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THE HARMONIC INDEX OF A GRAPH

JIANXI LI AND WAI CHEE SHIU

ABSTRACT. The harmonic index of a graph G is defined
as the sum of weights 2

d(vi)+d(vj)
of all edges vivj of G,

where d(vi) denotes the degree of the vertex vi in G. In
this paper, we study how the harmonic index behaves when
the graph is under perturbations. These results are used
to provide a simpler method for determining the unicyclic
graphs with maximum and minimum harmonic index among
all unicyclic graphs, respectively. Moreover, a lower bound
for harmonic index is also obtained.

1. Introduction. Let G be a simple connected graph with vertex
set V (G) = {v1, v2, . . . , vn} and edge set E(G). Its order is |V (G)|,
denoted by n, and its size is |E(G)|, denoted by m. For vi ∈ V (G), let
NG(vi) (or N(vi) for short) be the set of vertices which are adjacent to
vi in G, and let dG(vi) (or d(vi) for short) be the degree of vi. Clearly,
d(vi) = |N(vi)|. The maximum and minimum degrees of G are denoted
by ∆ and δ, respectively.

The Randić index is one of the most successful molecular descriptors
in structure-property and structure-activity relationships studies. The
Randić index of a graph G is defined as the sum of the weights
(d(vi)d(vj))

−1/2 over all edges vivj of G. The mathematical properties
of this graph invariant have been studied extensively (see the recent
book [4] and survey [6]). Motivated by the success of the Randić
index, various generalizations and modifications were introduced, such
as the sum-connectivity index [7, 10] and the general sum-connectivity
index [1, 2].
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In this paper, we consider another variant of the Randić index, called
the harmonic index H(G), which is defined as

H(G) =
∑

vivj∈E(G)

2

d(vi) + d(vj)
,

where the summation goes over all edges of G.

Favaron et al. [3] considered the relationship between the harmonic
index and the eigenvalues of graphs; Zhong [8] determined the min-
imum and maximum values of harmonic index on simple connected
graphs and trees, and characterized the corresponding extremal graphs.
Moreover, some of results in [8] are generalized by Ilić [5]. Zhong [9]
determined the minimum and maximum values of harmonic index on
unicyclic graphs and characterized the corresponding extremal graphs.
In this paper, we present a lower bound for harmonic index and char-
acterize graphs for which this bound is attained. Moreover, we study
how the harmonic index behaves when the graph is perturbed by sep-
arating, grafting or deleting an edge. These results are used to provide
a simpler method of determining the unicyclic graphs with maximum
and minimum harmonic index among all unicyclic graphs of order n,
respectively.

2. Lower bounds for harmonic index. In this section, we estab-
lish a lower bound on H(G) in terms of its structural parameters, such
as the number of edges, the number of pendent edges and maximum
vertex degree.

Theorem 2.1. Let G be a simple connected graph of order n with m
edges, maximum degree ∆ and p pendent edges. Then

(2.1) H(G) ≥ 2p

∆+ 1
+

m− p

∆
.

The equality holds if and only if G ∼= K1,n−1, or G is a regular graph
or G is a (∆, 1)-semiregular graph.
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Proof. Note that there are p pendent edges in G. Then we have

H(G) =
∑

vivj∈E(G)

2

d(vi) + d(vj)

=
∑

vivj∈E(G)d(vj)=1

2

d(vi)

+ d(vj) +
∑

vivj∈E(G)d(vi)d(vj)>1

2

d(vi) + d(vj)

≥ 2p

∆+ 1
+

∑
vivj∈E(G)d(vi)d(vj)>1

2

d(vi) + d(vj)
,

as d(vi) ≤ ∆

≥ 2p

∆+ 1
+

m− p

∆
, as d(vi), d(vj) ≤ ∆.

Now suppose that the equality holds in (2.1). Then all inequalities in
the above argument must be equalities. Therefore, we have d(vi) = ∆
and d(vj) = 1 for each pendent edge vivj ∈ E(G), and d(vi) = ∆ for
each non-pendent vertex vi ∈ V (G). Suppose that m = p, i.e., all edges
are pendent. Hence, G is the star Sn since G is connected; suppose that
m > p. If p = 0, i.e., there is no pendent vertex in G, then we have
d(vi) = ∆ for each vi ∈ V (G). Hence, G is a regular graph. If p > 0,
in this case we have d(vi) = ∆ for each non-pendent vertex vi ∈ V (G).
Hence, G is a (∆, 1)-semiregular graph.

