
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 6, 2014

INDEX OF MAXIMALITY
AND GOSS ZETA FUNCTION

VICTOR BAUTISTA-ANCONA AND JAVIER DIAZ-VARGAS

ABSTRACT. In this article, we define the index of
maximality m(y) of a positive integer y, associated with the
vanishing of certain power sums over Fq [T ], related to the
set Vm(y) of “valid” decompositions of y = X1 + · · · + Xm

of length m. The index of maximality determines the
maximum positive integer m for which the sets Vm(y)
are not empty. An algorithm is provided to find Vi(y),
1 ≤ i ≤ m(y) explicitly.

The invariance, under some action, of the index of
maximality m(y) and of the property of divisibility by q−1 of
ℓq(y), the sum of the q-adic digits of y, implies the invariance
of the degree of Goss zeta function; it is illustrated here for
two cases.

Finally, we generalize, to all q, the properties of an
equivalence relation on Zp, which depends on the Newton
polygon of the Goss zeta function.

1. Introduction. In [7], Sheats proved the Riemann hypothesis for
the Goss zeta function on Fq[T ]; part of the proof depends on the
assertion of Carlitz on the vanishing of certain power sums [2].

Let N be the set of non-negative integers, and put Z+ = N\{0}. Let
p be a prime, and make q = pr. Let A+ be the set of monic polynomials
in A = Fq[T ]. The power sums studied by Carlitz in [2] for positive
integers y are:

S′
m (y) =

∑
f∈A+

deg f=m

fy.
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Definition 1.1. Let Um(y) be the set of m-tuples (X1, . . . , Xm) ∈ Nm

whose terms sum to y and also satisfy the following conditions:

(1) there is no p-adic carry over in the sum y =
∑
Xj ;

(2) Xj > 0 and (q − 1) | Xj for 0 ≤ j ≤ m− 1.

Note that condition (2) does not set any restriction on Xm.

In [2], Carlitz studied, among other things, the vanishing of the sums
S′
m(y) for positive integers y. He stated that S′

m(y) ̸= 0 if and only if
Um+1(y) ̸= ∅. During the proof of this statement, he wrote S′

m(y) as
follows:

S′
m (y) =

∑(
y

X0, . . . , Xm

)
(−1)

m
TX1+2X2+···+mXm ,

where the sum is over all (X0, . . . , Xm) such that y =
∑
Xj regardless

of whether or not there is p-adic carry over. It involves this condition
as follows: the Lucas theorem states that(

y

X0, . . . , Xm

)
=

y!

X0! · · ·Xm!

is not 0(mod p) if and only if there is no p-adic carry over in the sum∑
Xj . So we can write

S′
m (y) =

∑
(X0,...,Xm)∈Um+1(y)

(
y

X0, . . . , Xm

)
(−1)

m
TX1+2X2+···+mXm .

Hence, if Um+1(y) = ∅, then S′
m(y) = 0. For the converse, Carlitz

stated without proof that:

The degree X1 + 2X2 + · · · + mXm of a mono-
mial in the sum attains a single maximum when
(Xm, Xm−1, . . . , X0) is lexicographically larger than
all the elements in Um+1(y).

Sheats in [7] shows a slightly different version of the above quotation.

Definition 1.2. For an m-tuple X = (X1, . . . , Xm) ∈ Nm, the weight
of X is defined as

wt (X) = X1 + 2X2 + · · ·+mXm.
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Given a finite subset W ⊂ Nm, a tuple O ∈ W is said to be optimal
in W if wt(O) ≥ wt(X) for all X ∈ W . The greedy element of
W is the tuple (G1, . . . , Gm) ∈ W for which (Gm, Gm−1, . . . , G1) is
the largest, lexicographically. A composition of y ∈ Z+ is a tuple
X = (X1, . . . , Xm) of positive integers whose sum is y. We say that an
m-tuple X is a valid composition if it also satisfies that there is no p-
adic carry over in the sum y =

∑m
i=1Xi and q−1 | Xj for 1 ≤ j ≤ m−1.

Define Vm(y) as the set of all valid compositions of y of length m, and
note that

Vm (y) = {(X1, . . . , Xm) ∈ Um (y) : Xm > 0} .

Much of [7] is devoted to proving the following theorem.

