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WHEN THE COMAXIMAL AND ZERO-DIVISOR
GRAPHS ARE RING GRAPHS AND OUTERPLANAR

MOJGAN AFKHAMI

ABSTRACT. In this paper, we characterize the finite
commutative rings such that their comaximal graph (or zero-
divisor graph) are ring graphs, and we also study the case
where they are outerplanar.

1. Introduction. Suppose that G is a graph with n vertices and
q edges. Also assume that C is a cycle of G. A chord in G is any
edge joining two nonadjacent vertices in C. A primitive cycle is a cycle
without chords. Moreover, we say that a graph G has the primitive
cycle property (PCP) if any two primitive cycles intersect in at most
one edge. The free rank of G, denoted by frank (G), is the number of
primitive cycles of G. Also, the number rank (G) := q−n+r, where r is
the number of connected components of G, is called the cycle rank of G.
The cycle rank ofG can be expressed as the dimension of the cycle space
of G. These two numbers satisfy the inequality rank (G) ≤ frank (G),
as is seen in [7, Proposition 2.2]. In the second section of [7], the
authors provided a characterization of graphs such that the equality
occurs.

The precise definition of a ring graph can be found in [7, Section 2].
Roughly speaking, ring graphs can be obtained starting with a cycle and
subsequently attaching paths of length at least two that meet graphs
already constructed in two adjacent vertices. They showed that, for
the graph G, the following conditions are equivalent:

(i) G is a ring graph,
(ii) rank (G) = frank (G),
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(iii) G satisfies PCP and G does not contain a subdivision of K4 as
a subgraph.

Thus, every ring graph is planar. Moreover, in [7], the authors
also showed that every outerplanar graph is a ring graph. Recently,
in [1], the present authors investigated when the unit, unitary and
total graphs are ring graphs, and also studied when these graphs are
outerplanar. In this paper, we answer these questions for comaximal
and zero-divisor graphs.

Now, we review some background of graph theory from [6]. An
undirected graph is an outerplanar graph if it can be drawn in the
plane without crossings in such a way that all of the vertices belong
to the unbounded face of the drawing. There is a characterization of
outerplanar graphs that says a graph is outerplanar if and only if it does
not contain a subdivision of the complete graph K4 or the complete
bipartite graph K2,3. Clearly, every outerplanar graph is planar.

Throughout the paper, R is a finite commutative ring with non-
zero identity. Also, we denote the set of all unit elements and zero-
divisor elements of R by U(R) and Z(R), respectively. For simplicity
of notation, in the quotient ring K[x]/I, we denote the coset x+ I by
X.

2. Ring graphs and outerplanar Comaximal graphs. In [9],
Sharma and Bhatwadekar defined the comaximal graph of a commuta-
tive ring R, denoted by Γ′(R), with vertices all elements of R and two
distinct vertices a and b are adjacent if and only if aR + bR = R. In
[8, 10, 12], a subgraph of the comaximal graph, denoted by Γ2(R),
with non-unit elements of R as vertices, was studied. By [12, Corollary
5.3], we have that the comaximal graph Γ′(R) is planar if and only if
R is isomorphic to one of the following rings:

(i) R ∼= Z2,
(ii) R ∼= Z3,
(iii) R ∼= Z4,
(iv) R ∼= Z2[x]/(x

2),
(v) R ∼= F4,
(vi) R ∼= Z2 × Z2,
(vii) R ∼= Z2 × Z3,
(viii) R ∼= Z2 × Z2 × Z2.
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In order to characterize all finite rings R such that Γ′(R) is a ring
graph, we need only check the planar comaximal graphs.

Theorem 2.1. The graph Γ′(R) is a ring graph if and only if R is
isomorphic to one of the following rings:

(i) R ∼= Z2,
(ii) R ∼= Z3,
(iii) R ∼= Z4,
(iv) R ∼= Z2[x]/(x

2),
(v) R ∼= Z2 × Z2.