Conversely, one can easily check that the equality holds in (2.1) for
the star Sn or a regular graph or a (∆, 1)-semiregular graph. This
completes the proof. �

In particular, there is no pendent edge in G. Then we have:

Corollary 2.2. Let G be a simple connected graph of order n with m
edges and δ > 1. Then

H(G) ≥ m

∆
.

The equality holds if and only if G is a regular graph.
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3. Effects on harmonic index under graph perturbations. In
this section, we consider how the harmonic index behaves when the
graph is perturbed by separating, grafting or deleting an edge.

Let e = uv be an edge of a graph G. Let G′ be the graph obtained
from G by contracting the edge e into a new vertex ue and adding a
new pendent edge ueve, where ve is a new pendent vertex. We say that
G′ is obtained from G by separating an edge uv (see Figure 1).

1
G v

2
G

1
G 2

Gu
e

u

e
v

G G¢

Figure 1. Separating an edge uv.

Theorem 3.1. Let e = uv be a cut edge of a connected graph G, and
suppose that G − uv = G1 ∪ G2 (|V (G1)|, |V (G2)| ≥ 2), where G1

and G2 are two components of G − uv, u ∈ V (G1) and v ∈ V (G2).
Let G′ be the graph obtained from G by separating the edge uv. Then
H(G) > H(G′).

Proof. LetNG(u)={x1, x2, . . . , xp, v} andNG(v)={y1, y2, . . . , yq, u}.
Then dG′(ue) = d(u)+d(v)−1 andNG′(ue) = {x1, x2, . . . , xp, y1, y2, . . . ,
yq, ve}. Therefore, we have

H(G)−H(G′)=

( p∑
i=1

2

d(u) + d(xi)
+

2

d(u) + d(v)
+

q∑
i=1

2

d(v) + d(yi)

)

−
( p∑

i=1

2

d(u)+d(v)−1+d(xi)
+

2

d(u)+ d(v)−1+1

+

q∑
i=1

2

d(u) + d(v)− 1 + d(yi)

)

=

p∑
i=1

(
2

d(u) + d(xi)
− 2

d(u) + d(v)− 1 + d(xi)

)
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+

q∑
i=1

(
2

d(v) + d(yi)
− 2

d(u) + d(v)− 1 + d(yi)

)
> 0, as d(u), d(v) ≥ 2,

that is, H(G) > H(G′), which completes the proof. �

Note that H(Sn) = [2(n− 1)]/n. Let T (T ̸= Sn) be a tree of order
n. By repetitive separating of the non-pendent edges of T , the resulting
tree is Sn. Then Theorem 3.1 implies that:

Corollary 3.2 ([8]). Let T be a tree of order n ≥ 3. Then since
H(T ) ≥ H(Sn) = [2(n− 1)]/n, the equality holds if and only if T ∼= Sn.

Let Sn1,n−n1 be a double star obtained by connecting the centers
Sn1 and S(n − n1) with an edge, where 2 ≤ n1 ≤ ⌊n/2⌋. Then the
harmonic index of Sn1,n−n1 is H(Sn1,n−n1) = [2(n1 − 1)/(n1 + 1)] +
[2(n− n1 − 1)/(n− n1 + 1)] + 2/n.

Similarly, for n ≥ 5, using Theorem 3.1, we can conclude that the
tree with the second minimum value of harmonic index is S2,n−2.

Corollary 3.3. Let T (T ̸= Sn) be a tree of order n ≥ 5. Then
H(T ) ≥ H(S2,n−2) = 2/3 + [2(n− 3)/n− 1] + 2/n, the equality holds
if and only if T ∼= S2,n−2.

Proof. Let e be an non-pendent edge of T , since T ̸= Sn. Then
by Theorem 3.1, we may construct a new tree Sn1,n−n1 such that
H(T ) ≥ H(Sn1,n−n1), where 2 ≤ n1 ≤ ⌊n/2⌋ and Sn1,n−n1 is obtained
from T by separating all non-pendent edges except for e. Note that

H(Sn1,n−n1
) =

2(n1 − 1)

n1 + 1
+

2(n− n1 − 1)

n− n1 + 1
+

2

n
.