Theorem 1.3. If Vm(y) is not empty, then it contains a single optimal
element. Moreover, the optimal element is the greedy element of Vm(y).

Proof. See [7, page 125]. �

Theorem 1.3 implies its counterpart for Um(y), which is equivalent
to the statement of Carlitz:

Theorem 1.4. If Um(y) is not empty, then it contains a single optimal
element. Moreover, the optimal element is the greedy element of Um(y).

Proof. See [7, page 125]. �

It is a consequence of Theorem 1.4 that:

Theorem 1.5. S′
k(y) ̸= 0 if and only if Uk+1(y) ̸= ∅.

Proof. See [7, page 125]. �

This article introduces the index of maximality m(y) for y a non-
negative integer and shows its relationship with the sets Vm(y). It
provides an algorithm that can be implemented on a computer to find
both m(y) and Vm(y).

Also, the invariance of the index under the action of the group S(q)

and the action i 7→ piy are shown. As a simple application, using this
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index, we show how to calculate the degree of the Goss zeta function.
The invariance of this index, under the actions described above, allows
also to show the invariance of the degree of the Goss zeta function
under the same actions.

In [4], Goss defines an equivalence relation on Zp which depends on
the zeta function and explicitly describes the equivalence classes in the
case q = p. We generalize these results to all q = pr.

Now, we will find conditions so that Vm(y) ̸= ∅ in the case q prime.

2. Conditions for Vm(y) ̸= ∅, case q = p. In [3] a simple and
effective method is shown for calculating the greedy element G =
(G1, . . . , Gm) in Um(y): if y = y0+y1p+· · ·+ykpk is the decomposition
of y in base p,

G1 = y0 + y1p+ · · ·+ y∗j1p
j1 , y∗j1 ≤ yj1 ,

where
y0 + y1 + · · ·+ y∗j1 = p− 1.

Notice that G1 is the minimum value less than or equal to y such that
this value is divisible by p − 1. Then, G2 is obtained (minimum) in
the same way by considering the decomposition in base p of y − G1.
Then, G3 is obtained (minimum) in the same way by considering the
decomposition in base p of y − (G1 +G2), and so on. Finally,

Gm = y − (G1 +G2 + · · ·+Gm−1) .

This method of finding the greedy element is also useful to determine
for which m,Vm(y) ̸= ∅.

Let Zp be the ring of p-adic integers and y ∈ Z ⊆ Zp a non-
negative integer which can be written q-adically as y =

∑w
i=0 yiq

i where
0 ≤ yi ≤ q − 1 for all i. Let ℓq(y) :=

∑
i yi. If y ∈ Zp is not a non-

negative integer, we have ℓq(y) = ∞.

Theorem 2.1. Let m = m(y) = ⌈ℓp(y)/(p− 1)⌉ where ⌈k⌉ is the small-
est integer greater than or equal to k. Then

V1 (y) , . . . , Vm (y) ̸= ∅ and Vm+1 (y) = ∅.

Proof. Write ℓp(y) = α(p − 1) + r, where r = 0 or 0 < r < p − 1.
Suppose r = 0. Then m = ℓp(y)/(p− 1). Note that, using the above
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algorithm, we can find (X1, . . . , Xm) with X1 the minimum positive
value divisible by p−1 and≤ y, X2 the minimum positive value divisible
by p − 1 and ≤ y − X1, X3 the minimum positive value divisible by
p − 1 and ≤ y − (X1 + X2), etc. Therefore, Vm(y) ̸= ∅. However,
since there are no extra digits, it is impossible to find an Xm+1 > 0.
Therefore, Vm+1(y) = ∅. Now, note that, if 0 < r < p− 1, then we can
find X1, . . . , Xm−1 minimum and divisible by p−1, and greater than 0.
And, since r > 0, we find Xm > 0 minimum and that is not divisible by
p − 1. Therefore, Vm(y) ̸= ∅. Since it is impossible to find Xm+1 > 0,
we obtain that Vm+1(y) = ∅. This ends the proof. �

Example 2.2. Let q = 5, y = 1712 = 2 3 3 2 25. Note that
ℓq(y) = 12. Then m = m(y) = ⌈12/4⌉ = 3. For example, X =
(2 2, 1 3 0 0, 2 2 0 0 0) = (12, 200, 1500). If X = (X1, X2, X3, X4), then
X1, X2, X3 should have at least four digits 5-adic each. This would
exhaust all the digits in y and, therefore, X4 = 0. This is impossible.

