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COMPLETE CONVERGENCE FOR WEIGHTED SUMS
OF ρ∗-MIXING RANDOM FIELDS

MI-HWA KO

ABSTRACT. In this paper we generalize the complete
convergence for ρ∗-mixing random fields given by Kucz-
maszewska et al. [7] to the case of weight sums.

1. Introduction. Let Zd
+ (d ≥ 2) be the set of positive integer lat-

tice points. For d = 1, we use the notation Z+ instead of Z1
+. For a fixed

d ∈ Z+, set Zd
+ = {n = (n1, n2, . . . , nd) : ni ∈ Z+, i = 1, 2, . . . , d} with

coordinatewise partial order, ≤, i.e., for m = (m1,m2, . . . ,md),n =
(n1, n2, . . . , nd) ∈ Zd

+,m ≤ n if and only if mi ≤ ni, i = 1, 2, . . . , d.

We also use |n| for |n| =
∏d

i=1 ni, |n| → ∞ is to be interpreted
as ni → ∞ for i = 1, 2, . . . , d, and |n| → ∞ is equivalent to
max{n1, n2, . . . , nd} → ∞.

Peligrad and Gut [10] investigated a class of dependent random
fields based on an interlaced condition which uses the maximal coef-
ficient of correlation, and they defined the condition in the following
way:

Let {Xn,n ∈ Zd
+} be a random field, let S ⊂ Zd

+, and define

Fs = σ(Xi, i ∈ S)

= the σ-field generated by the random variables {Xi, i ∈ S ⊂ Zd
+}

and

ρ∗(k) = sup corr (X,Y )

= sup
S,T

(
sup

X∈L2(FS),Y ∈L2(FT )

|Cov (X,Y )|
(VarXVarY )1/2

)
,
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where the supremum is taken over all S, T ⊂ Zd
+ with dist (S, T ) ≥ k,

and all X ∈ L2(FS , Y ∈ L2(FT ) and

dist (S, T )2 = inf
x∈S,y∈T

∥x− y∥2 = inf
x∈S,y∈T

d∑
i=1

(xi − yi)
2,

i.e., Euclidean distance. Various limit properties under condition
ρ∗(k) → 0 were studied by Bradley [1, 2] and Miller [8]. Bryc and
Smolenski [3] and Peligrad [9] pointed out the importance of condition

(1.1) lim
k→∞

ρ∗(k) < 1

in estimating the moments of partial sums or of maxima of partial
sums. Let us also note that, since 0 ≤ · · · ≤ ρ∗(n) ≤ ρ∗(n− 1) ≤ · · · ≤
ρ∗(1) ≤ 1, (1.1) is equivalent to

(1.2) ρ∗(N) < 1 for some N ≥ 1.

Definition 1.1. A random field {Xn,n ∈ Zd
+} is said to be ρ∗-mixing

if (1.1) holds.

The ρ∗-mixing random variables were investigated by Bryc and
Smolenski [3] (moment inequalities of partial sums), Bradley [1, 2]
(equivalent mixing conditions and various limit properties), Peligrad [9]
(a moment inequality of maximal partial sums for sequences). Peligrad
and Gut [10] (a moment inequality of maximal partial sums for fields
and almost sure results of Marcinkiewicz-Zygmund type).

Kuczmaszewska and Lagodowski [7] proved the convergence rate
in the strong law of large numbers for the ρ∗-mixing random field as
follows:

Theorem 1.2. Let {Xn,n ∈ Zd
+} be a ρ∗-mixing random field. Let

αp > 1, α > 1/2 and, for some q ≥ 2,

(i)
∑

n |n|αp−2
∑

i≤n P (|Xi| > |n|α) < ∞,

(ii)
∑

n |n|α(p−q)−2
∑

i≤n E(|Xi|qI[|Xi| ≤ |n|α]) < ∞,

(iii)
∑

n |n|α(p−q)−2(log2 |n|)qd(
∑

i≤n E(X2
i I[|Xi| ≤ |n|α]))q/2 <

∞,
(iv) maxj≤n |

∑
i≤j E(XiI[|Xi| ≤ |n|α])| = o(|n|α).
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Then ∑
n

|n|αp−2P

{
max
j≤n

|Sj| > ϵ|n|α
}

< ∞

for all ϵ > 0.