Let

f(x) =
2(x− 1)

x+ 1
+

2(n− 1− x)

n− x+ 1
+

2

n

for 2 ≤ x ≤ ⌊n/2⌋. Then

f ′(x) =
4

(x+ 1)2
− 4

(n− x+ 1)2
> 0
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for 2 ≤ x ≤ ⌊n/2⌋. Therefore, f(x) is an increasing function for
2 ≤ x ≤ ⌊n/2⌋. Hence, we have H(Sn1,n−n1

) = f(n1) ≥ f(2) =
2/3 + [2(n− 3)/n− 1] + 2/n. This completes the proof. �

Let u and v be two vertices of a graph G. Suppose that two
new paths P = uul · · ·u2u1 and Q = vvk · · · v2v1 of lengths l and k
(l ≥ k ≥ 1), respectively, are attached to G at u and v to form a new
graph G2

l,k (shown in Figure 2), where u1, u2, . . . , ul and v1, v2, . . . , vk
are distinct. Let G2

l+1,k−1 = G2
l,k − v2v1 + u1v1. We say that G2

l+1,k−1

is obtained from G2
l,k by grafting an edge (see Figure 2).

G
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2
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v

1
u

2
u

l
u
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,l k
G

u

G
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v
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v
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u

2

1, 1l k
G

+ -

u

Figure 2. Grafting an edge.

Theorem 3.4. Let G2
l,k and G2

l+1,k−1 (l ≥ k ≥ 1) be the graphs as

defined above, and let dG2
l,k
(u) and dG2

l,k
(v) ≥ 3. We have:

(i) if l ≥ k ≥ 3, then H(G2
l,k) = H(G2

l+1,k−1);

(ii) if l ≥ k = 2, then H(G2
l,2) > H(G2

l+1,1). Moreover, when

dG2
l,k
(v) ≥ 4, H(G2

l,2) < H(G2
l+2,0); when dG2

l,k
(v) = 3, let

NG2
l,k
(v) = {v2, y1, y2}. If

2

(2 + d(y1))(3 + d(y1))
+

2

(2 + d(y2))(3 + d(y2))
>

1

15
,

then H(G2
l,2) < H(G2

l+2,0);

(iii) if l ≥ k = 1, then H(G2
l,1) < H(G2

l+1,0).
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Combining (i)–(iii), we have that H(G2
l+k,0) > H(G2

l,k) holds for

l ≥ k ≥ 1 when dG2
l,k
(v) ≥ 4; when dG2

l,k
(v) = 3, if

2

(2 + d(y1))(3 + d(y1))
+

2

(2 + d(y2))(3 + d(y2))
>

1

15
,

then H(G2
l+k,0) > H(G2

l,k) holds for l ≥ k ≥ 1, where NG2
l,k
(v) =

{vk, y1, y2}.

Proof. LetNG2
l,k
(u)={x1, x2, . . ., xp, ul}, NG2

l,k
(v)={y1, y2, . . ., yq, vk},

dG2
l,k
(u) = x and dG2

l,k
(v) = y.

(i) l ≥ k ≥ 3. It is easy to see that H(G2
l,k) = H(G2

l+1,k−1).

(ii) l ≥ k = 2. Then we have

H(G2
l,2)−H(G2

l+1,1)

=

( p∑
i=1

2

x+ d(xi)
+

2

x+ 2
+
1

2
+· · ·+1

2︸ ︷︷ ︸
l−2

+
2

3
+

q∑
i=1

2

y + d(yi)
+

2

y + 2
+
2

3

)

−
( p∑

i=1

2

x+ d(xi)
+

2

x+ 2
+
1

2
+· · ·+1

2︸ ︷︷ ︸
l−1

+
2

3
+

q∑
i=1

2

y + d(yi)
+

2

y + 1

)

=

(
2

3
− 1

2

)
−
(

2

y + 1
− 2

y + 2

)
>0, as y ≥ 3,

which implies that H(G2
l,2) > H(G2

l+1,1). Moreover,

H(G2
l+2,0)−H(G2

l,2)

=

( p∑
i=1

2

x+ d(xi)
+

2

x+ 2
+
1

2
+· · ·+1

2︸ ︷︷ ︸
l

+
2

3
+

q∑
i=1

2

y−1+d(yi)

)

−
( p∑

i=1

2

x+ d(xi)
+

2

x+2
+
1

2
+· · ·+1

2︸ ︷︷ ︸
l−2

+
2

3
+

q∑
i=1

2

y + d(yi)
+

2

y+2
+
2

3

)
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=
1

3
− 2

y+2
+

q∑
i=1

2

(y−1+d(yi))(y+d(yi))
.

