ukv, f(U)w⟩ = ⟨v, U−kf(U)w⟩ = 0.

By linearity, every vector of the form g(U)v where g has the form

(36) g(z) =

k∑
n=−k

ckz
k

is orthogonal to H(w). Since the functions g in equation (36) are dense
in L2(mv), we can conclude that H(v) ⊥ H(w). �

We remark here that, given v ̸= 0, we can define a real-valued
probability measure on T with m̃v = mv/∥v∥2, where

(37) m̃v(A) =
mv

∥v∥2
(A) =

1

∥v∥2
⟨EU (A)v, v⟩

for any Borel set A ⊆ T.
We now come to our main result, in which we prove that in fact only

the constant functions are fixed by U .

Theorem 4.6. Let U : eγ 7→ e5γ for all γ ∈ Γ. If Uv = v, with
∥v∥ = 1, then v = αe0 for some α ∈ T, i.e., U is an ergodic operator.

Proof. Assume there exists v ∈ L2(µ)⊖ span {e0} such that Uv = v
and ∥v∥ = 1. Choose γ ∈ Γ\{0} such that ⟨v, eγ⟩L2(µ) ̸= 0. Let Q be
the orthogonal projection onto H(eγ).
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Let v = v1 + v2 = Qv + v2, where v2 is orthogonal to v1. By
Proposition 4.3, we know both v1 and v2 are nonzero. Because v2 is
orthogonal to H(eγ), H(v2) ⊥ H(eγ) by Lemma 4.5.

Let A be a Borel set in T. Recall that EU is the projection-valued
measure associated to U via the spectral theorem. We compute mv(A):

mv(A) = ⟨EU (A)v, v⟩ = ⟨EU (A)(v1 + v2), v1 + v2⟩
= ⟨EU (A)v1, v1⟩+ ⟨EU (A)v1, v2⟩
+ ⟨EU (A)v2, v1⟩+ ⟨EU (A)v2, v2⟩.

(38)

Now, EU (A)v1 is an element of H(v1) because

EU (A) =

∫
T
χA(z) dE

U (z) = χA(U).

Since v1 ∈ H(eγ), we can write v1 = f(U)eγ for f a function in
L2(meγ ). Then,

⟨EU (A)v1, v2⟩ = ⟨χA(U)f(U)eγ , v2⟩.

The product χA·f is again a function in L2(meγ ), so Theorem 3.5 shows

that EUv1 ∈ H(eγ). Thus we have that the term ⟨EU (A)v1, v2⟩ = 0
since v2 is orthogonal to H(eγ). Similarly,

⟨EU (A)v2, v1⟩ = ⟨v2, EU (A)v1⟩ = ⟨v2, χA(U)f(U)eγ⟩ = 0.

This gives, for any Borel subset A ⊆ T,

mv(A) = ⟨EU (A)v1, v1⟩+ ⟨EU (A)v2, v2⟩
= mv1(A) +mv2

(A)

= ∥v1∥2m̃v1(A) + ∥v2∥2m̃v2(A).

We have shown in the above that mv is a convex combination of the
probability measures m̃v1 and m̃v2 . The coefficients are both nonzero
since the vectors v1 and v2 are both nonzero. But this contradicts
the fact from Lemma 4.1 that mv = δ1 since Dirac measures are
extreme points in the convex space of probability measures. With this
contradiction, we find that v must be a unit vector in the span of the
vector e0. Therefore, the operator U is ergodic. �



1896 JORGENSEN, KORNELSON AND SHUMAN

5. The mixed scales 4 and 5. In this section, we study the two
different scales ×4 and ×5—scaling by 4 and scaling by 5. We have
devoted most of the paper to the scale ×5 because ×5 maps one ONB
of L2(µ) to another. However, the “natural” scale inherent in L2(µ)
is ×4. For example, if τn : [0, 1] → [0, 1] is defined by τn(x) = nx
(mod 1), then

µ ◦ τ−1
4 = µ.

We will see that it is difficult to obtain positive results for the corre-
sponding measure

µ ◦ τ−1
5 .

Let Un : L2(µ) → L2(µ) be defined on the ONB E(Γ) by

(39) Un(eγ) = enγ .

As we have seen, U5 is ergodic (Theorem 4.6), and U4 is an isometry
but not unitary.

First, we will study the spatial implementation of U = U5 and
U4. Then we compare ergodic theorems for the operators U5 and U4.
Finally, we compare the spectral measures from U5 to the measure µ
itself. Our results about the scaling pair (×4,×5) fit into the setting of
the paper [23], which explores occurrence and non-occurrence of mixed
scaling in ergodic theory.