Proof. At first, we assume that Γ′(R) is a ring graph. Since every
ring graph is planar, we have Γ′(R) is planar. Thus we have the
following cases:

Case 1. R ∼= Z2 or R ∼= Z3. It is easy to see that Γ′(Z2) and Γ′(Z3)
are complete graphs with 2 and 3 vertices, respectively. Thus, they are
ring graphs.

Case 2. R ∼= Z4 or R ∼= Z2[x]/(x
2). For these rings, by Figures 1

and 2, we have rank (Γ′(R)) = frank (Γ′(R)) = 2.

FIGURE 1. Γ′(Z4) FIGURE 2. Γ′(Z2[x]/(x
2)).

Case 3. R ∼= F4. In this case, Γ′(F4) is a complete graph with 4
vertices, and so it is isomorphic to K4, which implies that Γ′(F4) is not
a ring graph.

Case 4. R ∼= Z2 × Z2. By Figure 3, we have rank (Γ′(R)) =
frank (Γ′(R)) = 1.
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FIGURE 3. Γ′(Z2 × Z2)

Case 5. R ∼= Z2 × Z3. The induced subgraph of Γ′(Z2 × Z3) on
the set {(1, 0), (0, 1), (1, 1), (1, 2)} is a complete graph, and so Γ′(R) is
not a ring graph.

Case 6. R ∼= Z2×Z2×Z2. The induced subgraph of Γ′(Z2×Z2×Z2)
on the set {(1, 0, 1), (0, 1, 1), (1, 1, 1), (1, 1, 0)} is isomorphic to K4, and
so it is not a ring graph.

The converse statement follows easily. �

Theorem 2.2. Γ′(R) is outerplanar if and only if it is a ring graph.

Proof. Suppose that Γ′(R) is outerplanar. Since outerplanar graphs
are ring graphs, by Theorem 2.1, R is one of the following rings:

Z2,Z3,Z4,Z2[x]/(x
2),Z2 × Z2.

Now, by Figures 1, 2 and 3, one can easily see that Γ′(R) is outerplanar.

Conversely, if R is one of the rings Z2,Z3,Z4,Z2[x]/(x
2),Z2 × Z2,

then one can easily check that Γ′(R) is outerplanar. �

In the rest of this section, we study the case where Γ2(R) is a ring
graph and outerplanar. It is easy to see that, if R is local, then Γ2(R) is
a totally disconnected graph. Hence, without loss of generality, we may
assume that R is not local. In [12, Corollary 6.3], it was proved that
Γ2(R) is planar if and only if R is isomorphic to one of the following
rings:

(i) R ∼= Z2 × Fq,
(ii) R ∼= Z3 × Fq,
(iii) R ∼= Z4 × Fq,
(iv) R ∼= Z2[x]/(x

2)× Fq,
(v) R ∼= Z3 × Z4,
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(vi) R ∼= Z3 × Z2[x]/(x
2),

(vii) R ∼= Z2 × Z2 × Z2.

In the following theorem, we determine all non-local finite rings R such
that Γ2(R) are ring graphs.

Theorem 2.3. The graph Γ2(R) is a ring graph if and only if R is
isomorphic to one of the following rings:

(i) R ∼= Z2 × Fq,
(ii) R ∼= Z3 × Z3,
(iii) R ∼= Z4 × Z2,
(iv) R ∼= Z2[x]/(x

2)× Z2,
(v) R ∼= Z2 × Z2 × Z2.

Proof. Since R is finite, we have R = U(R) ∪ Z(R). So, the vertex
set of Γ2(R) is Z(R). Also, it is clear that 0 is an isolated vertex in
Γ2(R). Thus, we focus on the induced subgraph of Γ2(R) with vertices
Z(R) \ {0}.