When y ≥ 4, we have 1/3 − (2/y + 2) ≥ 0. Therefore,
H(G2

l+2,0) > H(G2
l,2).

When y = 3, in this case q = 2, if 2/[(2 + d(y1))(3 + d(y1))] +
2/[(2 + d(y2))(3 + d(y2))] > 1/15, then H(G2

l+2,0) > H(G2
l,2).

(iii) l ≥ k = 1. If l = 1, then

H(G2
1,1)−H(G2

2,0)

=

( p∑
i=1

2

x+ d(xi)
+

2

x+ 1
+

q∑
i=1

2

y + d(yi)
+

2

y + 1

)

−
( p∑

i=1

2

x+ d(xi)
+

2

x+ 2
+

2

2 + 1
+

q∑
i=1

2

y − 1 + d(yi)

)
=

2

x+ 1
− 2

x+ 2
+

2

y + 1
− 2

3

+

q∑
i=1

(
2

y + d(yi)
− 2

y − 1 + d(yi)

)
≤ 1

10
+

1

2
− 2

3

+

q∑
i=1

(
2

y + d(yi)
− 2

y − 1 + d(yi)

)
, as x, y ≥ 3

≤ − 1

15
< 0,

that is, H(G2
1,1) < H(G2

2,0).
If l > 1, then

H(G2
l,1)−H(G2

l+1,0)

=

( p∑
i=1

2

x+ d(xi)
+

2

x+ 2
+
1

2
+· · ·+1

2︸ ︷︷ ︸
l−2

+
2

3
+

q∑
i=1

2

y + d(yi)
+

2

y + 1

)

−
( p∑

i=1

2

x+d(xi)
+

2

x+2
+
1

2
+· · ·+1

2︸ ︷︷ ︸
l−1

+
2

3
+

q∑
i=1

2

y − 1 + d(yi)

)
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=
2

y+1
− 1

2
+

q∑
i=1

(
2

y+d(yi)
− 2

y−1+d(yi)

)
< 0, as y ≥ 3,

that is, H(G2
l,1) < H(G2

l+1,0), which completes the proof. �

A special case of Theorem 3.4 is that u = v in a graph G, that
is, two new paths P = uul · · ·u2u1 and Q = uvk · · · v2v1 of lengths
l and k (l ≥ k ≥ 1), respectively, are attached to G at u to form a
new graph Gl,k, where u1, u2, . . . , ul and v1, v2, . . . , vk are distinct. Let
Gl+1,k−1 = Gl,k − v2v1 + u1v1. We say that Gl+1,k−1 is obtained from
Gl,k by grafting an edge.

Ilić [5] proved that H(Gl+k,0) > H(Gl,k) for l ≥ k ≥ 1. Similar to
the proof of Theorem 3.4, the general result will be obtained.

Theorem 3.5. Let Gl,k and Gl+1,k−1 (l ≥ k ≥ 1) be the graphs as
defined above. We have

(i) if l ≥ k ≥ 3, then H(Gl,k) = H(Gl+1,k−1);
(ii) if l ≥ k = 2, then H(Gl+1,1) < H(Gl,2) < H(Gl+2,0);
(iii) if l ≥ k = 1, then H(Gl,1) < H(Gl+1,0).

Combining (1)–(3), we have that H(Gl+k,0) > H(Gl,k) holds for l ≥
k ≥ 1.

Note that H(Pn) = (n− 3)/4+4/3. If T (T ̸= Pn) is a tree of order
n, then by Theorem 3.5, the following corollary is immediate.

Corollary 3.6 ([8]). Let T be a tree of order n ≥ 3. Then H(T ) ≤
H(Pn) = (n− 3)/4 + 4/3 with equality if and only if T ∼= Pn.

Let 2/[d(u) + d(v)] be the weight of an edge e = uv. Assume that
e = uv is an edge with minimal weight among all edges of G. Ilić [5]
proved that H(G) < H(G − uv). In what follows, we will show that
the harmonic index of a graph strictly decreases by removing a pendent
vertex.

