A DIFFERENTIAL INEQUALITY AND STARLIKENESS OF A DOUBLE INTEGRAL

SARIKA VERMA, SUSHMA GUPTA AND SUKHJIT SINGH

Abstract

The main objective of this paper is to discuss starlikeness of order β of the solutions of a differential equation and, as a consequence, to obtain conditions on the kernel function g such that the function defined by

$$
f(z)=\int_{0}^{1} \int_{0}^{1} g(r, s, z) d r d s
$$

is a starlike function of the same order.

1. Introduction. Let \mathcal{H} denote the class of all analytic functions f defined in the open unit disc $E=\{z:|z|<1\}$. For a positive integer n and $a \in \mathcal{C}$, define the classes of functions:

$$
\begin{gathered}
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots\right\}, \\
\mathcal{A}_{n}=\left\{f \in \mathcal{H}: f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots\right\},
\end{gathered}
$$

with $\mathcal{A}_{1}=\mathcal{A}$. Denote by S the subclass of \mathcal{A} consisting of univalent functions in E. Let $S^{*}(\beta), S^{*}$ and K denote the usual classes of starlike functions of order $\beta(0 \leq \beta<1)$, starlike functions and convex functions, respectively.

Let $f, g \in \mathcal{H}$, and let g be univalent in E. The function f is said to be subordinate to g (written $f(z) \prec g(z)$ or $f \prec g$) in E if $f(0)=g(0)$ and $f(E) \subset g(E)$.

In 2003, Fournier et al. [1] investigated the following differential inequality:

Let $0 \leq \alpha<2$. If $f \in \mathcal{A}$ satisfies

$$
\left|z f^{\prime \prime}(z)-\alpha\left(\frac{f(z)}{z}-1\right)\right|<1-\frac{\alpha}{2}, \quad z \in E
$$

[^0]then $f \in S^{*}$.
The above result is an extension of results of Obradovic [3]. In this paper, we extend the above result to obtain a sufficient condition for starlikeness of order β. As a consequence, we construct new starlike functions of order β which can be expressed in terms of double integrals of some functions in the class \mathcal{H}.
2. Preliminary results. We shall need the following lemmas to prove our results.

Lemma 2.1. [2, page 71]. Let h be a convex function with $h(0)=a$, and let $\operatorname{Re}(\gamma)>0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma} \prec h(z)
$$

then

$$
p(z) \prec q(z) \prec h(z),
$$

where

$$
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{\gamma / n-1} d t
$$

This result is sharp.

Lemma 2.2. [2, page 383]. Let n be a positive integer and α real, with $0 \leq \alpha<n$. Let $q \in \mathcal{H}$, with $q(0)=0, q^{\prime}(0) \neq 0$ and

$$
\begin{equation*}
\operatorname{Re} \frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1>\frac{\alpha}{n} . \tag{1}
\end{equation*}
$$

If $p \in \mathcal{H}[0, n]$ satisfies

$$
z p^{\prime}(z)-\alpha p(z) \prec z n q^{\prime}(z)-\alpha q(z),
$$

then $p(z) \prec q(z)$, and this result is sharp.

3. Main result.

Theorem 3.1. Let $0 \leq \alpha<n+1$, and $0 \leq \beta<1$. If $f \in \mathcal{A}_{n}$ satisfies

$$
\begin{equation*}
\left|z f^{\prime \prime}(z)-\alpha\left(\frac{f(z)}{z}-1\right)\right|<\frac{(1-\beta)[n(n+1)-\alpha]}{(n+1-\beta)}, \quad z \in E, \tag{2}
\end{equation*}
$$

then f is starlike of order β.

Proof. In terms of subordination, the inequality (2) can be written as

$$
\begin{equation*}
z f^{\prime \prime}(z)-\alpha\left(\frac{f(z)}{z}-1\right) \prec \frac{(1-\beta)[n(n+1)-\alpha]}{(n+1-\beta)} z . \tag{3}
\end{equation*}
$$

If we write

$$
P(z)=f^{\prime}(z)-\gamma \frac{f(z)}{z}=(1-\gamma)+(n+1-\gamma) a_{n+1} z^{n}+\cdots
$$

then $P \in \mathcal{H}[1-\gamma, n]$ where $\gamma(\gamma-1)=\alpha, 1 \leq \gamma<n+1$. Then, the subordination becomes

$$
\gamma P(z)+z P^{\prime}(z) \prec-\gamma(\gamma-1)+\frac{(1-\beta)[n(n+1)-\gamma(\gamma-1)]}{(n+1-\beta)} z,
$$

or

$$
\begin{aligned}
P(z)+\frac{z P^{\prime}(z)}{\gamma} \prec & -(\gamma-1) \\
& +\frac{(n+\gamma)(n-\gamma+1)(1-\beta)}{(n+1-\beta) \gamma} z=h(z)
\end{aligned}
$$