Let {Xn,n ∈ Zd
+} be a field of real random variables, and let

{an,k,n ∈ Zd
+,k ∈ Zd

+, k ≤ n} be an array of real numbers. The
weighted sums

∑
k≤n an,kXk can play an important role in various

applied and theoretical problems, such as those of the least squares es-
timators (see Kafles and Bhaskara Rao [5]) and M-estimates (see Rao
and Chao [12]) in linear models, the nonparametric regression estima-
tors(see Priestley and Chao [11]), the design regression estimators (see
Gu, Roussas and Tran [4]), etc. So the study of the limiting behavior
of weighted sums is very important and significant.

The aim of this paper is to give a result concerning complete
convergence of weighted sums

∑
i≤n an,iXi, where {an,i,n ∈ Zd

+, i ≤ n}
is an array of real numbers and {Xi, i ∈ Zd

+} is a field of ρ∗-mixing
random variables.

2. Main result. We start this section with the following lemma
which is useful in the proof of the main result.

Lemma 2.1. [10] Let {Xn,n ∈ Zd
+} be a field of random variables

satisfying (1.1), EXn = 0 and E|Xn|q < ∞ for q ≥ 2 and n ∈ Zd
+.

Then there exist positive constants K1 = K1(q, ρ
∗(N), d) and K2 =

K2(q, ρ
∗(N), d) such that

(2.1) Emax
k≤n

|Sk|q

≤K1

{∑
k≤n

E|Xk|q+(log2 |n|)qd
(∑

k≤n

EX2
k

)q/2}
for all n ∈ Zd

+,

and

(2.2) E|Sk|q ≤ K2E

(∑
k≤n

X2
k

)q/2}
for all n ∈ Zd

+.
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We are going to generalize the result given by Kuczmaszewska and
Lagodowski [7, Theorem 3.1] to the case of weighted sums.

Theorem 2.2. Let {Xn,n ∈ Zd
+} be a field of ρ∗-mixing random

variables with EXn = 0 and {an,i,n ∈ Zd
+, i ≤ n} an array of real

numbers. Let αp > 1, α > 1/2 and, for some q ≥ 2,

(a)
∑
n

|n|αp−2
∑
i≤n

P (|an,iXi| > ϵ|n|α) < ∞,

(b)
∑
n

|n|α(p−q)−2
∑
i≤n

|an,i|qE(|Xi|qI[|an,iXi| ≤ ϵ|n|α]) < ∞,

(c)
∑
n

|n|α(p−q)−2(log2|n|)qd
(∑

i≤n

a2n,iE(X2
i I[|an,iXi|≤ϵ|n|α])

)q/2

< ∞.

Then

(2.3)∑
n

|n|αp−2P

{
max
j≤n

∣∣∣∣∑
i≤j

(an,iXi−an,iEXiI[|an,iXi|≤ϵ|n|α])
∣∣∣∣ > ϵ|n|α

}
< ∞,

for all ϵ > 0.

Proof. Let, for i ≤ n,

X ′
n,i = XiI[|an,iXi| ≤ ϵ|n|α],

Yn,i = an,iX
′
n,i − an,iEX ′

n,i and S′
n,k =

∑
i≤k

Yn,i.

Let us notice that if the series
∑

n |n|αp−2 is convergent, then (2.3)
automatically holds. Therefore, we consider only the case such that∑

n |n|αp−2 is divergent.

As in the proof of Theorem 2.1 in Kuczmaszewska [6], by (a), for



COMPLETE CONVERGENCE FOR WEIGHTED SUMS 1599

sufficient large |n|, we have

(2.4) P

{
max
j≤n

∣∣∣∣∑
i≤j

(an,iXi − an,iEXiI[|an,iXi| ≤ ϵ|n|α])
∣∣∣∣ > ϵ|n|α

}

≤
∑
i≤n

P (|an,iXi| > ϵ|n|α) + ϵ−q|n|−αqE

(
max
i≤n

|S′
n,i|

)q

.

Using the Cr inequality, we can estimate E|Yn,i|r in the following way:

E|Yn,i|r ≤ C(E|an,iXn,i|rI[|an,iXn,i| ≤ ϵ|n|α] + P (|an,iXn,i| ≥ ϵ|n|α)).

Thus, by the above estimations, (2.4), Cr inequality and Lemma 2.1,
we get

P

{
max
j≤n

∣∣∣∣∑
i≤j

(an,iXi − an,iEXiI[|an,iXi| ≤ ϵ|n|α])
∣∣∣∣ > ϵ|n|α

}

≤ C

[∑
i≤n

P (|an,iXi| > ϵ|n|α)(2.5)

+|n|−αq

{∑
i≤n

|an,i|qE|Xi|qI[|an,iXi| ≤ ϵ|n|α]

+(log2 |n|)qd
(∑

i≤n

a2n,iEX2
i I[|an,iXi| < ϵ|n|α]

)q/2}]
.