Theorem 3.7. Let G be a connected graph with a pendent vertex v.
Then H(G) > H(G− v).
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Proof. Let uv be a pendent edge of G, and let NG(u) = {x1, x2, . . . ,
xp, v}. Clearly, p = d(u)− 1. Then we have

H(G)−H(G− v) =

( p∑
i=1

2

d(u) + d(xi)
+

2

d(u) + 1

)

−
p∑

i=1

2

d(u)− 1 + d(xi)

=
2

d(u) + 1
−

p∑
i=1

2

(d(u) + d(xi)) (d(u)− 1 + d(xi))

≥ 2

d(u) + 1
− 2(d(u)− 1)

d(u)(d(u) + 1)
,

as d(xi) ≥ 1 for i = 1, 2, . . . , p

=
2

d(u)(d(u) + 1)
> 0,

that is, H(G) > H(G− v). �

Remark 3.8. Similarly, we have

(i) Let e = uv be an edge of G such that uv does not belong to any
triangle. Let G0 be the graph obtained from G by contracting the
edge e into a new vertex ue. Then H(G) > H(G0).

(ii) Let G+ be a graph obtained from a graph G by inserting a
vertex of degree 2 in an edge e = uv, where e ∈ E(G). Then
H(G+) > H(G).

4. Applications. The unicyclic graphs with maximum and mini-
mum harmonic index among all unicyclic graphs of order n were deter-
mined by Zhong [9]. In this section, using Theorems 3.1, 3.4 and 3.5,
we provide a simpler method for determining the unicyclic graphs with
maximum and minimum harmonic index among all unicyclic graphs of
order n, respectively. To begin, some notation is needed.

Let Un be the set of unicyclic graphs of order n, and let U g
n be the

set of unicyclic graphs of order n with girth g (3 ≤ g ≤ n). Obviously,
if U ∈ U n

n , then U is a cycle Cn. Note that, for each U ∈ U g
n ,

U consists of the (unique) cycle (say Cg) of length g and a certain
number of trees attached at vertices of Cg having (in total) n − g
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edges. We assume that the vertices of Cg are v1, v2, . . . , vg (ordered
in a natural way around Cg, say in the clockwise direction). Then U
can be written as C(T1, T2, . . . , Tg), which is obtained from a cycle Cg

on vertices v1, v2, . . . , vg by identifying vi with the root of a tree Ti of
order ni for each i = 1, 2, . . . , g, where ni ≥ 1 and

∑g
i=1 ni = n. If Ti,

for each i, is a path of order ni, whose root is a vertex of minimum
degree, then we write U = P (n1, n2, . . . , ng). If Ti, for each i, is a star
of order ni, whose root is a vertex of maximum degree, then we write
U = S(n1, n2, . . . , ng).

From Theorems 3.1 and 3.5, the following result is immediate.

Theorem 4.1. Let U ∈ C(T1, T2, . . . , Tg), where |V (Ti)| = ni for
i = 1, 2, . . . , g, and

∑g
i=1 ni = n. Then

H(P (n1, n2, . . . , ng)) ≥ H(U) ≥ H(S(n1, n2, . . . , ng)),

where the degree of the root in Pni (Sni) is 1 (respectively, ni − 1).
Moreover, both extremal graphs are unique.

Theorem 4.2. For any U ∈ Un, we have H(U) ≤ H(Cn) = n/2, and
the equality holds if and only if U ∼= Cn.

Proof. Assume that the girth of U is g. If g = n, then U = Cn and
the result holds. Now assume that g < n. Then U can be rewritten as
C(T1, T2, . . . , Tg), where |V (Ti)| = ni for i = 1, 2, . . . , g and

∑g
i=1 ni =

n. Thus, Theorem 4.1 implies that H(U) ≤ H(P (n1, n2, . . . , ng)).
Moreover, for P (n1, n2, . . . , ng), since each vertex belongs to the cycle
Cg with degree 2 or 3, it is easy to check that it satisfies the conditions
of Theorem 3.4. Then by Theorem 3.4, we have H(P (n1, n2, . . . , ng)) ≤
H(P (n − g + 1, 1, . . . , 1)). Note that H(P (n − g + 1, 1, . . . , 1)) =
(n− 4/2) + 6/5 + 2/3 = (n− 4/2) + 28/15 < n/2 = H(Cn). This
completes the proof. �

Lemma 4.3. For n1 ≥ n2 ≥ n3 ≥ 1 and n1 + n2 + n3 = n, we have

H(S(n1, n2, n3)) ≥ H(S(n− 2, 1, 1)) =
2(n− 3)

n
+

4

n+ 1
+

1

2
.

