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A POWER MEAN INEQUALITY INVOLVING THE
COMPLETE ELLIPTIC INTEGRALS

GENDI WANG, XIAOHUI ZHANG AND YUMING CHU

ABSTRACT. In this paper the authors investigate a
power mean inequality for a special function which is defined
by the complete elliptic integrals.

1. Introduction. Throughout this paper, we let r′ =
√
1− r2 for

0 < r < 1. The well-known complete elliptic integrals of the first and
second kind [9, 11] are, respectively, defined by

(1)


K(r) =

∫ π/2

0
dθ√

1−r2 sin2 θ
,

K′(r) = K(r′),
K(0) = π/2, K(1) = ∞,

and

(2)

 E(r) =
∫ π/2

0

√
1− r2 sin2 θ dθ,

E ′(r) = E(r′),
E(0) = π/2, E(1) = 1.

In the sequel, we will use the symbols K and E for K(r) and E(r),
respectively. The complete elliptic integrals play a very important
role in the study of conformal invariants [7], quasiconformal mappings
[5, 6, 7, 12] and Ramanujan’s modular equations [4]. Numerous sharp
inequalities and elementary approximations for the complete elliptic
integrals have been proved in [2, 3, 7, 8, 13, 14].

The special function m(r) is defined as

m(r) =
2

π
r′2K(r)K′(r), 0 < r < 1.
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This function is of importance in the research of distortion theory of
quasiconformal mappings in the plane. Recently, various interesting
inequalities of m(r) have been obtained by several authors, see [3, 5,
6, 7, 15].

The power mean is defined for x, y > 0 and real parameter λ by

Mλ(x, y) =

(
xλ + yλ

2

)1/λ

for λ ̸= 0, and M0(x, y) =
√
xy.

It is well known that Mλ(x, y) is continuous and increasing with respect
to λ. Many interesting properties of power means are given in [10].
Power mean inequalities for some special functions can be found in
[1, 7, 16, 17, 18].

In this paper, we shall show a power mean inequality for the special
function m(r). Our main result is the following theorem:

Theorem 1.1. Let λ be a real number. The inequality

(3) Mλ(m(x),m(y)) ≤ m(Mλ(x, y))

holds for all x, y ∈ (0, 1) if and only if λ ≤ 0. The reverse of (3) holds
for all x, y ∈ (0, 1) if and only if λ ≥ C > 0, where C is some constant.
The sign of equality is valid in (3) if and only if x = y.

2. Lemmas. In order to prove our main result we need some lem-
mas, which we present in this section. We establish some properties
of certain functions, which are defined in terms of complete elliptic
integrals of the first and second kinds, K and E , respectively.

Now we list some derivative formulas [7, Appendix E, pages 474–
475]:

dK
dr

=
E − r′2K

rr′2
,

dE
dr

=
E − K

r
,

and
d

dr
m(r) =

π − 4E ′K
πr

,

where 0 < r < 1. By the derivative of m(r), it is easy to see that m(r)
is strictly decreasing from (0, 1) onto (0,∞).
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The following Lemma 2.1 is from [4, Lemma 5.2 (2)] and [7,
Theorem 3.21 (1), (7) and Exercise 3.43 (32)].

Lemma 2.1.

(i) The function f1(r) = r′2K/E is decreasing from (0, 1) onto
(0, 1).

(ii) The function f2(r) = (E − r′2K)/r2 is strictly increasing and
convex from (0, 1) onto (π/4, 1).

(iii) For each c ∈ [1/2,∞), the function f3(r) = r′cK is decreasing
from [0, 1) onto (0, π/2].

(iv) The function f4(r) = r−2(K − E)/K is increasing and convex
from (0, 1) onto (1/2, 1).

Lemma 2.2. For 0 < r < 1, let

g(r) =
KK′(EE ′ + r2KK′ −KE ′)

(4E ′K − π)2
.

Then g(r) > 0 for all r ∈ (0, 1), and g(0+) = g(1−) = 0.

Proof. By formula (2) and parts (1) and (2) of Lemma 2.1, we have

(4E ′K − π)2

KK′ g(r) = E
(
E ′ − r′2K

E
E ′ − r2K′

r′2

)
> 0,

and hence g(r) > 0 for all r ∈ (0, 1).

