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NON-STABLE K-THEORY FOR
LEAVITT PATH ALGEBRAS

DAMON HAY, MARISSA LOVING, MARTIN MONTGOMERY,

EFREN RUIZ AND KATHERINE TODD

ABSTRACT. We compute the monoid V[LK(E)] of iso-
morphism classes of finitely generated projective modules of
a Leavitt path algebra over an arbitrary directed graph. Our
result generalizes the result of Ara, Moreno and Pardo in
which they computed the monoid V[LK(E)] of a Leavitt
path algebra over a countable row-finite directed graph.

1. Introduction. In [1], Abrams and Aranda Pino introduced a
class of algebras over a field K, which they constructed from directed
graphs called Leavitt path algebras. The definition in [1] was for count-
able row-finite directed graphs, but they later extended the definition
in [2] to all countable directed graphs. Goodearl in [17] extended the
notion of Leavitt path algebras LK(E) to all (possibly uncountable) di-
rected graphs E. Leavitt path algebras are generalizations of the Leav-
itt algebras L(1, n) of [18] and also contain many interesting classes of
algebras (see [1, 2]). Moreover, there are nice relationships between
the class of Leavitt path algebras and their analytic counterparts, graph
C∗-algebras (see [19] for the definition of graph C∗-algebras). In par-
ticular, Tomforde showed in [22] that, for any countable directed graph
E, we have that LC(E) is ∗-isomorphic to a dense sub-algebra of C∗(E).
Also, Abrams and Tomforde showed in [3] that, for countable directed
graphs E and F with no cycles, LC(E) and LC(F ) are Morita equivalent
if and only if C∗(E) and C∗(F ) are strongly Morita equivalent.

The monoid V[A] of a C∗-algebra A or a K-algebra has played
an extremely important role in the theories of both structures. For
example, V[A] can be used to classify direct limits of finite dimensional
C∗-algebras or classify direct limits of finite dimensional C-algebras
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(see [14]). Structural properties of the algebra and its projective
modules are reflected in the structure of V[A]. This machinery has
become known as non-stable K-theory (see [4, 5, 8]). Other important
properties of A such as the lattice of (closed) two-sided ideals of A are
encoded in V[A] (see [10, Proposition IV.5.1], [15, Theorem 2.1] and
[6, Theorem 5.3]).

In [6], Ara, Moreno and Pardo computed the monoid V[LK(E)]
of isomorphism classes of finitely generated projective modules over
LK(E) associated with a countable row-finite directed graph E. They
showed that V[LK(E)] is naturally isomorphic to a universal abelian
monoid ME . The monoid ME is isomorphic to FE/ ∼, where FE is
the free abelian monoid on the set of vertices of E, and ∼ is a certain
congruence on FE defined by E. A consequence of their result is that
the natural inclusion LC(E) → C∗(E) induces a monoid isomorphism
V[LC(E)] → V[C∗(E)]. As a result, there is a natural isomorphism
between the monoidME and V[C∗(E)]. Their result, together with the
K-theory computation of C∗(E) given in [20], completely describes the
ordered K-theory of C∗(E) for a countable row-finite directed graph
E. Another consequence of this isomorphism is that C∗(E) has stable
weak cancellation or, equivalently, C∗(E) is separative. The fourth-
named author, together with Eilers and Restorff in [13] used this fact
to give a K-theoretical description of when an extension of a graph
C∗-algebra is a full extension. Also, together with Arklint, the fourth-
named author in [7] used the monoid isomorphism ME

∼= V[C∗(E)] to
prove permanence properties for graph C∗-algebras associated to finite
graphs.

The objective of this paper is to compute V[LK(E)] for an arbitrary
directed graph E. A consequence of this computation is that the
natural inclusion LC(E) → C∗(E) induces a monoid isomorphism
V[LC(E)] → V[C∗(E)] for every countable directed graph E. Following
Ara, Moreno and Pardo in [6], we define a universal abelian monoid
ME and prove that ME is naturally isomorphic to V[LK(E)]. The
monoid ME is defined as follows. Let E0 be the set of vertices of E,
and let S be the set consisting of av,S , one for each infinite emitter
v ∈ E0 and finite non-empty subset S of edges with source v. Then
ME = FE0∪S/ ∼, where FE0∪S is the free abelian monoid on E0 ∪ S
and ∼ is a certain congruence on FE0∪S defined by E. In the case that
E is row-finite, we have that ME = ME . The monoid isomorphism
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ME
∼= V[C∗(E)] can be used to reprove the results in [21], where the

ordered K0-group of C∗(E) was computed for a countable directed
graph E. The authors have recently been informed by Eilers and
Katsura that they have independently proved Theorem 3.4 in their
study of semi-projective graph C∗-algebras [12]. We expect that the
monoid isomorphisms ME

∼= V[C∗(E)] ∼= V[LK(E)] can be used to
study other structural properties of C∗(E) and LK(E).

The main result of the paper, that ME is naturally isomorphic to
V[LE(E)] for an arbitrary directed graph E, is proved in two steps.
The first step is to prove ME is naturally isomorphic to V[LK(E)]
in the case that E is a countable directed graph. This is done by
reducing the problem to the row-finite case using the Drinen-Tomforde
disingularization of E. The next step is to use the fact that every
directed graph is the limit of countable directed graphs to reduce the
general case to the countable case. Along the way, it is shown that
ME is a continuous functor from CKGr to CMon0. Here CKGr is the
category whose objects are directed graphs and whose set of morphisms
are CK-morphisms (as defined in [17]) and CMon0 is the category
whose objects are abelian monoids and whose set of morphisms are
monoid homomorphisms that preserve the identity element.

2. Definitions. A (directed) graph E = (E0, E1, rE , sE) consists of
a set E0 of vertices, a set E1 of edges, and maps rE , sE : E1 → E0

identifying the range and source of each edge. A graph E is countable
if E0 and E1 are countable sets. A vertex v ∈ E0 is called a sink if
|s−1

E (v)| = 0, and v is called an infinite emitter if |s−1
E (v)| = ∞. A

graph E is said to be row-finite if it has no infinite emitters. If v is
either a sink or an infinite emitter, then we call v a singular vertex.
We write E0

sing for the set of singular vertices. Vertices that are not

singular vertices are called regular vertices, and we write E0
reg for the

set of regular vertices.

2.1. Leavitt path algebras. We now recall the definition of Leavitt
path algebras given in [17]. Let E be a graph. The path algebra of E
over K, denoted by KE, is the K-algebra based on the vector space
over K with basis the set of all paths in E, and with multiplication
induced by concatenation of paths: p = e1e2 · · · en and q = f1f2 · · · fm
are paths in E, and their product in KE is given by

pq =

{
e1e2 · · · enf1f2 · · · fm, if rE(en) = sE(f1)

0, otherwise.
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Note that KE is the K-algebra presented by generators from E0 ⊔E1

with the following relations

(1) v2 = v for all v ∈ E0;
(2) vw = δv,wv for all v, w ∈ E0; and
(3) sE(e)e = erE(e) = e for all e ∈ E1.

Let E be a graph. The dual graph of E is a graph E∗ consisting of
the same vertices as E but with all edges reversed. Then the double or

(extended graph) of E, denoted by Ê, is the union of E and E∗.

Definition 2.1 (Definition 1.4 of [17]). Let E = (E0, E1, rE , sE) be
a graph, and let K be a field. The Leavitt path algebra of E over K,

denoted by LK(E), is the quotient of KÊ modulo the ideal generated
by the following elements:

(1) e∗e− rE(e) for all e ∈ E1;
(2) e∗f for all distinct e, f ∈ E1; and
(3) v −

∑
e∈s−1

E (v) ee
∗ whenever v ∈ E0

reg.

The above definition coincides with the definition given in [1] (see
[1, Definition 1.3]) for countable row-finite graphs.