First, assume that Γ2(R) is a ring graph. Since every ring graph is
planar, we have Γ2(R) is planar. Thus we have the following cases:

Case 1. R ∼= Z2 × Fq. Suppose that Fq = {0} ∪ {ai; 1 ≤ i ≤ q− 1},
where a is a non zero element in Fq. Note that Z(R) \ {(0, 0)} =
{(1, 0)} ∪ {(0, ai); 1 ≤ i ≤ q − 1}. Put V1 := {(1, 0)} and V2 :=
{(0, ai); 1 ≤ i ≤ q − 1}. Then the induced subgraph Γ2(R) on
Z(R)\{(0, 0)} is isomorphic to K1,q−1, and so it is a star graph. Hence,
Γ2(R) is a ring graph.

Case 2. R ∼= Z3 × Fq. Again, assume that Fq = {0} ∪ {ai; 1 ≤ i ≤
q−1}, where a is a non zero element in Fq. Note that Z(R)\{(0, 0)} =
{(1, 0), (2, 0)} ∪ {(0, ai); 1 ≤ i ≤ q − 1}. Set V1 := {(1, 0), (2, 0)} and
V2 := {(0, ai); 1 ≤ i ≤ q − 1}. Clearly, the induced subgraph Γ2(R)
on Z(R) \ {(0, 0)} is a complete bipartite graph which is isomorphic
to K2,q−1. Since the primitive cycles of this graph have length 4,
we have that frank (Γ2(R)) = (q − 1)(q − 2)/2. On the other hand,
rank (Γ2(R)) = q − 2. Therefore, rank (Γ2(R)) = frank (Γ2(R)) if and
only if (q − 1)/2 = 1 or q = 2. So rank (Γ2(R)) = frank (Γ2(R)) if and
only if q = 2 or q = 3. Hence, R ∼= Z3 × Z2 or R ∼= Z3 × Z3.
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Case 3. R ∼= Z4×Fq. By considering Fq = {0}∪{ai; 1 ≤ i ≤ q−1},
we have Z(R) \ {(0, 0)} = {(1, 0), (3, 0), (2, 0)}∪{(0, ai), (2, ai); 1 ≤ i ≤
q − 1}. Clearly, (2, 0) is an isolated vertex in Γ2(R) \ {(0, 0)}. Put
V1 := {(1, 0), (3, 0)} and V2 := {(0, ai), (2, ai); 1 ≤ i ≤ q − 1}. Now the
induced subgraph Γ2(R)\{(0, 0)} on Z(R)\{(0, 0), (2, 0)} is a complete
bipartite graph which is isomorphic to K2,2q−2. Since the primitive
cycles of this graph have length 4, frank (Γ2(R)) = (q − 1)(2q − 3).
Also, rank (Γ2(R)) = 2q − 3. Hence, Γ2(R) is a ring graph if and only
if q − 1 = 1. Thus, R ∼= Z4 × Z2.

Case 4. R ∼= Z2[x]/(x
2)× Fq. Let Fq be as above. Then we have

Z(R)\{(0, 0)}={(1, 0), (1+X, 0), (X, 0)}∪{(0, ai), (X, ai); 1 ≤ i ≤ q−1}.

The vertex (X, 0) is an isolated vertex in Γ2(R) \ {(0, 0)}, and the
induced subgraph of Γ2(R) with vertices Z(R) \ {(0, 0), (X, 0)} is
isomorphic to K2,2q−2. Clearly, frank (Γ2(R)) = (q − 1)(2q − 3). Also,
ran (Γ2(R)) = 2q − 3. Hence, Γ2(R) is a ring graph if and only if
q − 1 = 1. Thus, R ∼= Z2[x]/(x

2)× Z2.

Case 5. R ∼= Z3 × Z4. It is easy to see that Z(R) \ {(0, 0)} =
{(0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (1, 2), (2, 2)}. The vertex (0, 2) is an
isolated vertex in Γ2(R) \ {(0, 0)}, and the induced subgraph of Γ2(R)
with vertex set Z(R) \ {(0, 0), (0, 2)} is isomorphic to K2,4. So,
frank (Γ2(R)) = 6. Also, rank (Γ2(R)) = 3. Hence, Γ2(R) is not a
ring graph.