In the next section, we find a generalization of Theorem 2.1 for the
case of an arbitrary q.

3. Conditions for Vm(y) ̸= ∅, case q = pr. The index of
maximality.

Definition 3.1. In set theory, a multiset (also called bag) is defined
as a pair (A,m) where A is a set and m : A → N is a function from
A to N. The set A is called the underlying set of elements. For each
a ∈ A, the multiplicity of a is the number m(a). It is common to
write the function m as a set of ordered pairs {(a,m(a)) : a ∈ A}. For
example, the multiset described as {a, b, b} is written as {(a, 1), (b, 2)}.
Informally, we describe a multiset with repeated elements explicitly and
not as ordered pairs.

Now, we discuss a more efficient way of dealing with the conditions
of Definition 1.1.

Definition 3.2. For y ∈ N define σ(y) as the nondecreasing sequence
of powers of p whose terms sum y.
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Example 3.3. Let p = 5, y = 11931. By representing y in base 5, we
obtain that y = 3 4 2 1 1. Then

σ (y) =
{
1, 5, 52, 52, 54, 54, 54, 54, 55, 55, 55

}
.

Hence,

(X1, . . . , Xm) satisfies condition (1) of Definition 1.1
if and only if {σ(X1), . . . , σ(Xm)} is a partition (as a
multiset) of σ(y).

To deal with the p-adic digits when we add q-adic digits, we define
the mapping Γ : N → Nr as follows. Given y ∈ N with p-adic expansion
y =

∑
j≥0 yjp

j , define Γ(y) as the column vector (u0, u1, . . . , ur−1)
t

where ui is the sum of all yj such that j ≡ i(mod r). Let ψ0 =

(1, p, . . . , pr−1)t and ⟨·, ·⟩ the usual inner product. Note that ⟨ψ0,Γ(y)⟩
is the sum of the q-adic digits of y.

A number y is divisible by q − 1 if and only if the sum of its q-adic
digits is divisible by q − 1. Using this fact, it is clear that

(X1, . . . , Xm) satisfies condition (2) of Definition 1.1 if
and only if q − 1 | ⟨ψ̄0,Γ(Xj)⟩ for 1 ≤ j ≤ m − 1 and
X1, X2, . . . , Xm−1 > 0.

Remark 3.4. If (X1, . . . , Xm) ∈ Vm(y), then Γ(X1) + · · ·+ Γ(Xm) =
Γ(y) because in the sum there is no p-adic carry over.

Finally, we define a partial order: for two vectors x = (x0, . . . , xr−1)
t

and y = (y0, . . . , yr−1)
t in Nr, write that x ≤ y if and only if xi ≤ yi

for 0 ≤ i ≤ r−1. It is important to note that x < y means that xi ≤ yi
for 0 ≤ i ≤ r − 1 with xi < yi for at least one i.

This leads to the following algorithm:

Algorithm 3.5 (Algorithm to calculate Vm(y)). To satisfy condi-
tion (1) of Definition 1.1, partition σ(y) in m parts (Σ1, . . . ,Σm).
Then, set Xi equal to the sum of the elements of Σi. To satisfy condi-
tion (2), take Xi for 1 ≤ i ≤ m− 1 such that q− 1 divides ⟨ψ0,Γ(Xi)⟩.
Find the set of vectors v ∈ Nr such that v < Γ(y) and q − 1 | ⟨ψ0, v⟩.
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By having found this set of vectors, all the valid compositions are con-
structed.

Example 3.6. Let p = 3, r = 2, m = 3, y = 4791. Form V3(4791).
Note that 4791 = 2 0 1 2 0 1 1 03 and 4791 = 6 5 1 39. Then Γ(y) =
(3, 4)t. The only vector v = (v0, v1) ∈ N2 such that (v0, v1) < (3, 4)t

and 8 | 1 · v0 + 3 · v1 is (2, 2)t. Then V3(4791) = ∅, because if the
composition (X1, X2, X3) ∈ V3(4791), then Γ(X1) = (2, 2), Γ(X2) =
(2, 2) and Γ(X3) > 0, which is impossible because of Remark 3.4.