Definition 2.2 (Definition 2.4 of [23]). Let E = (E0, E1, rE , sE) be
a graph, and let R be a ring. A collection {Pv, Se, Se∗ : v ∈ E0, e ∈
E1} ⊆ R is a Leavitt E-family in R if {Pv : v ∈ E0} consists of pairwise
orthogonal idempotents, and the following conditions are satisfied:

(1) PsE(e)Se = SePrE(e) = Se for all e ∈ E1;

(2) PrE(e)Se∗ = Se∗PsE(e) = Se∗ for all e ∈ E1;

(3) Se∗Sf = δe,fPrE(e) for all e, f ∈ E1; and

(4) Pv =
∑

e∈s−1
E (v) SeSe∗ whenever v ∈ E0

reg.

Remark 2.3. Let E be a graph. Note that, if A is a K-algebra and

{Pv, Se, Se∗ : v ∈ E0, e ∈ E1}

is a Leavitt E-family in A, then there exists a K-algebra homomor-
phism ϕ : LK(E) → A such that

ϕ(v) = Pv, ϕ(e) = Se, ϕ(e∗) = Se∗ .
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Hence, LK(E) is the universal K-algebra generated by a Leavitt E-
family. Therefore, the definition of Leavitt path algebras for arbitrary
graphs given here coincides with the definition given in [2] (see [2,
Definition 1.1]) for countable graphs.

Remark 2.4. Let E be a graph, and let K be a field. We will denote
the generators of LK(E) by

{pv, te : v ∈ E0, e ∈ E1}.

Although this is not the common notation used in the literature, we
find it more convenient to distinguish the generators of LK(E) from
the vertices and edges.

2.2. Abelian monoids associated to directed graphs. Let CMon0
be the category whose objects are abelian monoids and with morphisms
that preserve the identity element.

Definition 2.5. Let R be a ring. Let M∞(R) be the ring
∪∞

n=1 Mn(R)
where we identify Mn(R) ⊆ Mn+1(R) by the homomorphism

a 7−→
(
a 0
0 0

)
= a⊕ 0.

Let e, f ∈ M∞(R) be idempotents. We write e ∼ f if there exist
x, y ∈ M∞(R) such that

e = xy and yx = f.

Define V[R] to be the monoid {[e] : e an idempotent in M∞(R)} with
addition defined as

[e] + [f ] = [e⊕ f ] .

Definition 2.6. Let E = (E0, E1, rE , sE) be a graph. Set ME to be
the abelian monoid generated by

{av : v ∈ E0} ∪ {av,S : v an infinite emitter

and S a non-empty finite subset of s−1
E (v)}

with the relation given by

av =
∑

e∈s−1
E (v)

arE(e)
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if v is not a singular vertex, and

av,S +
∑
e∈S

arE(e) = av

and

av,S +
∑

e∈S\T

arE(e) = av,T +
∑

e∈T\S

arE(e)

for all non-empty finite subsets, S and T , of s−1
E (v) if v is an infinite

emitter.

Ara, Moreno and Pardo in [6] associated to every countable row-
finite graph E a monoid ME generated by {av : v ∈ E0} satisfying the
relation

av =
∑

e∈s−1
E (v)

arE(e)

for every v ∈ E0 with |s−1
E (v)| ̸= 0. Moreover, they proved the

following.

Theorem 2.7 (Theorem 3.5 of [6]). Let E be a countable row-finite
graph, let K be a field, and let

{pv, te, t∗e : v ∈ E0, e ∈ E1}

be a Leavitt E-family generating LK(E). Then there exists a monoid
isomorphism

γE :ME −→ V[LK(E)]

such that γE([av]) = [pv] for all v ∈ E0.

Remark 2.8. It turns out that the techniques in [6] can be used for
Leavitt path algebras LK(E) for an uncountable row-finite graph. Since
their results precede the notion of Leavitt path algebras for uncountable
graphs, Ara, Moreno and Pardo in [6] implicitly assumed that all
graphs are countable. Thus, we explicitly state the fact that E is a
countable row-finite graph here.
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The purpose of the paper is to generalize their results to arbitrary
graphs. We first prove that there is a monoid morphism γE from ME

to V[LK(E)] for arbitrary graphs.

Lemma 2.9. Let E = (E0, E1, rE , sE) be a graph, let K be a field and
let

{pv, te, t∗e : v ∈ E0, e ∈ E1}

be a Leavitt E-family generating LK(E). Then there exists a monoid
morphism γE : ME → V[LK(E)] such that γE([av]) = [pv] and
γE([av,S ]) = [pv −

∑
e∈S tet

∗
e] when v is an infinite emitter with S

a non-empty finite subset of s−1
E (v).

Proof. Let v ∈ E0 be a finite emitter. Note that

γE(av) = [pv] =

[ ∑
e∈s−1

E (v)

tet
∗
e

]
=

∑
e∈s−1

E (v)

[tet
∗
e]

=
∑

e∈s−1
E (v)

[t∗ete] =
∑

e∈s−1
E (v)

[prE(e)] =
∑

e∈s−1
E (v)

γE(arE(e)).

Let v ∈ E0 be an infinite emitter and S a non-empty finite subset
of s−1

E (v). Note that

γE(av) = [pv] =

[
pv −

∑
e∈S

tet
∗
e +

∑
e∈S

tet
∗
e

]
=

[
pv −

∑
e∈S

tet
∗
e

]
+

[∑
e∈S

tet
∗
e

]
=

[
pv −

∑
e∈S

tet
∗
e

]
+

∑
e∈S

[tet
∗
e]

=

[
pv −

∑
e∈S

tet
∗
e

]
+

∑
e∈S

[t∗ete]

=

[
pv −

∑
e∈S

tet
∗
e

]
+

∑
e∈S

[prE(e)]

= γE(av,S) +
∑
e∈S

γE(arE(e)).
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Now let T be a non-empty finite subset of s−1
E (v). Then

γE(av,S) +
∑

e∈S\T

γE(arE(e)) =

[
pv −

∑
e∈S

tet
∗
e

]
+

∑
e∈S\T

[prE(e)]

=

[
pv −

∑
e∈S∪T

tet
∗
e +

∑
e∈T\S

tet
∗
e

]
+

∑
e∈S\T

[t∗ete]

=

[
pv −

∑
e∈S∪T

tet
∗
e

]
+

[ ∑
e∈T\S

tet
∗
e

]
+

∑
e∈S\T

[tet
∗
e]

=

[
pv −

∑
e∈S∪T

tet
∗
e

]
+

∑
e∈T\S

[tet
∗
e]

+

[ ∑
e∈S\T

tet
∗
e

]

=

[
pv −

∑
e∈S∪T

tet
∗
e +

∑
e∈S\T

tet
∗
e

]
+

∑
e∈T\S

[t∗ete]

=

[
pv −

∑
e∈T

tet
∗
e

]
+

∑
e∈T\S

[prE(e)]

= γE(av,T ) +
∑

e∈T\S

γE(arE(e)).

We have just shown that γE is a well-defined monoid homomorphism.
�

Remark 2.10. Note that, if E is a row-finite graph, then ME = ME

and the natural monoid isomorphism in Theorem 2.7 is the same as the
monoid morphism given in Lemma 2.9.
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3. Isomorphism for countable graphs. In this section, we will
show that the monoid morphism γE given in Lemma 2.9 is a monoid
isomorphism for countable graphs. In order to do this, we will first
show that there exists a monoid isomorphism from ME to MF which
respects γE and γF , where F is the disingularization of E.

Definition 3.1 (Definition 2.2 of [11]). Let E = (E0, E1, rE , sE) be a
countable graph. The disingularization of E is the graph F defined as
follows:

(1) F 0 = {w0(v) | v ∈ E0} ∪ {wn(v) | v is an infinite emitter or a
sink and n ∈ N}.

(2) F 1 is the union of {gvn | n ∈ N≥0, v ∈ E0
sing} and

{fvn | v ∈ E0, v is not a sink, and 0 ≤ n < |s−1
E (v)|}.

(3) The range and source maps rF and sF are defined by:
(a) If s−1

E (v) = {evk | 0 ≤ k < |s−1
E (v)|}, then

sF (f
v
n) =

{
w0(v), if v is a finite emitter

wn(v), if v is an infinite emitter.

and
rF (f

v
n) = w0(rE(e

v
n)).