Case 6. R ∼= Z3 × Z2[x]/(x
2). Clearly, Z(R) \ {(0, 0)} =

{(0, 1), (0, X), (0, 1+X), (1, 0), (2, 0), (1, X), (2, X)}. The vertex (0, X)
is an isolated point in graph Γ2(R) \ {(0, 0)}, and the induced sub-
graph Γ2(R) \ {(0, 0)} on Z(R) \ {(0, 0), (0, X)} is a complete bipar-
tite graph which is isomorphic to K2,4. So, frank (Γ2(R)) = 6. Also,
rank (Γ2(R)) = 3. Hence, Γ2(R) is not a ring graph.

Case 7. R ∼= Z2 × Z2 × Z2. By Figure 6, we have frank (Γ2(R)) =
rank (Γ2(R)) = 1. So Γ2(R) is a ring graph.
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FIGURE 4. Γ2(Z2 × Z2 × Z2)

The converse statement follows easily. �

Theorem 2.4. Γ2(R) is outerplanar if and only if it is a ring graph.

Proof. Suppose that Γ2(R) is outerplanar. Since an outerplanar
graph is a ring graph, by Theorem 2.3, R is one of the following rings:

Z2 × Fq,Z3 × Z3,Z4 × Z2,Z2[x]/(x
2)× Z2,Z2 × Z2 × Z2,

and one can easily check that Γ2(R) is outerplanar.

The converse statement is clear. �

3. Ring graphs and outerplanar zero-divisor graphs. The
zero-divisor graph Γ(R) is a graph with vertex set Z(R) \ {0} and
two distinct vertices a and b are adjacent if and only if ab = 0. The
planarity of Γ(R) was studied in [2, 3, 4, 11]. In this section, we
investigate all finite commutative rings R such that their zero-divisor
graphs are ring graphs and also outerplanar.

Theorem 3.1. Let R be a finite ring and F a finite field. Then the
zero-divisor graph Γ(R) is a ring graph if and only if R is isomorphic
to one of the following rings:

(i) Z2 × Z2 × Z2,
(ii) Z2 × F, Z3 × Z3, Z2 × Z4, Z2 × Z2[x]/(x

2), Z2 × Z9, Z2 ×
Z3[x]/(x

2),
(iii) Z4, Z2[x]/(x

2), Z8, Z2[x]/(x
3), Z4[x]/(2x, x

2−2), Z2[x, y]/(x, y)
2,

Z4[x]/(2x, x
2), Z9, Z3[x]/(x

2), Z4[x]/(x
2 − 2), Z4[x]/(x

2 +
2x + 2), Z4[x]/(x

2 + x + 1), F4[x]/(x
2), Z16, Z2[x]/(x

4),
Z2[x, y]/(x

2, y2), Z4[x]/(2x, x
3 − 2), Z4[x, y]/(x

2, xy − 2, y2),
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Z4[x]/(x
2), Z8[x]/(2x, x

2 − 4), Z27, Z9[x]/(x
2 − 3, 3x), Z9[x]/

(x2 − 6, 3x), Z3[x]/(x
3).

Proof. Let R be a finite ring. Then R ∼= R1 × R2 × · · · × Rn, for
some n > 1, and each Ri is a local ring. Now, we consider the following
cases:

Case 1. n > 4. In this case, as was shown in [2, 3], Γ(R) is not
planar, which implies that Γ(R) is not a ring graph.

Case 2. n = 3. In [2, 3], it was proved that Γ(R) is planar if and
only if R ∼= Z2 × Z2 × Z2 or R ∼= Z2 × Z2 × Z3. Also, it is easy to see
that

rank (Γ(Z2 × Z2 × Z2)) = frank (Γ(Z2 × Z2 × Z2)) = 1,

and so Γ(Z2 × Z2 × Z2) is a ring graph. Consider the two cycles
(0, 0, 1)− (1, 1, 0)− (0, 0, 2)− (1, 0, 0)− (0, 0, 1) and (0, 0, 1)− (0, 1, 0)−
(0, 0, 2)− (1, 0, 0)− (0, 0, 1) in Γ(Z2×Z2×Z3) to deduce that the zero-
divisor graph Γ(Z2 ×Z2 ×Z3) does not satisfy PCP, and thus it is not
a ring graph.