Example 3.7. Suppose that m = 2, and we have V2(4791) ̸= ∅. If
(Σ1,Σ2) is the partition, since Γ(X1) + Γ(X2) = Γ(y) and Γ(X1) must
be divided by 8, the only option is Γ(X1) = (2, 2)t. It is now clear that

X1 ∈
{

2 0 0 1 0 1 0 0, 2 0 0 2 0 0 0 0, 1 0 1 1 0 1 0 0, 1 0 1 2 0 0 0 0,
1 0 0 1 0 1 1 0, 1 0 0 2 0 0 1 0, 1 1 0 1 1 0, 1 2 0 0 1 0

}
and, therefore,

V2(4791)=


(2 0 0 1 0 1 0 0, 1 1 0 0 1 0) , (2 0 0 2 0 0 0 0, 1 0 0 1 1 0) ,
(1 0 1 1 0 1 0 0, 1 0 0 1 0 0 1 0) , (1 0 1 2 0 0 0 0, 1 0 0 0 0 1 1 0) ,
(1 0 0 1 0 1 1 0, 1 0 1 1 0 0 0 0) , (1 0 0 2 0 0 1 0, 1 0 1 0 0 1 0 0) ,
(1 1 0 1 1 0, 2 0 0 1 0 0 0 0) , (1 2 0 0 1 0, 2 0 0 0 0 1 0 0 )

.
Now, we formally define what a basis is.

Definition 3.8. A vector basis J for y denoted by βJ = {v1, . . . , vs−1}
is formed by vectors such that v1, . . . , vs−1 ∈ Nr\{0} which satisfy the
following conditions:

(1) v1, . . . , vs−1 < Γ(y).
(2) q − 1 | ⟨ψ0, vi⟩ 1 ≤ i ≤ s− 1.

From Remark 3.4 and Definition 3.8, we have

Definition 3.9. Let y ∈ Zp be a non-negative integer. We define the
index of maximality of y, denoted by m(y), as the maximum number
of vectors vi in the basis J for y such that

Γ (y)−
(
v̄1 + · · ·+ vm(y)−1

)
> 0.

If y ∈ Zp − {z ∈ Z, z ≥ 0}, put m(y) = ∞.
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An immediate consequence of Definition 3.9 is the following theorem:

Theorem 3.10. Let q = pr and y a non-negative integer. Let
m = m(y) be the index of maximality of y. Then

V1 (y) , . . . , Vm (y) ̸= ∅ and Vm+1 (y) = ∅.

Proof. Let m = m(y). Then choose v1, . . . , vm−1 ∈ βJ such that
Γ(y)− (v1 + · · ·+ vm−1) > 0. Let Xi be such that Γ(Xi) = vi for 1 ≤
i ≤ m− 1 and Xm such that Γ(Xm) = Γ(y)− (Γ(X1)+ · · ·+Γ(Xm−1)).
As q − 1 | ⟨ψ0,Γ(Xi)⟩, then q − 1 | Xi for 1 ≤ i ≤ m − 1. From
the fact that Γ(Xm) > 0, it is clear that Xm ̸= 0. And, therefore,
(X1, . . . , Xm) ∈ Vm(y) and Vm(y) ̸= ∅. Now suppose that Vm+1(y) ̸= ∅.
Let (X1, . . . , Xm+1) ∈ Vm+1(y). Then X1, . . . , Xm are divisible by q−1
and Xm+1 > 0. That is, Γ(X1), . . . ,Γ(Xm) ∈ βJ, Γ(Xm+1) > 0, and
all of these Γ’s are such that Γ(y)− (Γ(X1) + · · ·+ Γ(Xm)) > 0 which
contradicts the definition of m. �

Remark 3.11. Note that m, for which Vm(y) is different from the
empty set, agrees, in the case q prime, with the one defined in Theo-
rem 2.1.

Example 3.12. (Rewriting Example 2.2). Let q = 5, y = 1712 =
2 3 3 2 25. Note that, as r = 1, we have that Γ(y) is the sum of all
p-adic digits of y, i.e., Γ(y) = (12). Now, βJ = {4, 8}. It follows clearly
that m(y) = 3. Therefore, V3(1712) ̸= ∅ and V4(1712) = ∅.