(b) rF (g
v
n) = wn+1(v) and sF (g

v
n) = wn(v).

Proposition 3.2. Let E be a countable graph. Let F be the disingu-
larization of E. Then there exists a monoid isomorphism φE : ME →
MF .

Proof. Let v ∈ E0 and n ∈ N. Let T v
n = {evk | 0 ≤ k ≤ n,

sE(e
v
k) = v}. Define

λ : ∪
v is inf. emit. ∪n∈N T

v
n −→ F 0

by λ(evn) = fvn . Consider the following map: φ :ME →MF , where

φ(av) = bw0(v)



1826 HAY, LOVING, MONTGOMERY, RUIZ AND TODD

and

φ(av,S) = bwn+1(v) +
∑

f∈λ(Tv
n )\λ(S)

brF (f).

Here n is the largest number such that evn ∈ S. We want to show that
φ respects our relations from ME . Let v be a finite emitter in E with
n edges coming out of it. Note that

av =
∑

e∈s−1
E (v)

arE(e).

We want to show that

φ(av) =
∑

e∈s−1
E (v)

φ(arE(e)).

Note that

φ(av) = bw0(v) =
∑

f∈s−1
F (w0(v))

brF (f) =

n−1∑
i=0

brF (fv
i )

=
n−1∑
i=0

bw0(rE(evi ))
=

n−1∑
i=0

φ(arE(evi )
) =

∑
e∈s−1

E (v)

φ(arE(e)).

Let v be an infinite emitter in E. Let S be a non-empty finite subset
of s−1

E (v). Note that av = av,S +
∑

e∈S arE(e). We want to show that

φ(av) = φ(av,S) +
∑
e∈S

φ(arE(e)).

Let n be the greatest number such that evn ∈ S. Note that
brF (gv

k−1)
= brF (gv

k)
+ brF (fv

k ) for all k > 0. By repeated use of the

recursive formula,

φ(av) = bw0(v) =
∑

f∈s−1
F (w0(v))

brF (f)

= brF (gv
0 )

+ brF (fv
0 ) = brF (gv

n)
+

n∑
i=0

brF (fv
i )

= bwn+1(v) +
∑

f∈λ(Tv
n )

brF (f)
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= bwn+1(v) +
∑

f∈λ(Tv
n )\λ(S)

brF (f) +
∑

f∈λ(S)

brF (f)

= φ(av,S) +
∑

f∈λ(S)

brF (f)

= φ(av,S) +
∑
e∈S

bw0(rE(e))

= φ(av,S) +
∑
e∈S

φ(arE(e)).

Let v be an infinite emitter in E. Let S and T be non-empty finite
subsets of s−1

E (v). Note that

av,S +
∑

e∈S\T

arE(e) = av,T +
∑

e∈T\S

arE(e).

Let nS be the greatest number such that evnS
∈ S and nT is the greatest

number such that evnT
∈ T . Without loss of generality, we can assume

that nS ≤ nT . Thus, we want to show that

φ(av,S) +
∑

e∈S\T

φ(arE(e)) = φ(av,T ) +
∑

e∈T\S

φ(arE(e)).

Note that

φ(av,S)+
∑

e∈S\T

φ(arE(e)) = bwnS+1(v) +
∑

f∈λ(Tv
nS

)\λ(S)

brF (f)+
∑

e∈S\T

bw0(rE(e))

= bwnT +1(v) +

nT∑
i=nS+1

brF (fv
i )

+
∑

f∈λ(Tv
nS

)\λ(S)

brF (f) +
∑

e∈S\T

bw0(rE(e))

= bwnT +1(v) +
∑

f∈λ(Tv
nT

)\λ(Tv
nS

)

brF (f)

+
∑

f∈λ(Tv
nS

)\λ(S)

brF (f) +
∑

f∈λ(S)\λ(T )

brF (f)

= bwnT +1(v) +
∑

f∈λ(Tv
nT

)\λ(S)

brF (f)
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+
∑

f∈λ(S)\λ(T )

brF (f)

= bwnT +1(v) +
∑

f∈λ(Tv
nT

)\λ(T )

brF (f)

+
∑

f∈λ(T )\λ(S)

brF (f)

= φ(av,T ) +
∑

e∈T\S

φ(arE(e)).

Thus, we have shown that φ respects the given relations, which implies
that φ is a well-defined monoid morphism.

We now construct the inverse of φ. Define ψ :MF →ME by

ψ(bw0(v)) = av

for all v ∈ E0 and

ψ(bwn(v)) =

{
av,Tv

n−1
, if v is an infinite emitter

av, if v is a sink.

We want to show that ψ respects the relations of MF , i.e.,

bw0(v) =
∑

s−1
F (w0(v))

brF (f).

Hence, if v is a finite emitter and not a sink where ψ(bw0(v)) = av, then
we must prove that

ψ(bw0(v)) =
∑

f∈s−1
F (w0(v))

ψ(brF (f)).

Let v be a finite emitter that is not a sink. Note that

ψ(bw0(v)) = av =
∑

e∈s−1
E (v)

arE(e) =
∑

e∈s−1
E (v)

ψ(bw0(rE(e)))

=
∑

f∈s−1
F (w0(v))

ψ(bF (f)).

Let v be an infinite emitter. Here we have two cases:
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(1) For w0(v), ψ(bw0(v)) = av. Let n ∈ Z≥0.

ψ(brF (gv
0 )
) + ψ(brF (fv

0 )) = ψ(bw1(v)) + ψ(brF (fv
0 ))

= av,Tv
0
+ ψ(bw0(rE(ev0))

) = av,Tv
0
+ arE(ev0)

= av = ψ(bw0(v)).

(2) For wn(v) with n ≥ 1, ψ(bwn(v)) = av,Tv
n−1

. We want to show

that ψ respects the relation given by

bwn(v) = bwn+1(v) + brF (fv
n) =

∑
f∈s−1

F (wn(v))

brF (f).

Let n ≥ 1. Note that

ψ(bwn(v)) = av,Tv
n−1

= av,Tv
n
+ arE(evn)

= ψ(bwn+1(v)) + ψ(bw0(rE(evn))
)

= ψ(bwn+1(v)) + ψ(brF (fv
n)) =

∑
f∈s−1

F (wn(v))

ψ(brF (f)).

Now let v be a sink and n ≥ 0. Note that

ψ(bwn(v)) = av = ψ(bwn+1(v)).

Thus, we have shown that ψ respects the given relations, which implies
that ψ is a well-defined monoid morphism.

We will now show that ψ is indeed the inverse of φ. Let v ∈ E0.
Then

ψ(φ(av)) = ψ(bw0(v)) = av.

Consider an infinite emitter v ∈ E0, and let S be a non-empty finite
subset of s−1

E (v). Let n be the largest integer such that evn ∈ S. Note
that

ψ(φ(av,S)) = ψ

(
bwn+1(v) +

∑
f∈λ(Tv

n )\λ(S)

brF (f)

)
= ψ(bwn+1(v))

+
∑

f∈λ(Tv
n )\λ(S)

ψ(brF (f))

= av,Tv
n
+

∑
f∈λ(Tv

n )\λ(S)

ψ(brF (f))

= av,Tv
n
+

∑
e∈Tv

n\S

arE(e) = av,S .
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Since ψ ◦ φ is the identity function on the generators of ME , we have
that ψ ◦ φ = idME

.

We now show that φ ◦ ψ = idMF
. Consider w0(v) ∈ F 0. Note that

φ(ψ(bw0(v))) = φ(av) = bw0(v). Consider wn(v) ∈ F 0, where v ∈ E0 is
a sink. Note that

φ(ψ(bwn(v))) = φ(av) = bw0(v) = bwn(v).

Consider wn(v) ∈ F 0, where v ∈ E0 is an infinite emitter. Note that

φ(ψ(bwn(v))) = φ(av,Tv
n−1

)

= bwn(v) +
∑

f∈λ(Tv
n−1)\λ(Tv

n−1)

brF (f) = bwn(v).