By Lemma 2.1 (3) and (4), we get

g(0+) = lim
r→0+

g(r) = lim
r→1−

KK′(EE ′ + r′2KK′ −K′E)
(4EK′ − π)2

= lim
r→1−

K′

(4EK′ − π)2

[
(r′K)2K′ − K′ − E ′

r′2K′ (r′2K)(K′E)
]

= 0,

and

g(1−) = lim
r→1−

g(r) = lim
r→1−

K′

(4E ′ − π/K)2

(
EE ′

K
+ r2K′ − E ′

)
= 0. �
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Lemma 2.3. Let λ be a real number. The function

h(r) =
4E ′K − π

m(r)

(
m(r)

r

)λ

is strictly increasing on (0, 1) if and only if λ ≤ 0.

Proof. By logarithmic differentiation,

h′(r)

h(r)
=

4
[
K((E ′ −K′)/r′)(−r/r′) + E ′(E − r′2K)/(rr′2)

]
4E ′K − π

−π − 4E ′K
πrm(r)

+ λ

(
π − 4E ′K
πrm(r)

− 1

r

)
=

(
4E ′K − π

πrm(r)
+

1

r

)
×

[
1

1+(πm(r))/(4E ′K − π)

(
1+8

KK′(EE ′ + r2KK′ −KE ′)

(4E ′K − π)2

)
−λ

]
,(4)

which is positive for all r ∈ (0, 1) if and only if λ ≤ 0 by Lemma 2.2,
since m(r)/(4E ′K − π) is clearly decreasing from (0, 1) onto (0,∞). �

Remark 1. Let

H(r) =
1

1 + (πm(r))/(4E ′K − π)

(
1 + 8

KK′(EE ′ + r2KK′ −KE ′)

(4E ′K − π)2

)
for r ∈ (0, 1) and H(0) = 0, H(1) = 1. Then H is continuous on [0, 1].
Hence, there exists r0 ∈ (0, 1] such that H obtains its maximum C at
r0. Thus, it is easy to conclude from (4) that h is strictly decreasing
on (0, 1) if and only if λ ≥ C.

Open problem 2.4. What is the exact expression for C?

3. Proof of the main result. We are now in a position to prove
the main result.
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Proof of Theorem 1.1. We first prove inequality (3) for λ ̸= 0. We
may assume that x ≤ y. Define

F (x, y) = m (Mλ(x, y))
λ − m(x)λ +m(y)λ

2
, λ ̸= 0.

Let t = Mλ(x, y). Then ∂t/∂x = (1/2)(x/t)λ−1. If x < y, we have that
t > x. By differentiation,

∂F

∂x
=

λ

2
m(t)λ−1π − 4E ′(t)K(t)

πt

(
x

t

)λ−1

− λ

2
m(x)λ−1π − 4E ′(x)K(x)

πx

=
λxλ−1

2π

[
4E ′(x)K(x)− π

m(x)

(
m(x)

x

)λ

− 4E ′(t)K(t)− π

m(t)

(
m(t)

t

)λ]
which is positive if and only if λ < 0 by Lemma 2.3. Hence, F (x, y)
is strictly increasing with respect to x and F (x, y) ≤ F (y, y) = 0. We
now obtain the inequality

m (Mλ(x, y))
λ ≤ m(x)λ +m(y)λ

2
,

that is, m(Mλ(x, y)) ≥ Mλ(m(x),m(y)) if and only if λ < 0, with the
equality if and only if x = y.

Similarly, by the statement in Remark 1, one can see that the reverse
of (3) holds for all x, y ∈ (0, 1) if and only if λ ≥ C > 0, and C is the
same as Remark 1, with the equality if and only if x = y.

Now we prove inequality (3) for λ = 0. We may assume that x ≤ y.
Define

G(x, y) =
m(

√
xy)2

m(x)m(y)
.

Let t =
√
xy. Then ∂t/∂x = (1/2)(t/x). If x < y, we have that t > x.

By logarithmic differentiation, we have

1

G(x, y)

∂G

∂x
=

1

m(t)

π − 4E ′(t)K(t)

πt

t

x

− 1

m(x)

π − 4E ′(x)K(x)

πx
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=
1

πx

(
4E ′(x)K(x)− π

m(x)
− 4E ′(t)K(t)− π

m(t)

)
,

which is negative. Hence, G(x, y) is strictly decreasing with respect to
x and G(x, y) ≥ G(y, y) = 1. We now obtain the inequality

m(
√
xy) ≥

√
m(x)m(y),

that is, m(M0(x, y)) ≥ M0(m(x),m(y)), with the equality if and only
if x = y. This completes the proof. �

The following corollary is clear.

Corollary 3.1. The function m(r) is concave on (0, 1) with respect to
power mean of order λ if and only if λ ≤ 0, and convex on (0, 1) with
respect to power mean of order λ if and only if λ ≥ C.
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