Example 3.13. Let p = 3, r = 2, q = 9 and y = 3281 =
1 1 1 1 1 1 1 23. Note that ℓp(y) = 9 and Γ(y) = (5, 4)t. Now,
βJ = {(2, 2)t, (4, 4)t, (5, 1)t}. Hence,

(5, 4)
t
= (2, 2)

t
+ (2, 2)

t
+ (1, 0)

t

(5, 4)
t
= (4, 4)

t
+ (1, 0)

t
,(1)

(5, 4)
t
= (5, 1)

t
+ (0, 3)

t
.

Then m = m(y) = 3. It follows that V3(3281) ̸= ∅ and V4(3281) = ∅.
For example, X = (1 0 1 2, 1 0 1 1 0 1 0 0, 1 0 0 0 0 0 0) =
(32, 2520, 729) ∈ V3(3281). Note that, because of (1) we have
V4(3281) = ∅.
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Let y ∈ Zp. Write y q-adically as

∞∑
i=0

ciq
i,

and define

ρ∗(y) :=
∞∑
i=0

ciq
ρ(i),

where ρ is a permutation of N. Let S(q) be the group of permutations
of Zp obtained as ρ varies over all permutations of N. The action of
this group over the p-adic integers was defined by Goss in [5] in his
Eulerian search of a functional equation for the zeta function. There
he shows, among others, the following basic properties of this action:

• (Semi-additivity). Let z, u, w be three p-adic integers with
z = u + w and where there is no carry over of q-adic digits.
Then ρ∗(z) = ρ∗(u) + ρ∗(w).

• Let y be an integer. Then y ≡ ρ∗(y) (mod q − 1).
• Let y be a non-negative integer. Then ℓq(y) = ℓq(ρ∗(y)).

After proving this, he shows by using the formula of Lucas, that the
group S(q), q = pr has a natural relationship with binomial coefficients
considered modulo p: Let X1 and X2 be two non-negative integers. Let
ρ∗ ∈ S(q). Then(

X1 +X2

X1

)
≡

(
ρ∗(X1) + ρ∗(X2)

ρ∗(X1)

)
(mod p).

The result of this says that there is p-adic carry over in the sum of
X1 and X2 if and only if it exists in the sum of ρ∗(X1) and ρ∗(X2).

The following theorem is an immediate consequence of the above,
where we adapted the notation of Goss to our own notation.

Theorem 3.14 ([5]). Let

(X1, . . . , Xm) ∈ Um(y) (respectively Vm(y)),

for y ∈ Z+. Then, for any ρ∗ ∈ S(q),

(ρ∗(X1), . . . , ρ∗(Xm)) ∈ Um(ρ∗(y)) (respectively Vm(ρ∗(y))).
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This theorem implies the invariance of the index of maximality of a
non-negative integer with respect to the action of the group S(q).

Corollary 3.15. Let q = pr and y be a non-negative integer. Let m(y)
be the index of maximality of y. Then m(y) = m(ρ∗(y)), the index of
maximality of ρ∗(y), for any ρ∗ ∈ S(q).

The index of maximality does not change either if we change y by
piy; this is shown in the following proposition.

Proposition 3.16. Let y be a non-negative integer with index of
maximality m(y). Then m(y) = m(piy) for all i ∈ N.

Proof. Let e0, . . . , en−1 denote the standard basis of column vectors
for Rn, define R := [e1, e2, . . . , en−1, e0] to be the permutation matrix
which rotates the coordinates of a vector to the right: Rei = ei+1.
Then, for any i ∈ N, we have RiΓ(y) = Γ(piy). If

βJ (y) = {v1, . . . , vs−1} ,

from Definition 3.9 we obtain

βJ
(
piy

)
=

{
Riv1, . . . , R

ivs−1

}
.

Therefore,
m (y) = m

(
piy

)
. �

4. The Goss zeta function. Let v∞ be the valuation T−1-adic
over K = Fq(T ). Then, the field of Laurent series K∞ := Fq((T

−1)) is
the completion of K with respect to v. Let Ω be the completion of an
algebraic closure of K∞.