Since φ ◦ ψ is the identity function on the generators of MF , we have
that φ ◦ ψ = idMF

.

We have just shown that φ and ψ are inverse functions. Hence, φ is
a monoid isomorphism which implies that ME

∼=MF . �

The next lemma is probably well-known to the experts in the field,
but we were not able to find a reference. For the convenience of the
reader we provide the proof here.

Lemma 3.3. Let R be a ring, and let e be an idempotent in R. If p, q
are idempotents in eRe and there exist x, y ∈ R such that p = xy and
yx = q, then there exist v, w ∈ eRe such that p = vw and wv = q.
Consequently, the usual embedding {ι : eRe → R} induces an injective
monoid morphism V[ι] : V[eRe] → V[R].

Proof. Suppose p, q are idempotents in eRe and there exist x, y ∈ R
such that p = xy and yx = q. Set v = pxq and w = qyp. Then
vw = pxqyp = pxyxyp = pppp = p and wv = qypxq = qyxyxq =
qqqq = q. �

Theorem 3.4. Let E = (E0, E1, rE , sE) be a countable graph, let
F = (F 0, F 1, rF , sF ) be the desingularization of E, and let K be a field.
Let φE be given in Proposition 3.2. Then there exists a homomorphism
κE : LK(E) → LK(F ) such that V[κE ] is a monoid isomorphism and
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the diagram

ME
γE //

φE

��

V[LK(E)]

V[κE ]

��
MF γF

// V[LK(F )]

is commutative. Consequently, γE is a monoid isomorphism.

Proof. Let {pv, tf , t∗f : v ∈ F 0, f ∈ F 1} be a Leavitt F -family

generating LK(F ), and let {Pv, Te, T
∗
e : v ∈ E0, e ∈ E1} be a set

of Leavitt E-family generating LK(E). Let e ∈ E1. Then e = evj where
v = sE(e). If v is not a singular vertex, then set se = tfv

j
and s∗e = t∗fv

j
.

Suppose v is an infinite emitter. Set se = tαj = tgv
0
· · · tgv

j−1
tfv

j

and s∗e = t∗αj
= t∗fv

j
t∗gv

j−1
· · · t∗gv

0
, where αj = gv0g

v
1 · · · gvj−1f

v
j . By [2,

Proposition 5.5], there exists a monomorphism κE : LK(E) → LK(F )
such that κE(Pv) = pw0(v) for each v ∈ E0, κE(Te) = se and

κE(T
∗
e ) = s∗e for each e ∈ E1.

We now show that the diagram is commutative. Let v ∈ E0. Then

V[κE ](γE(av)) = V[κE ]([Pv]) = [pw0(v)]

and

γF (φE(av)) = γF (bw0(v)) = [pw0(v)].

Let v ∈ E0 be an infinite emitter, S a non-empty finite subset of s−1
E (v)

and n = max{k ∈ Z≥0 : evk ∈ S}. Then

V[κE ](γE(av,S)) = V[κE ]
([
Pv −

∑
e∈S

TeT
∗
e

])
= V[κE ]

([
Pv −

∑
e∈Tv

n

TeT
∗
e +

∑
e∈Tv

n\S

TeT
∗
e

])

= V[κE ]
([
Pv −

∑
e∈Tv

n

TeT
∗
e

])
+V[κE ]

([ ∑
e∈Tv

n\S

TeT
∗
e

])

= V[κE ]
([
Pv−

∑
e∈Tv

n

TeT
∗
e

])
+V[κE ]

( ∑
e∈Tv

n\S

[
TeT

∗
e

])
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= V[κE ]
([
Pv−

∑
e∈Tv

n

TeT
∗
e

])
+

∑
e∈Tv

n\S

V[κE ] ([TeT ∗
e ]) .

Therefore,

V[κE ]
([
Pv −

∑
e∈Tv

n

TeT
∗
e

])
+

∑
e∈Tv

n\S

V[κE ] ([TeT ∗
e ])

=

[
pw0(v) −

∑
e∈Tv

n

ses
∗
e

]
+

∑
e∈Tv

n\S

[ses
∗
e]

=

[
pw0(v) − tfv

0
t∗fv

0
−

n∑
i=1

tgv
0
tgv

1
· · · tgv

i−1
tfv

i
t∗fv

i
t∗gv

i−1
· · · t∗gv

0

]
+

∑
e∈Tv

n\S

[ses
∗
e]

=

[
pw0(v) − tfv

0
t∗fv

0
−

n∑
i=1

tgv
0
tgv

1
· · · tgv

i−1
(twi(v) − tgv

i
t∗gv

i
)t∗gv

i−1
· · · t∗gv

0

]
+

∑
e∈Tv

n\S

[ses
∗
e]

=
[
pw0(v) − tfv

0
t∗fv

0
− tgv

0
t∗gv

0
+ tgv

0
· · · tgv

n−1
tgv

n
t∗gv

n
t∗gv

n−1
· · · t∗gv

0

]
+

∑
e∈Tv

n\S

[ses
∗
e]

=
[
tgv

0
· · · tgv

n−1
tgv

n
t∗gv

n
t∗gv

n−1
· · · t∗gv

0

]
+

∑
e∈Tv

n\S

[ses
∗
e].

Note that [t∗gv
n
t∗gv

n−1
· · · t∗gv

0
tgv

0
· · · tgv

n−1
tgv

n
] = [t∗gv

n
tgv

n
]. Since

[pwn+1(v)] +
∑

f∈λ(Tv
n )\λ(S)

[prF (f)] = [pwn+1(v)] +
∑

evk∈Tv
n\S

[prF (fv
k )]

= [t∗gv
n
tgv

n
] +

∑
e∈Tv

n\S

[s∗ese],

we have that

V[κE ](γE(av)) = [pwn+1(v)] +
∑

f∈λ(Tv
n )\λ(S)

[prF (f)].
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Since

γF (φE(av,S)) = γF

(
bwn+1(v) +

∑
f∈λ(Tv

n )\λ(S)

brF (f)

)

= γF (bwn+1(v)) + γF

( ∑
f∈λ(Tv

n )\λ(S)

brF (f)

)
= γF (bwn+1(v)) +

∑
f∈λ(Tv

n )\λ(S)

γF
(
brF (f)

)
= [pwn+1(v)] +

∑
f∈λ(Tv

n )\λ(S)

[prF (f)],

we have that
V[κE ](γE(av,S)) = γF (φE(av,S)).

Since V[κE ] ◦ γE is equal to γF ◦φE on the generators of ME , we have
that V[κE ] ◦ γE = γF ◦ φE .

We now show that V[κE ] is a monoid isomorphism. First note that,
since F is a row-finite graph, by Theorem 2.7 and Remark 2.10, γF is a
monoid isomorphism. By Proposition 2.1, φE is a monoid isomorphism.
By the commutativity of the diagram, we have that V[κE ] is surjective.

Set E0 = {vn : n ∈ N}. Set Pn,E =
∑n

k=1 Pvk , and set Pn,F =∑n
k=1 pvk . By the proof of [2, Theorem 5.6],

κn = (κE)|Pn,ELK(E)Pn,E
: Pn,ELK(E)Pn,E −→ Pn,FLK(F )Pn,F

is an isomorphism, and the diagram

Pn,ELK(E)Pn,E

ιn,E //

κn

��

LK(E)

κE

��
Pn,FLK(F )Pn,F ιn,F

// LK(F )

is commutative. Note that
∪∞

n=1 Pn,ELK(E)Pn,E = LK(E). Sup-
pose e and q are idempotents in Mm(LK(E)) such that V[κE ]([e]) =
V[κE ]([q]). Then there exists n ∈ N such that e and q are idempotents
in Mm(Pn,ELK(E)Pn,E). By the commutativity of the above diagram,

V[ιn,F ] ◦ V[κn]([e]) = V[ιn,F ] ◦ V[κn]([q]).
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By Lemma 3.3, V[κn]([e]) = V[κn]([q]). Since κn is an isomorphism,
we have that [e] = [q]. Therefore, V[κE ] is injective. Hence, V[κE ] is a
monoid isomorphism. �

Corollary 3.5. Let E = (E0, E1, rE , sE) be a countable graph, and let
ιE : LC(E) → C∗(E) be the natural inclusion. Then V[ιE ] is a monoid
isomorphism.