Clearly, h is convex and $h(0)=P(0)$. Applying Lemma 2.1, we obtain $P(z) \prec \frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z}\left\{-(\gamma-1)+\frac{(n+\gamma)(n-\gamma+1)(1-\beta)}{(n+1-\beta) \gamma} t\right\} t^{\gamma / n-1} d t$, or equivalently,

$$
\begin{equation*}
f^{\prime}(z)-\gamma \frac{f(z)}{z} \prec-(\gamma-1)+\frac{(1-\beta)(n-\gamma+1)}{n+1-\beta} z . \tag{4}
\end{equation*}
$$

If we write

$$
p(z)=\frac{f(z)}{z}-1=a_{n+1} z^{n}+a_{n+2} z^{n+1}+\cdots,
$$

then $p \in \mathcal{H}[0, n]$. Writing

$$
Q(z)=\frac{(1-\beta)}{(n+1-\beta)} z
$$

we see that Q is analytic in E and $Q(0)=0, Q^{\prime}(0)=(1-\beta) /(n+1-\beta) \neq$ 0 . Now, the subordination (4) can be written as

$$
\begin{align*}
z p^{\prime}(z)-(\gamma-1) p(z) & \prec \frac{(1-\beta)(n-\gamma+1)}{n+1-\beta} z \tag{5}\\
& =z n Q^{\prime}(z)-(\gamma-1) Q(z)
\end{align*}
$$

Since $0 \leq \gamma-1<n$ and the function Q satisfies the criteria of Lemma 2.2, we obtain the subordination $p \prec Q$, i.e.,

$$
\begin{equation*}
\frac{f(z)}{z}-1 \prec \frac{(1-\beta)}{(n+1-\beta)} z . \tag{6}
\end{equation*}
$$

It follows from the subordination (4) that

$$
\begin{align*}
\left|f^{\prime}(z)-\gamma \frac{f(z)}{z}\right| & <(\gamma-1)+\frac{(1-\beta)(n-\gamma+1)}{n+1-\beta} \tag{7}\\
& =\frac{n(\gamma-\beta)}{n-\beta+1}
\end{align*}
$$

while subordination (6) implies that

$$
\begin{equation*}
\left|\frac{f(z)}{z}\right|>1-\frac{1-\beta}{(n-\beta+1)}=\frac{n}{n-\beta+1} . \tag{8}
\end{equation*}
$$

Combining the above two inequalities, we get

$$
\begin{aligned}
\frac{n}{n-\beta+1}\left|\frac{z f^{\prime}(z)}{f(z)}-\gamma\right| & <\left|\frac{f(z)}{z}\right|\left|\frac{z f^{\prime}(z)}{f(z)}-\gamma\right| \\
& =\left|f^{\prime}(z)-\gamma \frac{f(z)}{z}\right|<\frac{n(\gamma-\beta)}{n+1}
\end{aligned}
$$

which implies

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\gamma\right|<\gamma-\beta, \quad z \in E
$$

It proves that f is starlike of order β.

Letting $n=1$ and $\beta=0$ in Theorem 3.1, we obtain the following result of Fournier et al. [1].

Corollary 3.2. Let $0 \leq \alpha<2$. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|z f^{\prime \prime}(z)-\alpha\left(\frac{f(z)}{z}-1\right)\right|<1-\frac{\alpha}{2}, \quad z \in E \tag{9}
\end{equation*}
$$

then $f \in S^{*}$.
4. Applications. As an application of Theorem 3.1 in the following result, we construct a function f which is starlike of order β in E.

Theorem 4.1. If $g \in \mathcal{H}$ is such that

$$
|g(z)| \leq \frac{(1-\beta)[n(n+1)-\gamma(\gamma-1)]}{(n+1-\beta)}, \quad z \in E
$$

for some $1 \leq \gamma<n+1$ and $0 \leq \beta<1$. Then the function f given by

$$
\begin{equation*}
f(z)=z+z^{n+1} \int_{0}^{1} \int_{0}^{1} g(r s z) r^{n+\gamma-1} s^{n-\gamma} d r d s \tag{10}
\end{equation*}
$$

is starlike of order β in E.