Definition 4.1. The Goss zeta function for Fq[T ] is defined as

ζ (z) =
∑

f∈A+

f−z,

where z is taken in Ω∗ × Zp. Exponentiation is defined as follows: for
a monic polynomial f , set ⟨f⟩ := fT− deg f . Then, for z = (x, y) ∈
Ω∗ × Zp, Goss defines

fz = xdeg f ⟨f⟩y .
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Goss showed that, by grouping terms of the same degree, the
function ζ(z) is well defined for all Ω∗ × Zp : for z = (x,−y),

ζ (z) = ζ (x,−y) =
∑
m≥0

x−m

( ∑
f∈A+

deg f=m

⟨f⟩y
)

=
∑
m≥0

am (y)x−m.

From the definition of exponentiation, note that f (T
m,m) = fm for

any integer m.

Now, note that the sums studied by Carlitz for positive integers y,

S′
m (y) =

∑
f∈A+

deg f=m

fy

arise naturally as coefficients of the Goss zeta function. If y ∈ N,

am (y) =
∑

f∈A+

deg f=m

⟨f⟩y =
∑

f∈A+

deg f=m

(
fT− deg f

)y
=

∑
f∈A+

deg f=m

fyT−y deg f

=
∑

f∈A+

deg f=m

T−myfy = T−my
∑

f∈A+

deg f=m

fy = T−myS′
m (y) .

Then

(2) v∞ (am (y)) = my − degS′
m (y) .

Now, if y ∈ Zp \N, we have that y = y0+y1p+y2p
2+ · · ·+yipi+ · · ·

has an infinite number of non-zero digits. Let ỹt be the sum of the first
t+ 1 terms in the p-adic expansion of y:

ỹt :=
t∑

i=0

yip
i.

For any m, there exists tm such that, if t ≥ tm,

v∞ (am (y)) = v∞ (am (ỹt)) = v∞ (am (ỹtm)) .

A proof of the assertion can be found in [7, Section 2]. Hence,

v∞ (am (y)) = mỹtm − degS′
m (ỹtm)

= mỹt − degS′
m (ỹt) (if t ≥ tm).(3)
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Thus, the case where y ∈ Zp \ N reduces to the case where it is a
positive integer.

Our first result is related to the valuation at ∞ of the zeros of
ζ(x,−y).

Proposition 4.2. We have v∞(am(y)) ≡ 0(mod q − 1) for all m, y.

Proof. Let y ∈ N, and suppose that S′
m(y) ̸= 0. From (2) and

the proof of Theorem 1.1 of [7, page 123] we have v∞(am(y)) =
my − degS′

m(y) and, if G = (G1, . . . , Gm) is the greedy element in
Um(y), then

degS′
m (y) = G1 + 2G2 + · · ·+mGm.

Therefore,

v∞ (am (y)) = my − degS′
m (y) = my − (G1 + 2G2 + · · ·+mGm)

≡ m (y −Gm) = m (G1 + · · ·+Gm−1)

≡ 0 (mod q − 1) .

The case y ∈ Zp \ N follows immediately from (3). �

Corollary 4.3. Let α ∈ K a zero of ζ(x,−y) for y ∈ Zp fixed. Then
v∞(α) is positive and divisible by q − 1.

Proof. Suppose that v∞(α) ≤ 0. Then

v∞

( k∑
i=0

ai (y)α
−i

)
= v∞

(
1 + a1 (y)α

−1 + · · ·+ ak (y)α
−k

)
= 0,

because v∞(ai(y))− iv∞(α) > 0 for i ≥ 1 since v∞(ai(y)) > 0. On the
other hand,

v∞

(
lim
k→∞

k∑
i=0

ai (y)α
−i

)
= lim

k→∞
v∞

( k∑
i=0

ai (y)α
−i

)
= ∞

since α is a root. Hence, v∞(α) > 0. Now, [7] shows that the Newton
polygon of ζ(z) has only segments of vertical length 1. Hence, the
valuations of the zeros are precisely the slopes

λy (m) = v∞ (am (y))− v∞ (am−1 (y)) = v∞ (α)
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and, by Proposition 4.2,

λy (m) ≡ 0 (mod q − 1) . �

Goss in [4] shows that all zeros of ζFp[T ] are near-trivial via the
lemmas of Hensel and Krasner. As preliminary results, he finds the
exact degree of the zeta function in the case q prime when y is a positive
integer (this follows also from a theorem proved by Lee, a student of
Carlitz, in [6, Theorem 3.2]), and properties of its coefficients and zeros
equal those shown in Proposition 4.2 and Corollary 4.3.