Proof. Let F be the desingularization of E. By the proof of [11,
Lemma 2.9] and the definition of κE , there exists a ∗-homomorphism
of κE : C∗(E) → C∗(F ) such that

LC(E)

κE

��

ιE // C∗(E)

κE

��
LC(F ) ιF

// C∗(F )

is commutative. Applying the functor V[−], we get that the diagram

V[LC(E)]

V[κE ]

��

V[ιE ] // V[C∗(E)]

V[κE ]

��
V[LC(F )] V[ιF ]

// V[C∗(F )]

commutes.

Let {Pv,F , Te,F : v ∈ F 0, e ∈ F 1} be a universal set of Cuntz-
Krieger F -family generating C∗(F ). Then, by [11, Theorem 2.11],
there exists a projection P in the multiplier algebra of C∗(F ) such that
κE(C

∗(E)) = PC∗(F )P and PC∗(F )P is not contained in a closed
ideal of C∗(F ), where P =

∑
e∈E0 Pv,F (the sum converges in the

strict topology).

By [6, Theorem 7.1], V[ιF ] is a monoid isomorphism. By The-
orem 3.4, V[κE ] is a monoid isomorphism. Hence, V[κE ] is surjec-
tive. Suppose e and f are idempotents in M∞(PC∗(F )P ) such that
V[κE ]([e]) = V[κE ]([f ]). Note that

PC∗(F )P =
∞∪

n=1

PnC∗(F )Pn,
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where Pn =
∑n

k=1 Pvk,F with E0 = {vk : k ∈ N}. By [9,
Proposition 4.5.2], every idempotent in M∞(PC∗(F )P ) is equivalent
to an idempotent in M∞(PnC

∗(F )Pn). Hence, there exist e′, f ′ ∈
M∞(PnC

∗(F )Pn) for some n ∈ N, [κE(e)] = [e′] and [κE(f)] = [f ′]
in V[PnC

∗(F )Pn]. Since V[κE ]([e]) = V[κE ]([f ]) in V[C∗(F )], we
have that [e′] = [f ′] in V[C∗(F )]. By Lemma 3.3, [e′] = [f ′] in
V[PnC

∗(F )Pn]. Therefore, [κE(e)] = [κE(f)] in V[PC∗(F )P ], which
implies that [e] = [f ] in V[C∗(E)] since κE : C∗(E) → PC∗(F )P is
a ∗-isomorphism. Hence, V[κE ] is injective. Thus, V[κE ] is a monoid
isomorphism.

By the above paragraphs,

V[ιE ] = V[κE ]−1 ◦ V[ιF ] ◦ V[κE ]

is a monoid isomorphism. �

4. Isomorphism for arbitrary directed graphs. To prove that
γE : ME → V[LK(E)] is a monoid isomorphism for an arbitrary
graph E, we will use the fact that γF is a monoid isomorphism for
countable graphs and the fact that E can be expressed as a direct limit
of countable graphs. In order to use these facts, we will need to prove
that E 7→ME is a continuous functor for direct limits with morphisms
being CK-morphisms as defined in [17, page 8].

We begin by establishing some results in the category CMon0, which
are probably well-known to the experts, but for which we were unable
to find a reference. For the convenience of the reader we provide the
proofs here. The first fact is that direct limits exist in this category.

Lemma 4.1. Let S = ((Si)i∈I , (µij)i≤j,∈I) be a direct system in
CMon0. Then there exists an abelian monoid S∞ together with mor-
phisms {µi,∞ : Si → S∞} such that

(a) µi,∞ = µj,∞ ◦ µij for all i ≤ j ∈ I;
(b) for each a ∈ S∞, there exists a1 ∈ Si for some i ∈ I with

a = µi,∞(a1); and
(c) given any other abelian monoid M and morphisms

(ψi : Si −→M)i∈I
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such that ψi = ψj◦µij for all i ≤ j ∈ I, there exists a morphism
{ψ : S∞ →M} such that ψi = ψ ◦ µi,∞ for all i ∈ I.

Proof. Let S denote the disjoint union of the sets Si, for i ∈ I. Define
a relation on S as follows. If s ∈ Si and t ∈ Sj , then s ∼ t if and only
if there exists k ∈ I such that k ≥ i, j in I and µik(s) = µjk(t). One
easily shows that ∼ is an equivalence relation. Define S∞ = S/ ∼, and
let [s] be the equivalence class corresponding to s ∈ Si. Given s ∈ Si

and t ∈ Sj , define [s] + [t] = [µik(s) + µjk(t)] for any k ≥ i, j ∈ I. An
easy check shows that this operation is well-defined, and commutative
with identity element [0].

Now define µi,∞ : Si → S∞ by µi,∞(s) = [s]. Then it follows easily
that µi,∞ is an identity-preserving monoid morphism with the property
that µi,∞ = µj,∞ ◦ µij for all i ≤ j ∈ I. Also, (b) follows from the
definition of S∞ and µi,∞.

Now suppose M is an abelian monoid and that, for each i ∈ I, we
have identity-preserving morphisms ψ : Si →M such that ψi = ψj◦µij .
Define ψ : S∞ → M as follows. Let [s] = µi,∞(s) ∈ S∞ be such that
s ∈ Si for some i ∈ I. Now define ψ by ψ([s]) = ψi(s). If [s] = [t] in
S∞ for some t ∈ Sj , then there exists k ∈ I with k ≥ i, j such that
µik(s) = µjk(t) and

ψi(s) = ψk(µik(s)) = ψk(µjk(t)) = ψj(t).

So ψ is well defined.

Note that, for s ∈ Si, we have ψ(µi,∞(s)) = ψi(s) by definition,
so that ψi = ψ ◦ µi,∞. A final quick check shows that ψ([0]) =
ψ(µi,∞(0)) = ψi(0) = 0, so that ψ is indeed an identity-preserving
monoid morphism. �

Lemma 4.2. Let S = ((Si)i∈I , (µij)i≤j∈I) and T = ((Ti)i∈I , (νij)i≤j∈I)
be direct systems in CMon0. Suppose there exists a collection of mor-
phisms

(ψi : Si −→ Ti)i∈I

such that νij ◦ψi = ψj ◦µij for all i ≤ j ∈ I. Then there exists a unique
morphism ψ : S∞ → T∞ such that

νi,∞ ◦ ψi = ψ ◦ µi,∞
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for all i ∈ I. Consequently, if ψi are monoid isomorphisms for all
i ∈ I, ψ is a monoid isomorphism.

Proof. Let i ≤ j ∈ I. Note that

νi,∞ ◦ ψi = νj,∞ ◦ νij ◦ ψi = νj,∞ ◦ ψj ◦ µij .

Hence, by Lemma 4.1, there exists a morphism ψ : S∞ → T∞ such that

νi,∞ ◦ ψi = ψ ◦ µi,∞.

Suppose ϕ : S∞ → T∞ is a morphism such that

νi,∞ ◦ ψi = ϕ ◦ µi,∞.

Let a ∈ S∞. By Lemma 4.1, there exist i ∈ I and a1 ∈ Si such that
a = µi,∞(a1). Therefore,

ψ(a) = ψ(µi,∞(a1)) = νi,∞ ◦ ψi(a1) = ϕ(µi,∞(a1)) = ϕ(a). �

Definition 4.3. Let E and F be arbitrary graphs. By definition (see
[17, page 8]), a graph morphism η : E → F is a CK-morphism,
provided

(1) The restrictions η0 to the vertex set E0 and η1 to edge set E1

are both injective;
(2) For each v ∈ E0 which is neither a sink nor an infinite emitter,

η1 induces a bijection s−1
E (v) → s−1

F (η0(v)).

Note that any CK-morphism must map infinite emitters to infinite
emitters. So v ∈ E0, an infinite emitter, implies η(v) ∈ F 0 is an
infinite emitter.