Case 3. n = 2. In [2, 3], it was shown that Γ(R) is planar if and
only if R is isomorphic to one of the following rings:

Z2 × Z8,Z2 × Z2[x]/(x
3),Z2 × Z4[x]/(2x, x

2 − 2),Z2 ×R2,Z3 ×R2,

where |Z(R2)| 6 3. So, we have the following situations:

(i) R is isomorphic to one of the following rings:

Z2 × Z8,Z2 × Z2[x]/(x
3),Z2 × Z4[x]/(2x, x

2 − 2).

It is easy to see that

Γ(Z2 × Z2[x]/(x
3)) ∼= Γ(Z2 × Z8) ∼= Γ(Z2 × Z4[x]/(2x, x

2 − 2)).

Let R = Z2 × Z8. Then, by Figure 5, we can easily find a
subdivision of K4. Hence, Γ(Z2 × Z8), Γ(Z2 × Z2[x]/(x

3)) and
Γ(Z2 × Z4[x]/(2x, x

2 − 2)) are not ring graphs.
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FIGURE 5. Γ(Z2 × Z8).

(ii) R ∼= Z2 × R2 or R ∼= Z3 × R2, where |Z(R2)| 6 3. If
|Z(R2)| = 1, then R2 is a field. Suppose that R2

∼= F with
|F| = m. Now, one can easy check that Γ(Z2 × F) is a star
graph, which implies that Γ(Z2 × F) is a ring graph. Also,
Γ(Z3 × F) ∼= K2,m−1. Thus, rank (Γ(Z3 × F)) = m − 2 and
frank (Γ(Z3 × F)) = (m− 1)(m− 2)/2. Therefore, Γ(Z3 × F) is
a ring graph if and only if (m−1)(m−2)/2 = m−2. So we must
have m = 2 or (m−1)/2 = 1. Hence, Γ(Z3×F) is a ring graph
if and only if m = 2 or 3. If |Z(R2)| = 2, then R2 is isomorphic
to Z4 or Z2[x]/(x

2). One can easily check that Γ(Z2 × Z4) ∼=
Γ(Z2×Z2[x]/(x

2)) and Γ(Z3×Z4) ∼= Γ(Z3×Z2[x]/(x
2)). Now,

by Figure 6, we have Γ(Z2 × Z4) and Γ(Z2 × Z2[x]/(x
2)) are

ring graphs. Also, by Figure 7, the two graphs Γ(Z3 ×Z4) and
Γ(Z2×Z2[x]/(x

2)) do not satisfy the PCP, and so they are not
ring graphs.

FIGURE 6. Γ(Z2 × Z4) ∼= Γ(Z2 × Z2[x]/(x
2)).
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FIGURE 7. Γ(Z3 × Z4) ∼= Γ(Z3 × Z2[x]/(x
2)).

If |Z(R2)| = 3, then R2
∼= Z9 or Z3[x]/(x

2). It is easy
to see that Γ(Z2 × Z9) ∼= Γ(Z2 × Z3[x]/(x

2)) and Γ(Z3 ×
Z9) ∼= Γ(Z3 × Z3[x]/(x

2)). So, by Figure 8, the graphs
Γ(Z2 × Z9) and Γ(Z2 × Z3[x]/(x

2)) are ring graphs. Now,
consider the two cycles (1, 0)− (0, 1)− (2, 0)− (0, 2)− (0, 1) and
(1, 0)− (0, 4)− (2, 0)− (0, 2)− (0, 1) in the graphs Γ(Z3 × Z9)
and Γ(Z2 ×Z3[x]/(x

2), respectively, to deduce that these zero-
divisor graphs do not satisfy PCP, and so they are not ring
graphs.