Now, we show how to calculate the degree of ζ(x,−y), using the
index of maximality.

Theorem 4.4.

(i) Let q = pr and y be a non-negative integer. Let m = m(y) be the
index of maximality of y. Then the degree d in x−1 of ζ(x,−y)
is

d =

{
m− 1 if q − 1 - ℓq (y) ,
m if q − 1 | ℓq (y) .

(ii) Let y ∈ Zp. Then the Newton polygon of ζ(x,−y) has at least
n different slopes if and only if d ≥ n.

Proof. From Proposition 2.1 and Proposition 3.10, it follows that

Vm (y) ̸= ∅ and Vm+1 (y) = ∅.

Note that, if q − 1 - y, Vm(y) = Um(y). Then Um(y) ̸= ∅ and
Um+1(y) = ∅. By Theorem 1.5, S′

m−1 ̸= 0 and S′
m = 0. If q − 1 | y,

Um+1(y) is essentially equal to Vm(y) via the map (X1, . . . , Xm+1) 7→
(X1, . . . , Xm +Xm+1). Then Vm(y) ̸= ∅ implies that Um+1(y) ̸= ∅ and
Vm+1(y) = ∅ implies that Um+2(y) = ∅. Both equalities give as a result
that S′

m ̸= 0 and S′
m+1 = 0. This ends the proof of the first part.

The second part is immediate from the first and Riemann hypothesis
for the Goss zeta function. �

This method of calculating the degree of the Goss zeta function and
Corollary 3.15 gives another proof for the corollary that follows.
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Corollary 4.5 ([5]). Let y be a non-negative integer with associated
zeta function ζ(x,−y). Let ρ∗ ∈ S(q) arbitrary. Then ζ(x,−y) and

ζ(x,−ρ∗(y)) have the same degree in x−1.

Example 4.6 (Continuation of Example 3.12). Let q = 5, y = 1712 =
2 3 3 2 25. Note that ℓp(1712) = 12 and 4 | 12. Then d = 3, since
m(y) = 3. Moreover,

S′
3 (y) = 2T 3200 + 2T 3180 + 2T 3176 + T 3160 + 4T 3156 + · · · ,
S′
4 (y) = 0.

Example 4.7 (Continuation of Example 3.13). Let p = 3, r = 2,
q = 9, y = 3281 = 4 4 4 59. Note that ℓq(y) = 17 and 8 - 17. Then
d = 2 because m(y) = 3. Moreover,

S′
2 (y) = T 3978 + 2T 3970 + 2T 3898 + T 3890 + T 3762 + · · · ,
S′
3 (y) = 0.

The change of y for piy, i ∈ N, does not change the degree of the
zeta function. Since we are in characteristic p, this follows because

Sm(piy) = Sm(y)p
i

. As an illustration, this can also be proved by
using Theorem 4.4 as follows:

Proposition 4.8. Let y a non-negative integer with associated zeta
function ζ(x,−y). Then ζ(x,−y) and ζ(x,−piy) have the same degree
in x−1 for all i ∈ N.

Proof. Clearly,

q − 1 | lq (y) ⇐⇒ q − 1 | y ⇐⇒ q − 1 | piy ⇐⇒ q − 1 | lq
(
piy

)
.

Then, by Proposition 3.16 and Theorem 4.4, we have that ζ(x,−y) and
ζ(x,−piy) have the same degree in x−1 for all i ∈ N. �

We can use the Newton polygon of ζ(x, y) to define an equivalence
relation on Zp in the following way: Let n be a fixed positive integer.
Let yi ∈ Zp, i = 1, 2, be such that the Newton polygons of ζ(x, yi) has n
finite slopes for each i. We say that y1 ∼n y2 if and only if the Newton
polygons of ζ(x, y1) and ζ(x, y2) have the same first n segments. If
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y ∈ Zp does not have n finite slopes, then by definition, y is equivalent
to itself.

It is clear that ∼n is an equivalence relationship which only depends
on ζ(x, y) and n.

Now, let y ∈ Zp be chosen so that m = m(y) ≥ n and we expand −y
p-adically as

∑∞
t=0 cip

i (where it may happen that all but finitely many
of ci vanish). Note that Theorem 4.4 tells us that m = n or m = n+ 1
depending upon the divisibility of lq(y).