Let CKGr be the category whose objects are directed graphs and
whose set of morphisms are CK-morphisms. By [17, Lemma 2.5], ar-
bitrary direct limits exist in this category. As in [17, subsection 2.2],
given a field K, K-Alg will denote the category of (not necessarily
unital) K-algebras. Thus, objects in K-Alg are arbitrary K-algebras
(that is, arbitrary vector spaces over K, equipped with an associative,
K-bilinear multiplication), and sets of morphisms are arbitrary mul-
tiplicative K-linear maps. It is well known that direct limits exist in
categories related to many algebraic structures (see [16, subsection
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I.5]). In particular, given a directed system of K-algebras, a direct
limit exists in the category of (not necessarily unital) rings. It is a
straightforward exercise to define a K-algebra structure on this direct
limit. So direct limits exist in K-Alg.

Making use of [17, Lemma 2.5], let E = ((Ei)i∈I , (ϕij)i≤j∈I) be
a direct system in CKGr. Let A = ((Ai)i∈I , (γij)i≤j∈I) be the
corresponding direct system of Leavitt path algebras (so that Ai =
LK(Ei) and γij = LK(ϕij)). Let A∞ be the direct limit of this system
in K-Alg (so A∞ = LK(E∞)). Then we have maps ιi = LK(ηi) with
ιi : Ai → A∞ such that ιi = ιj ◦ γij and where ηi are CK-morphisms.

A direct system A = ((Ai)i∈I , (γij)i≤j∈I) in K-Alg gives rise to
a direct system V[A ] = ((V[Ai])i∈I , (V[γij ])i≤j∈I) in CMon0. By
Lemma 4.1, there exists an abelian monoid V∞ that is the direct limit
of this system. So there are maps λi : V[Ai] → V∞ such that

λi = λj ◦ V[γij ].

This leads to the following.

Lemma 4.4. Let A = ((Ai)i∈I , (γij)i≤j∈I) be a direct system as
above. Then, for any [e] ∈ V[A∞], there exists a positive integer n and
i ∈ I such that e ∈ Mn(ιi(Ai)). Moreover, the algebra homomorphism
ιi : Ai → A∞ induces an identity-preserving monoid morphism from
V[Ai] to V[A∞].

Proof. Let [e] ∈ V[A∞]. By definition of V[A∞], we have that
e ∈ M∞(A∞). Since M∞(A∞) =

∪∞
n=1Mn(A∞), any element of

M∞(A∞) must belong to some Mn(A∞). So e ∈Mn(A∞) for some n.

By definition of A∞, each element of A∞ is in the image of ιk :
Ak → A∞ for some k. For each (r, s)-entry ers of e, let ιj(r,s) be such
a map. Choose i ≥ j(r, s) for all (r, s). Since ιi = ιj(r,s) ◦ γij(r,s), we
have a ∈Mn(ιi(Ai)).

For the final claim, for each n, the map ιi : Ai → A∞ clearly gives
a family of homomorphisms ιni : Mn(Ai) → Mn(A∞). Note that for
f ∈Mn(Ai), f ⊕ 0 ∈Mm(Ai) for m > n and

ιmi (f) = ιni (f)⊕ 0.
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Therefore, ιi induces a well-defined map

V[ιi] :M∞(Ai) −→M∞(A∞)

defined by V[ιi](f) = ιni (f) (where f ∈Mn(Ai) ⊆M∞(Ai)).

Now consider [f ] = [g] in V[Ai]. By definition, f = ab and g = ba
for some matrices a, b ∈M∞(Ai). For some sufficiently large n we have

V[ιi](f) = ιni (f) = ιni (ab) = ιni (a)ι
n
i (b) = V[ιi](a)V[ιi](b),

using the fact that ιni is a homomorphism. A similar result shows
V[ιi](g) = V[ιi](b)V[ιi](a). This shows V[ιi](f) is equivalent to V[ιi](g)
in M∞(A∞). Clearly, V[ιi](0) = 0. Therefore,

V[ιi] : V(Ai) −→ V(A∞)

is a well defined identity-preserving monoid morphism. �

Lemma 4.5. Let ((Ai)i∈I , (ϕij)i≤j∈I) be a direct system of algebras,
and let A∞ be the direct limit. Let e, f be idempotents in Ai such that
ϕi,∞(e) ∼ ϕi,∞(f) in A∞. Then there exists j ∈ I with i ≤ j and
ϕij(e) ∼ ϕij(f) in Ai.

Proof. Let x, y ∈ A∞ be such that ϕi,∞(e) = xy and ϕi,∞(f) = yx.
Then there exists k ∈ I with i ≤ k and there exist s, t ∈ Ak such that
ϕk,∞(s) = x and ϕk,∞(t) = y. Hence,

ϕi,∞(e) = ϕk,∞(st) and ϕi,∞(f) = ϕk,∞(ts).

Hence, there exists j ∈ I with i ≤ j and k ≤ j such that

ϕij(e) = ϕkj(st) and ϕij(f) = ϕkj(ts).

Therefore, ϕij(e) ∼ ϕij(f) in Aj . �

Lemma 4.6. Let ((Ei)i∈I , (ϕij)i≤j∈I) be a direct system in CKGr with
corresponding object E∞, and let

((LK(Ei))i∈I , (LK(ϕij))i≤j∈I)

be the direct system in K-Alg. Set νij = V[LK(ϕij)]. If V∞ is the
direct limit of

((V[LK(Ei)])i∈I , (νij)i≤j∈I)
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in CMon0, there exists a monoid isomorphism ψV : V∞ → V[LK(E∞)]
such that

ψV ◦ νi,∞ = V[LK(ϕi,∞)].

Proof. The algebra homomorphisms γij : Ai → Aj and ιi : Ai → A∞
induce maps

V[Ai]
V[γij ]−→ V[Aj ] and V[Ai]

V[γij ]−→ V[A∞]

so that, for each i ∈ I, we have that V[ιi] : V[Ai] → V[A∞] with the
property

V[ιi] = V[ιj ] ◦ V[γij ].

By the universal property of V∞, there exists a monoid morphism
ψ : V∞ → V [A∞] such that

ψ ◦ νi,∞ = V[ιi].

We now show that ψ is a monoid isomorphism.

Let [e] ∈ V[A∞]. By Lemma 4.4, e ∈Mn(ιi(Ai)) for some integer n
and i ∈ I. Let ers denote the (r, s)-entry of the matrix e. Then there
exists a matrix f ∈Mn(Ai) with (r, s)-entry frs such that ιi(frs) = ers.
Then we have

e = V[ιi](f).

Since V[ιi] = ψ ◦ νi,∞, we have that

[e] = ψ(νi,∞([f ]))

so that ψ is surjective. By Lemma 4.5, ψ is injective. Therefore, ψ is a
monoid isomorphism. �

We want to show that M(−) is a continuous functor. Let ((Ei)i∈I ,
(ϕij)i≤j∈I) be a direct system in CKGr. For clarity, we write av, av,S
for elements ofMEk

and bw, bw,T for elements ofME∞ . Note that any
CK-morphism sends regular vertices to regular vertices (and infinite
emitters to infinite emitters). Therefore, if w ∈ E0

∞ is a regular vertex,
then there is some i ∈ I and v ∈ E0

i such that w = ϕ0i,∞(v) and

|s−1
Ei

(v)| = |s−1
E∞

(w)|. We often write bw = bϕi,∞(v) or just bw = bv for
this situation.

Similarly, for w ∈ E0
∞ an infinite emitter and T a finite subset of

s−1
E∞

(w), there are i ∈ I and v ∈ E0
i where w = ϕ0i,∞(v) and, for
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every f ∈ T , there is e ∈ s−1
Ei

(v) with f = ϕ1i,∞(e). For notational

convenience, we often take S to be the set of all such e ∈ s−1
Ei

(v) and
write bw,T = bϕi,∞(v),ϕi,∞(S) or just bw,T = bv,S .