FIGURE 8. Γ(Z2 × Z9)

Case 4. n = 1. In this case, R is a local ring. Note that, if R is
a field, then Γ(R) is an empty graph. Thus, without loss of generality,
we may assume that R is not a field. In [2, Section 1], it was proved
that, if |R| > 32, then Γ(R) is not planar. Also, by [4, Proposition
5] and [11], if |R| = 32, then Γ(R) is not planar. Hence, if |R| > 32,
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then Γ(R) is not a ring graph. Now, if R is a local ring with non-empty
planar zero-divisor graph, then, by [4, Propositions 2,3,4] and [11], R
is isomorphic to one of the following rings of order 4, 8, 9, 16, 25 or 27:

Z4, Z2[x]/(x
2),

Z8, Z2[x]/(x
3), Z4[x]/(2x, x

2 − 2), Z2[x, y]/(x, y)
2, Z4[x]/(2x, x

2),
Z9, Z3[x]/(x

2),
Z16, F4[x]/(x

2), Z4[x]/(x
2−2), Z4[x]/(x

2+2x+2), Z4[x]/(x
2+x+1),

Z2[x]/(x
4), Z2[x, y]/(x

2 − y2, xy), Z2[x, y]/(x
2, y2), Z4[x]/(2x, x

3 − 2),
Z4[x, y]/(x

2 − 2, xy, y2 − 2, 2x), Z4[x, y]/(x
2, xy − 2, y2), Z4[x]/(x

2),
Z4[x]/(x

2 − 2x), Z8[x]/(2x, x
2 − 4),

Z25, Z5[x]/(x
2),

Z27, Z9[x]/(x
2 − 3, 3x), Z9[x]/(x

2 − 6, 3x), Z3[x]/(x
3).

Now one can easily check the following graph isomorphisms:

Γ(Z4) ∼= Γ(Z2[x]/(x
2)) ∼= K1,

Γ(Z8) ∼= Γ(Z2[x]/(x
3)) ∼= Γ(Z4[x]/(2x, x

2 − 2)) ∼= K1,2,
Γ(Z2[x, y]/(x, y)

2) ∼= Γ(Z4[x]/(2x, x
2)) ∼= K3,

Γ(Z9) ∼= Γ(Z3[x]/(x
2)) ∼= K2,

Γ(F4[x]/(x
2)) ∼= Γ(Z4[x]/(x

2 + x+ 1)) ∼= K3.

Therefore, for all the rings,

Z4,Z2[x]/(x
2), Z8, Z2[x]/(x

3), Z4[x]/(2x, x
2 − 2),

Z2[x, y]/(x, y)
2, Z4[x]/(2x, x

2), Z9, Z3[x]/(x
2),

F4[x]/(x
2), Z4[x]/(x

2 + x+ 1),

their zero-divisor graphs are ring graphs.

Also, the figures of the graphs Γ(Z4[x]/(x
2 − 2)) and Γ(Z4[x]/(x

2 +
2x+ 2)) are isomorphic to Figure 10, and are ring graphs.

Also, we have

Γ(Z25) ∼= Γ(Z5[x]/(x
2)) ∼= K4,

which implies that they are not ring graphs.
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It is not hard to see that

Γ(Z27) ∼= Γ(Z9[x]/(x
2 ± 3, 3x)) ∼= Γ(Z3[x]/(x

3)).

Now, by Figure 9, frank (Γ(Z27)) = rank (Γ(Z27)) = 6. So Γ(Z27),
Γ(Z9[x]/(x

2 ± 3, 3x)) and Γ(Z3[x]/(x
3)) are ring graphs.

FIGURE 9. Γ(Z27).

It is easy to see that Γ(Z16) ∼= Γ(Z2[x]/(x
4)) ∼= Γ(Z4[x]/(2x, x

3−2)).
Now, by Figure 10, we have frank (Γ(Z16)) = rank (Γ(Z16)). Thus,
Γ(Z16), Γ(Z2[x]/(x

4)) and Γ(Z4[x]/(2x, x
3 − 2)) are ring graphs.