Also, because of [7, Lemma 2.1], for all m ≥ 0, tm exists such that,
if t ≥ tm, then

vm(y) = vm (ỹt) ,

where vm(y) is the valuation of the coefficient of x−m in ζ(x,−y).
We find tm, tm−1, . . . , t1 (or tm+1, tm, . . . , t1), and let

t∗m = max {tm, tm−1, . . . , t1} or t∗m = max {tm+1, tm, . . . , t1} .

Then, we define

yn =

t∗m∑
i=1

cip
i.

Proposition 4.9.

(1) We have −yn ∼n y.
(2) yn is the smallest element in the set of positive integers i with

−i ∼n y.
(3) Let y and z in Zp. Then y ∼n z if and only if yn = zn.

Proof.

(1) We have

v∞ (am (y)) = mG′
1 + (m− 1)G′

2 + · · ·+G′
m

and

v∞ (am (yn)) = mG1 + (m− 1)G2 + · · ·+Gm

with (G′
1, . . . , G

′
m, G

′
m+1) the greedy element in Um+1(ỹt) and

(G1, . . . , Gm, Gm+1)
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the greedy element in Um+1(yn). We will have finished if we
show that both valuations are the same. We have, by Theo-
rem 3.10, that Vm+1(y) = Vm+1(yn) = ∅, so G′

m+1 = Gm+1 = 0.
By Proposition 4.1 of [7], we have that (G′

1, . . . , G
′
m) is the

greedy element in Vm(ỹt−G′
m+1) and (G1, . . . , Gm) is the greedy

element in Vm(yn −Gm+1). The equality follows from the def-
inition of the index of maximality.

(2) Let i be a positive integer such that −i ∼n y and i < yn.
Because ∼n is an equivalence relation −i ∼n −yn, the Newton
polygon of ζ(x, i) and ζ(x, yn) have the same first n segments.
Therefore, because of the preceding paragraph, the greedy
element in Um−1(yn − Gm) is equal to the greedy element in
Um−1(i−G′

m). But this is a contradiction.
(3) It follows from the fact that ∼n is an equivalence relation and

(2). �

Thus, the equivalence classes under ∼n consisting of more than one
element are in a one-to-one correspondence with the negative integers
−j described in the preceding proposition. Note that j is divisible by
q − 1.

For q arbitrary, Lee ([6, Lemma 7.1]), proved that if m > lq(y)/(q−
1), then S′

m(y) = 0, so that the degree of ζ(x,−y) is less than or equal
to ⌊lq(y)/(q − 1)⌋, where ⌊ ⌋ is the greatest integer function. Since the
degree of ζ(x,−y) does not change, if we change y to pi, i ∈ N, the
degree is less than or equal to ⌊lq(piy)/(q − 1)⌋ for all i ∈ N. But the
set{⌊

lq(p
iy)/(q − 1)

⌋
: i ∈ N

}
=

{⌊
lq(p

iy)/(q − 1)
⌋
: 0 ≤ i ≤ n− 1

}
.

Therefore, the degree of ζ(x,−y) is less than or equal to

min
0≤i≤n−1

⌊
lq(p

iy)/(q − 1)
⌋
.

Böeckle realized that, in fact, it follows from [7], although Sheats does
not have this established in a specific way, that the above inequality
is actually an equality. Therefore, the degree of Goss zeta function is
given by the following simple formula:{⌊

min0≤i≤n−1 ℓq
(
piy

)
q − 1

⌋}
.
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The second author learned this from Böckle at a seminar in March,
2009, while visiting the University of Arizona, Tucson. See [1, Prop.
10.21].

Note that, because the degree is invariant under the action of S(q),
the formula of Böckle is also invariant under this action, i.e.,{⌊

min0≤i≤n−1 ℓq
(
piy

)
q − 1

⌋}
=

{⌊
min0≤i≤n−1 ℓq

(
ρ∗(p

iy)
)

q − 1

⌋}
.

Remark 4.10. The action given in Proposition 4.8, y 7→ piy, i ∈ N,
under which the degree is invariant, is not necessarily one of the actions
in S(q), since ℓq(p

iy) could be different from ℓq(y). The invariance of
the index of maximality and of the property of divisibility by q − 1 of
ℓq(y) under some action implies the invariance of the degree of the Goss
zeta function under this action.
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