Lemma 4.7. Let ((Ei)i∈I , (ϕij)i≤j∈I) be a direct system in CKGr,

and let (E∞, ϕi) be the direct limit of this system. Let ((MEi
)i∈I ,

(M(ϕij))i,j∈I) be the direct system in CMon0, and let (M∞, µi,∞) be

the direct limit of this system. Set µij = M(ϕij). Then there exists a

monoid isomorphism ψM :M∞ →ME∞ such that

ψM ◦ µi,∞ =M(ϕi,∞).

Proof. For any i ∈ I, the CK-morphism ϕi,∞ induces a monoid

morphism M(ϕi,∞) :MEi →ME∞ given by

M(ϕi,∞)(av) = bϕi,∞(v)

and

M(ϕi,∞)(av,S) = bϕi,∞(v),ϕi,∞(S).

It follows easily that M(ϕi,∞) =M(ϕj,∞) ◦ µij . That there exists a

surjective monoid morphism ψM :M∞ →ME∞ is seen from the defini-

tion ofM∞ as the direct limit of the system ((MEi)i∈I , (M(ϕij))i,j∈I).

Showing that ψM is injective is the remainder of the proof. Our

strategy is as follows. We define a monoid morphism θ : M0 → M∞
on the free abelian monoid M0 generated by the same generators of
ME∞ , but without any relations. We then use θ to define a monoid
morphism θ : ME∞ → M∞ such that θ ◦ ψM is the identity map on

M∞. It then follows that ψM is injective.

We define θ on M0 as follows. For a generator of the form bw ∈M0

with w ∈ E0
∞, let

θ(bw) = µi,∞(av),

where w = ϕi,∞(v) for some i ∈ I and v ∈ E0
i .

For a generator of the form bw,T ∈M0, with w ∈ E0
∞, and T a finite

subset of s−1
E∞

(w), there is an i ∈ I with v ∈ E0
i and a finite subset
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S ⊆ s−1
Ei

(v) with ϕi,∞(S) = T . Define the map θ on bw,T by

θ(bw,T ) = µi,∞(av,S).

We now show that θ is well defined.

Since there are no relations on M0, we only need to show that θ
does not depend on our choice of i ∈ I. First consider the generator
bw ∈ M0. Suppose w = ϕi,∞(v) = ϕj,∞(v′) for some i, j ∈ I,
v ∈ E0

i and v′ ∈ E0
j . Without loss of generality, we may assume

i ≤ j. Since ϕi,∞(v) = ϕj,∞(v′), we must have ϕ0ij(v) = v′, so that

aϕij(v) = av′ . Thus, µij(av) = M(ϕij)(av) = av′ , and it follows that
µi,∞(av) = µj,∞(av′).

A similar approach works for the generator bw,T ∈ M0. Suppose
w = ϕi,∞(v) = ϕj,∞(v′) and T = ϕi,∞(S) = ϕj,∞(S′) for some
i, j ∈ I, v ∈ E0

i and v′ ∈ E0
j . Without loss of generality, we may

assume i ≤ j. Since ϕi,∞(v) = ϕj,∞(v′), we must have ϕ0ij(v) = v′.

Similarly, ϕ1i,∞(S) = ϕ1j,∞(S′), so for every e ∈ S we have e′ ∈ S′ such

that ϕ1ij(e) = e′. We denote this succinctly by ϕij(S) = S′. Then

M(ϕij)(av,S) = aϕij(v),ϕij(S) = av′,S′ and it follows that µi,∞(av,S) =
µj,∞(av′,S′). So the map θ does not depend upon a choice of i ∈ I.

We now see that θ is well-defined on the generators. Now extend
additively to give a map M0 →M∞, e.g.,

θ

(∑
bwj +

∑
bwk,Tk

)
=

∑
θ(bwj ) +

∑
θ(bwk,Tk

)

=
∑

µi,∞(avj ) +
∑

µi,∞(avk,Sk
).

Our next goal is to essentially quotient out by the kernel of θ to
obtain a monoid morphism θ onME∞ . For this to work we need to show
that the kernel of θ contains our relations on ME∞ . To this end, let
R denote the set of relations (defined on the generators) distinguishing
ME∞ from M0, and let ρ denote the equivalence relation generated by
R, so thatME∞

∼=M0/ρ. Note that, one typically does not distinguish
between R and ρ, but we are being overly cautious in our treatment
here. When thinking of these as ordered pairs, technically, we have
R ⊆ ρ. Let Q be the natural quotient map taking a word x in M0

to its equivalence class in ME∞ . Thinking of ker θ as a collection of
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ordered pairs (x, y) where θ(x) = θ(y), we now wish to show that
ρ ⊆ ker θ.

Let x and y be words in M0 such that x = y in ME∞ , that is,
(x, y) ∈ ρ, or equivalently, Q(x) = Q(y). Then there exists a finite
sequence of words x1, . . . , xk+1 in M0 with x1 = x and xk+1 = y such
that xi+1 is obtained from xi by substituting a term zi of xi by yi
for some yi in M0 such that “zi = yi” is one of the relations in R
((zi, yi) ∈ R). Now, if θ(zi) = θ(yi) for every such pair in R, then by
transitivity we will have θ(x) = θ(y). Thus, to conclude that ρ ⊆ ker θ,
it now suffices to show that θ respects the three forms of relations found
in R.

We first consider relations in R of the form bw =
∑

f∈s−1
E∞ (w) br(f)

for a regular vertex w ∈ E0
∞. In this case, we have w = ϕi,∞(v) for

some v ∈ E0
i and θ(bw) = µi,∞(av). For some choice ℓ ∈ I, we have

w = ϕℓ,∞(v′) and |s−1
E∞

(w)| = |s−1
Eℓ

(v′)| so that

θ

( ∑
f∈s−1

E∞ (w)

br(f)

)
=

∑
f∈s−1

E∞ (w)

θ(br(f)) =
∑

e∈s−1
Eℓ

(v′)

µℓ,∞(ar(e)).

Since µℓ,∞ is a monoid morphism and v′ a regular vertex, this in turn
equals

µℓ,∞

( ∑
e∈s−1

Eℓ
(v′)

ar(e)

)
= µℓ,∞(av′).

As argued previously, we must have µℓ,∞(av′) = µi,∞(av), so θ respects
the relation defined on finite emitters.

Next consider the relations on infinite emitters in R of the form
bw = bw,T +

∑
f∈T br(f) for an infinite emitter w. Since CK-morphisms

map infinite emitters to infinite emitters, we must have some i ∈ I
and infinite emitter v ∈ E0

i such that θ(bw) = µi,∞(av). Now consider
θ(bw,T +

∑
f∈T br(f)) = θ(bw,T )+

∑
f∈T θ(br(f)). As before, there is an

ℓ ∈ I and an infinite emitter v′ ∈ E0
ℓ with w = ϕℓ,∞(v′). Since T is

finite, we also must have a finite set S ⊆ s−1
Eℓ

(v′) such that T = ϕ1ℓ,∞(S).
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Then

θ(bw,T ) +
∑
f∈T

θ(br(f)) = µℓ,∞(av′,S) +
∑
e∈S

µℓ,∞(ar(e))

= µℓ,∞

(
av′,S +

∑
e∈S

ar(e)

)
.

Since v ∈ E0
ℓ is an infinite emitter with finite subset S ⊆ s−1

Eℓ
(v′), we

must have av′,S +
∑

e∈S ar(e) = av′ and

θ

(
bw,T +

∑
f∈T

br(f)

)
= µℓ,∞(av′).

Again, because θ does not depend upon the choice of index, we must
have

θ(bw) = θ

(
bw,T +

∑
f∈T

br(f)

)
.

Lastly, we consider the relations in R of the form

bw,T +
∑

f∈T\T ′

brE∞ (f) = bw,T ′ +
∑

f∈T ′\T

brE∞ (f).

Again, since CK-morphisms map infinite emitters to infinite emitters,
there is some i ∈ I and infinite emitter v ∈ E0

i such that θ(bw) =
µi,∞(av). Now consider

θ

(
bw,T +

∑
f∈T\T ′

br(f)

)
= θ(bw,T ) +

∑
f∈T\T ′

θ(br(f)).