FIGURE 10. Γ(Z16).

By Figure 11, one can easily find a subdivision ofK4 in Γ(Z2[x, y]/(x
2−

y2, xy)). Hence, Γ(Z2[x, y]/(x
2 − y2, xy)) is not a ring graph.
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FIGURE 11. Γ(Z2[x, y]/(x
2 − y2, xy))

By Figure 12, we have

frank (Γ(Z2[x, y]/(x
2, y2))) = rank (Γ(Z2[x, y]/(x

2, y2))) = 3,

and so Γ(Z2[x, y]/(x
2, y2)) is a ring graph.

FIGURE 12. Γ(Z2[x, y]/(x
2, y2)).

By Figure 13, the graph Γ(Z4[x, y]/(x
2 − 2, xy, y2 − 2, 2x)) has a

subdivision of K4, which implies that Γ(Z4[x, y]/(x
2−2, xy, y2−2, 2x))

is not a ring graph.
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FIGURE 13.

It is easy to see that Γ(Z4[x, y]/(x
2, xy−2, y2)) ∼= Γ(Z4[x]/(x

2)). By
Figure 14, we have

frank (Γ(Z4[x, y]/(x
2, xy−2, y2))) = rank (Γ(Z4[x, y]/(x

2, xy−2, y2))) = 3.

Thus, Γ(Z4[x, y]/(x
2, xy − 2, y2)) and Γ(Z4[x]/(x

2)) are ring graphs.

FIGURE 14. Z4[x, y]/(x
2, xy − 2, y2)).

By Figure 15, the graph Γ(Z4[x]/(x
2−2x)) has a subdivision of K4,

and so it is not a ring graph.
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FIGURE 15.

By Figure 16, the graph Γ(Z8[x]/(2x, x
2−4)) contains a subdivision

ofK4 with vertex set {2, 4, 6, 4+X,X}. Therefore, Γ(Z8[x]/(2x, x
2−4))

is not a ring graph.

FIGURE 16. Γ(Z8[x]/(2x, x
2 − 4)).

The converse statement is provided straightforward. �

Now, since every outerplanar graph is a ring graph and we deter-
mined all finite commutative rings with ring graph zero-divisor graphs,
one can establish a characterization for all finite commutative rings such
that their zero-divisor graphs are outerplanar. Note that, in view of the
proof of Theorem 3.1, one can easily check that among all zero-divisor
graphs which are ring graphs, the zero-divisor graph of the rings:
Z2×Z9, Z2×Z3[x]/(x

2), Z4[x, y]/(x
2−2, xy, y2−2, 2x), Z4[x]/(x

2−2x),
Z8[x]/(2x, x

2−4), Z27, Z9[x]/(x
2−3, 3x), Z9[x]/(x

2−6, 3x), Z3[x]/(x
3),

contain a copy of K2,3, and so they are not outerplanar. Therefore, we
have the following result.



1760 M. AFKHAMI

Theorem 3.2. Let R be a finite ring and F a finite field. The zero-
divisor graph Γ(R) is outerplanar if and only if R is isomorphic to one
of the following rings:

(i) Z2 × Z2 × Z2,
(ii) Z2 × F, Z3 × Z3, Z2 × Z4, Z2 × Z2[x]/(x

2),
(iii) Z4, Z2[x]/(x

2), Z8, Z2[x]/(x
3), Z4[x]/(2x, x

2−2), Z2[x, y]/(x, y)
2,

Z4[x]/(2x, x
2), Z9, Z3[x]/(x

2), Z4[x]/(x
2 − 2), Z4[x]/(x

2 +
2x + 2), Z4[x]/(x

2 + x + 1), F4[x]/(x
2), Z16, Z2[x]/(x

4),
Z2[x, y]/(x

2, y2), Z4[x]/(2x, x
3 − 2), Z4[x, y]/(x

2, xy − 2, y2),
Z4[x]/(x

2).
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