5.1. Spatial implementation. Recall from the discussion in subsec-
tion 3.1, equations (15) and (16), that although it is tempting to think
that Uk

5 eγ = e5kγ , this equation does not hold in general. However,
such an equation certainly holds for U4.

Definition 5.1. We say that the operator T is spatially implemented
if there exists a point transformation τ : [0, 1] → [0, 1] such that
Tf = f ◦ τ .

Proposition 5.2. The operator U5 : L2(µ) → L2(µ) is not spatially
implemented.

Proof. Suppose there were such a transformation τ : [0, 1] → [0, 1]
such that U5f = f ◦ τ . Then U5(fg) = U5(f)U5(g), and as a specific
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consequence,

U5(e1 · e1) = U5(e1) · U5(e1) = e5 · e5 = e10

= µ̂(10)e0 +
∑
ξ ̸=0

µ̂(10− ξ)eξ.(40)

On the other hand, e1 · e1 = e2, and

U5(e2) =
∑
γ∈Γ

µ̂(2− γ)e5γ =
∑
γ,ξ∈Γ

µ̂(2− γ)µ̂(5− ξ)eξ

=
∑
γ∈Γ

µ̂(2− γ)µ̂(5)e0 +
∑
γ∈Γ
ξ ̸=0

µ̂(2− γ)µ̂(5− ξ)eξ

= 0 e0 +
∑
γ∈Γ
ξ ̸=0

µ̂(2− γ)µ̂(5− ξ)eξ.

(41)

By comparing the constant terms in equations (40) and (41), we see that
the two expressions cannot be the same, since µ̂(10) ̸= 0. Therefore U5

is not spatially implemented. �

The operator U4, on the other hand, is readily seen to be spatially
implemented by the map τ4(x) = 4x (mod 1).

5.2. Averaging. With Theorem 4.6 in hand, we can study averaging
with respect to U5 and U4. Suppose T : H → H is a bounded operator,
and

Q = {f ∈ H : Tf = f}.

Let PQ be the orthogonal projection onto Q. The ergodic theorem of
von Neumann states that

(42) lim
N→∞

1

N + 1

N∑
k=0

T kf = PQ(f),

[40]. In the special case of U5 : L2(µ) → L2(µ), the subspace Q
is the one-dimensional space spanned by the constant function e0 by
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Figure 1. The graph of τ5 on [0, 1] × [0, 1] sits above the first two ap-
proximations of the Cantor set X1/4. The set (2/3, 1] is pulled back by two

branches of τ−1
5 . The left-most branch of τ−1

5 pulls [2/3, 1) back to a set on
the horizontal axis which contains a scaled copy of X1/4.

Theorem 4.6. Therefore,

(43) lim
N→∞

1

N + 1

N∑
k=0

Uk
5 f = ⟨f, e0⟩e0 =

(∫
f(x) dµ1/4

)
e0.

If we think of the Cesaro mean of the iterations of U as a “time average”
and think of the integral with respect to the measure µ as a “space
average,” then we have now shown that the time average applied to
functions in L2(µ) equals the space average.

By contrast, we note that the isometry U4(eγ) := e4γ is spatially
implemented and that it is induced by τ4(x) = 4x (mod 1). We also
know that µ is invariant under τ4. Because U4 can be realized as a
shift on the underlying digit space, it is not hard to see that the only
functions fixed by U4 are also the constant functions:

(44) lim
N→∞

1

N + 1

N∑
k=0

Uk
4 f = ⟨f, e0⟩e0 =

(∫
f(x) dµ1/4

)
e0.
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Again, the time average applied to U4 on the function f equals the
same space average of f . But the result for U5 is much deeper than
that of U4. For background references on ergodic transformations, see
[19, 40], and for references on multiplicity theory, see [18, 35].

There is no clean relation between the two measures µ and µ ◦ τ−1
5 .

Proposition 5.3. The measures µ and µ ◦ τ−1
5 are not equivalent.

Proof. Set A = (2/3, 1]. Then µ(A) = 0, since A is not contained
in the Cantor set X1/4, but µ ◦ τ−1

5 ((A) > 1/8, as demonstrated in

Figure 1. Therefore, µ ◦ τ−1
5 is not absolutely continuous with respect

to µ. Neither are the two measures concentrated on disjoint sets: both
measures assign positive values to the set [0, 1/2]. �
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