Proof. Let $f \in \mathcal{A}_{n}$ satisfy the differential equation

$$
\begin{equation*}
z f^{\prime \prime}(z)-\gamma(\gamma-1)\left(\frac{f(z)}{z}-1\right)=z^{n} g(z) \tag{11}
\end{equation*}
$$

Clearly,

$$
\left|z f^{\prime \prime}(z)-\gamma(\gamma-1)\left(\frac{f(z)}{z}-1\right)\right|<\frac{(1-\beta)[n(n+1)-\gamma(\gamma-1)]}{(n+1-\beta)}, \quad z \in E .
$$

Equation (11) simplifies to

$$
\begin{aligned}
z^{n} g(z)= & z^{1-\gamma}\left(z^{\gamma} f^{\prime \prime}(z)-\gamma(\gamma-1) z^{\gamma-1}\left(\frac{f(z)}{z}-1\right)\right) \\
= & z^{1-\gamma}\left(z^{\gamma}\left(f^{\prime}(z)-\gamma \frac{f(z)}{z}\right)^{\prime}\right. \\
& \left.+\gamma z^{\gamma-1}\left(f^{\prime}(z)-\gamma \frac{f(z)}{z}\right)\right)+\gamma(\gamma-1) \\
= & z^{1-\gamma}\left(z^{\gamma}\left(f^{\prime}(z)-\gamma \frac{f(z)}{z}\right)\right)^{\prime}+\gamma(\gamma-1) .
\end{aligned}
$$

Thus,

$$
z^{\gamma}\left(f^{\prime}(z)-\gamma \frac{f(z)}{z}\right)=\int_{0}^{z}\left(\zeta^{n+\gamma-1} g(\zeta)-\gamma(\gamma-1) \zeta^{\gamma-1}\right) d \zeta
$$

Substituting $\zeta=r z$ in the above integral, we get

$$
\left(f^{\prime}(z)-\gamma \frac{f(z)}{z}\right)=\int_{0}^{1} r^{n+\gamma-1} z^{n} g(r z) d r-(\gamma-1)
$$

which further simplifies to

$$
\begin{aligned}
\int_{0}^{1} r^{n+\gamma-1} & z^{n} g(r z) d r \\
& =\left(f^{\prime}(z)-\gamma \frac{f(z)}{z}\right)+(\gamma-1) \\
& =z^{\gamma}\left(z^{-\gamma} f^{\prime}(z)-\gamma z^{-1-\gamma} f(z)\right)+(\gamma-1) \\
& =z^{\gamma}\left(z^{1-\gamma}\left(\frac{f(z)}{z}-1\right)^{\prime}+(1-\gamma) z^{-\gamma}\left(\frac{f(z)}{z}-1\right)\right) \\
& =z^{\gamma}\left(z^{1-\gamma}\left(\frac{f(z)}{z}-1\right)\right)^{\prime}
\end{aligned}
$$

Thus,

$$
z^{1-\gamma}\left(\frac{f(z)}{z}-1\right)=\int_{0}^{z} \zeta^{-\gamma}\left(\int_{0}^{1} r^{n+\gamma-1} \zeta^{n} g(r \zeta) d r\right) d \zeta
$$

Again, substituting $\zeta=s z$ in the integral, we get

$$
\left(\frac{f(z)}{z}-1\right)=z^{n} \int_{0}^{1} \int_{0}^{1} g(r s z) r^{n+\gamma-1} s^{n-\gamma} d r d s
$$

or

$$
f(z)=z+z^{n+1} \int_{0}^{1} \int_{0}^{1} g(r s z) r^{n+\gamma-1} s^{n-\gamma} d r d s
$$

This completes the proof.
Taking various permissible values of γ and n, we obtain several special cases of above result. However, we mention only one such result by taking $\gamma=1$ and $n=1$.

Corollary 4.2. If $g \in \mathcal{H}$ and $|g(z)|<2(1-\beta) /(2-\beta)$ for $z \in E$, then for some $\beta, 0 \leq \beta<1$,

$$
f(z)=z+z^{2} \int_{0}^{1} \int_{0}^{1} g(r s z) r d r d s \in S^{*}(\beta)
$$

REFERENCES

1. R. Fournier and P.T. Mocanu, Differential inequalities and starlikeness, Complex Var. Theor. Appl. 48 (2003), 283-292.
2. S.S. Miller and P.T. Mocanu, Differential subordinations-Theory and applications, Marcel Dekker, New York, 1999.
3. M. Obradovic, Simple sufficient conditions for univalence, Mat. Vesn. 49 (1997), 241-244.

Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, (Punjab) India
Email address: sarika.16984@gmail.com
Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, (Punjab) India
Email address: sushmagupta1@yahoo.com
Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, (Punjab) India
Email address: sukhjit_d@yahoo.com

[^0]: 1991 AMS Mathematics subject classification. 30C45, 30C80.
 Keywords and phrases. Differential subordination, starlike function, convex function.

 Received by the editors on April 3, 2012, and in revised form on June 21, 2012.