As before, there is an ℓ ∈ I and an infinite emitter v′ ∈ E0
ℓ with

w = ϕℓ,∞(v′). Since T and T ′ are finite, we also must have finite sets
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S, S′ ⊆ s−1
Eℓ

(v′) such that T = ϕ1ℓ,∞(S) and T ′ = ϕ1ℓ,∞(S′). Then

θ(bw,T ) +
∑

f∈T\T ′

θ(br(f)) = µℓ,∞(av′,S) +
∑

e∈S\S′

µℓ,∞(ar(e))

= µℓ,∞

(
av′,S +

∑
e∈S\S′

ar(e)

)

= µℓ,∞

(
av′,S +

∑
e∈S′\S

ar(e)

)
= θ(bw,T ) +

∑
f∈T ′\T

θ(br(f)).

Once again, we see that this relation is preserved by θ and we conclude
that indeed ρ ⊆ ker θ.

Finally we can define θ : ME∞ → M∞ by θ(Q(x)) = θ(x). This is
well-defined since if Q(x) = Q(y), we have (x, y) ∈ ρ ⊆ ker θ so that
θ(x) = θ(y).

Now, if θ◦ψM equals the identity map onM∞, then ψM is injective.

Since M∞ is generated by the set{
µi,∞(av) : v ∈ E0

i } ∪ {µi,∞(av,S) :

v an inf. emitter, fin. non-empty S ⊆ s−1
Ei

(v)
}
,

we need only check the above condition on this set of generators. In
this direction, suppose that µi,∞(av) ∈ M∞, where v ∈ Ei for some
i ∈ I. Then

θ(ψM (µi,∞(av)) = θ(M(ϕi,∞)(av)) = θ(bϕi,∞(v)) = µi,∞(av).

Similarly, suppose that µi,∞(av,S) ∈ M∞, where v ∈ Ei for some

i ∈ I and S is a finite non-empty subset of s−1
Ei

(v). Then

θ(ψM (µi,∞(av,S)) = θ(M(ϕi,∞)(av,S))

= θ(bϕi,∞(v),ϕi,∞(S)) = µi,∞(av,S).

Thus, ψM is injective and ψM :M∞ →ME∞ is a monoid isomorphism.
�
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Lemma 4.8. Let η : E → F be a CK-morphism. For the maps γE and
γF defined in Lemma 2.9, and the maps M [η] and (V ◦LK)[η] induced
by the functors M and (V ◦ LK), respectively, the diagram

ME
γE //

M [η]

��

V[LK(E)]

(V◦LK)[η]

��
MF γF

// V[LK(F )]

is commutative.

Proof. For graphs E = (E0, E1, rE , sE) and F = (F 0, F 1, rF , sF ),
let {pv, te, t∗e : v ∈ E0, e ∈ E1} and {qw, uf , u∗f : w ∈ F 0, f ∈ F 1}
be the Leavitt E-family and F -family, respectively, generating LK(E)
and LK(F ), respectively.

Similarly, suppose ME and MF are generated by elements

{av :v ∈ E0} ∪ {av,S :v ∈ E0 v an inf. emitter, finite ∅ ≠ S⊆s−1
E (v)}

and

{bw :w∈F 0} ∪ {bw,T :v∈F 0 w an inf. emitter, finite ∅ ̸= T ⊆s−1
F (w)},

respectively.

Let v ∈ E0 be a non-singular vertex. By the definition of γ,
γE([av]) = [pv]. Then by [17, Lemma 2.5], using the functor (V ◦LK),
we have

(V ◦ LK)[η]([pv]) = [qη(v)].

Hence, (V ◦ LK)[η]) ◦ γE([av]) = [qη(v)] for v non-singular.

Similarly, the functor M induces the map M [η] defined for non-
singular v by M [η]([av]) = [bη(v)]. Then, since

γF ([bη(v)]) = [qη(v)],

we have ((V ◦ LK)[η] ◦ γE)([av]) = (γF ◦M [η])([av]) for non-singular
v ∈ E0.

Now, assume v ∈ E0 is an infinite emitter. Since η : E → F is a
CK-morphism, we also have η(v) ∈ F 0 is an infinite emitter. For each
element eik of a finite subset S of s−1

E (v), let fik = η1(eik) and set
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Tv,S = {fi1 , . . . , fin}. Note that the cardinality of Tv,S equals that of
S because of property (1) of CK-morphisms.

By the definition of γE , for an infinite emitter v ∈ E0 and S, a non-
empty finite subset of s−1

E (v), we have γE([av,S ]) = [pv −
∑

e∈S tet
∗
e].

Again by [17, Lemma 2.5],

(V ◦ LK)[η]

(
pv −

∑
e∈S

tet
∗
e

)
= qη(v) −

∑
η(e)∈η(S)

uη(e)u
∗
η(e).

However, η(e) = f ∈ Tv,S . Hence,

(V ◦ LK)[η] ◦ γE([av,S ]) =
[
qη(v) −

∑
f∈Tv,S

ufu
∗
f

]
.

Also, for v ∈ E0 an infinite emitter and S a non-empty finite subset
of s−1

E (v), the induced map M [η] is defined by

M [η]([av,S ]) = [bw,T ]

where w = η(v) and T = {fi1 , . . . fin} is the finite subset of s−1
F (w)

such that fik = η(eik). So ME([av,S ]) = [bη(v),TS,v
]. Then, by the

definition of γF

γF ([bη(v),TS,v
]) =

[
qη(v) −

∑
f∈TS,v

ufu
∗
f

]
.

It follows then that (V ◦ LK)[η] ◦ γE = γF ◦M [η] for all generators of
ME . Hence, the diagram above commutes. �

We are now ready to use the results of the previous section to
show that the monoid morphism γE given in Lemma 2.9 is a monoid
isomorphism for an arbitrary graph.

Theorem 4.9. Let E be an arbitrary graph and let K be a field. Then
γE :ME → V[LK(E)] is a monoid isomorphism.

Proof. By [17, Proposition 2.7], there exists a direct system ((Ei)i∈I ,
(ϕij)i,j∈I) in CKGr such that E = lim−→(Ei, ϕi,j), Ei are countable
graphs, and

LK(E) = lim−→(LK(Ei), LK(ϕij)).
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By Lemma 4.8, for each i, j ∈ I with i ≤ j, the diagram

MEi

γEi

��

M [ϕij ] // MEj

γEj

��
V[LK(Ei)] V◦LK [ϕij ]

// V[LK(Ej)]

is commutative. By Theorem 3.4, γEi is a monoid isomorphism
for all i ∈ I. By Lemma 4.2, there exists a monoid isomorphism
ψ :M∞ → V∞ such that νi,∞ ◦γEi = ψ ◦µi,∞, where νij = V[LK(ϕij)]

and µij =M(ϕij).

By Lemmas 4.6 and 4.7, there exist monoid isomorphisms

ψV : V∞ → V[LK(E)] and ψM :M∞ →ME

such that

ψV ◦ νi,∞ = V[LK(ϕi,∞)] and ψM ◦ µi,∞ =M(ϕi,∞).

We claim that γE = ψV ◦ ψ ◦ ψ−1

M
. First note that, by Lemma 4.8,

the diagram

MEi

M [ϕi,∞] //

γEi

��

ME

γE

��
V[LK(Ei)] V[LK(ϕi,∞)]

// V[LK(E)]

is commutative. Let a ∈ME∞ . Then there exists a1 ∈MEi such that
µi,∞(a1) = ψ−1

M
(a). Then

ψV ◦ ψ ◦ ψ−1

M
(a) = ψ−1

V ◦ ψ ◦ µi,∞(a1) = ψV ◦ νi,∞ ◦ γEi(a1)

= V[LK(ϕi,∞)] ◦ γEi(a1)

= γE ◦Mϕi,∞(a1) = γE ◦ ψM ◦ µi,∞(a1)

= γE ◦ ψM ◦ ψ−1

M
(a) = γE(a).

We have just proved the claim. Since γE = ψV ◦ ψ ◦ ψ−1

M
is the

composition of monoid isomorphisms, γE is a monoid isomorphism. �
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