The equality holds if and only if n2 = 1 and n3 = 1.
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Proof. Note that

H(S(n1, n2, n3)) =
2(n1 − 1)

n1 + 2
+

2(n2 − 1)

n2 + 2
+

2(n3 − 1)

n3 + 2

+
2

n1 + n2 + 2
+

2

n1 + n3 + 2
+

2

n2 + n3 + 2
.

Since n1 ≥ n2 ≥ n3 ≥ 1 and n1 + n2 + n3 = n, n1 = n − n2 − n3 and
⌊n/3⌋ ≥ n2 ≥ n3 ≥ 1, that is,

H(S(n−n2−n3, n2, n3))=
2(n−n2−n3− 1)

n−n2−n3+2
+
2(n2−1)

n2+2
+
2(n3−1)

n3+2

+
2

n−n3+2
+

2

n−n2+2
+

2

n2+n3+ 2
.

Let

f(x, y) =
2(n− x− y − 1)

n− x− y + 2
+

2(x− 1)

x+ 2
+

2(y − 1)

y + 2
+

2

n− y + 2

+
2

n− x+ 2
+

2

x+ y + 2

for ⌊n/3⌋ ≥ x ≥ y ≥ 1.

Then

fx = −
[
6

a2
− 2

(a+ y)2

]
+

[
6

b2
− 2

(b+ y)2

]
,

where a = n− x+ 2− y and b = x+ 2. Note that a = n− x− y + 2 ≥
y + 2 ≥ x+ 2 = b. For y ≥ 1, it is easy to check that

g(t) =
6

t2
− 2

(t+ y)2

is a decreasing function for t ≥ b. Then fx = −g(a) + g(b) ≤ 0.
Similarly, we have

fy = −
[

6

(n− y + 2− x)2
− 2

(n− y + 2)2

]
+

[
6

(y + 2)2
− 2

(y + 2 + x)2

]
≤ 0.
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Therefore, f(x, y) is a decreasing function for ⌊n/3⌋ ≥ x ≥ y ≥ 1, that
is,

H(S(n− n2 − n3, n2, n3)) = f(n2, n3) ≥ f(1, 1) = H(S(n− 2, 1, 1))

=
2(n− 3)

n
+

4

n+ 1
+

1

2
.

This completes the proof. �

Theorem 4.4. For any U ∈ Un, we have H(U) ≥ H(S(n− 2, 1, 1)) =
[2(n − 3)/n] + 4/n + 1 + 1/2. The equality holds if and only if
U ∼= S(n− 2, 1, 1).

Proof. Assume that the girth of U is g. We need to distinguish
between two cases: (a) g = 3, and (b) g ≥ 4.

Case (a). g = 3. If U ̸= S(n − 2, 1, 1), then Theorem 3.1
implies that H(U) > H(S(n1, n2, n3)), where n1 ≥ n2 ≥ n3 ≥ 1 and
n1 + n2 + n3 = n. Thus, the result follows from Lemma 4.3.

Case (b). g ≥ 4. Then U can be rewritten as C(T1, T2, . . . , Tg),
where |V (Ti)| = ni for i = 1, 2, . . . , g and

∑g
i=1 ni = n. Theorem 4.1

implies that H(U) ≥ H(S(n1, n2, . . . , ng)). Moreover, by Theorem 3.1,
we have H(S(n1, n2, . . . , ng)) > H(S(n′

1, n
′
2, n

′
3)), where n

′
1+n′

2+n′
3 =

n. Then the result follows from Lemma 4.3. �

5. Concluding remarks. In this paper, we mainly study how the
harmonic index behaves when the graph is perturbed by separating,
grafting or deleting an edge. It would be interesting to consider more
graph perturbations, such as adding or rotating an edge.

Moreover, in Theorems 3.4 and 3.5, when l ≥ k ≥ 3, we find
some graphs with the same harmonic index. Therefore, the problem
of constructing graphs with the same harmonic index (or determining
graphs with a given harmonic index) is also interesting.
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