Hence, from (a)–(c) and (2.5), the result (2.3) follows. �

Remark 1. Let us observe that, in the case q = 2, the above
assumptions (b) and (c) reduce to

(b
′
)
∑
n

|n|α(p−2)−2(log2 |n|)2d
∑
i≤n

a2n,iE(X2
i I[|an,iXi| ≤ ϵ|n|α]) < ∞.

Theorem 2.3. Let {Xn,n ∈ Zd
+} be a field of random variables

satisfying (1.1) and EXn = 0. Let {an,i,n ∈ Zd
+, i ≤ n} be an array

of weights. If, for αp > 1, α > 1/2 and, for some q ≥ 2 Theorem 2.2
(a)–(c) and

(d) max
j≤n

∣∣∣∣∑
i≤j

an,iE(XiI[|an,iXi| ≤ ϵ|n|α])
∣∣∣∣ = o(|n|α)
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hold. Then

(2.6)
∑
n

|n|αp−2P

{
max
j≤n

∣∣∣∣∑
i≤j

an,iXi

∣∣∣∣ > ϵ|n|α
}

< ∞ for all ϵ > 0.

Proof. Define X ′
n,i, Yn,i and S′

n,i as in Theorem 2.2. Noting that

EXiI[|an,iXi| ≤ ϵ|n|α] = −EXiI[|an,iXi| > ϵ|n|α] in view of the fact
that EXi = 0, we have

∑
n

|n|αp−2P

{
max
j≤n

∣∣∣∣∑
i≤j

an,iXi

∣∣∣∣ > ϵ|n|α
}

≤
∑
n

|n|αp−2P

{
max
i≤n

|an,iXi| > |n|α
}

+
∑
n

|n|αp−2P

{
max
j≤n

∣∣∣∣∑
i≤j

an,iXiI[|an,iXi| ≤ ϵ|n|α]
∣∣∣∣ > ϵ|n|α

}
≤

∑
n

|n|αp−2
∑
i≤n

P{|an,iXi| > |n|α}

+
∑
n

|n|αp−2P

{
max
j≤n

|S′
n,j| > ϵ|n|α

−max
j≤n

∣∣∣∣∑
i≤j

an,iE(XiI[|an,iXi| ≤ ϵ|n|α])
∣∣∣∣}

(see the proof of Theorem 5 in [10]). �

In this case the first sum of the right-hand side is finite by Theorem
2.2 (a). Because of (d), we conclude that it remains to show that

I =
∑
n

|n|αp−2P{max
j≤n

|S′
n,j| > ϵ|n|α} < ∞ for all ϵ > 0.
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By (2.1), Cr inequality and Chebyshev’s inequality, we can estimate

I ≤ C
∑
n

|n|αp−2−αq

{∑
i≤n

|an,i|qE(|Xi|qI[|an,iXi| ≤ ϵ|n|α])

+ (log2 |n|)qd
(∑

i≤n

a2n,iE(X2
i I[|an,iXi| ≤ ϵ|n|α])

)q/2}
= I1 + I2.

It is clear that I1 < ∞ by (b) and I2 < ∞ by (c). Hence, I < ∞ and
the proof is complete.

Corollary 2.4. Let {Xn,n ∈ Zd
+} be a field of ρ∗-mixing random

variables with EXn = 0 and E|Xn|q < ∞ for q ≥ 2 and for all
n ∈ Zd

+. Let {an,i,n ∈ Zd
+, i ≤ n} be a field of real numbers. Let

αp > 1, α > 1/2. Assume that, for some field {λn,n ∈ Zd
+} with

0 < λn ≤ 1. If

(2.7)
∑
n

|n|αp−2|n|−α(1+λn)
∑
i≤n

|an,i|1+λnE|Xi|1+λn < ∞

then, for all ϵ > 0,

(2.8)
∑
n

|n|αp−2P

(
max
j≤n

∣∣∣∣∑
i≤j

an,iXi

∣∣∣∣ > ϵ|n|α
)

< ∞.

Proof. First, note that E|Xn|1+λn < ∞ since q ≥ 1 + λn > 1. If∑
n |n|αp−2 < ∞, then (2.8) automatically holds. Hence, we consider

only the case
∑

n |n|αp−2 = ∞. It follows from (2.7) that

(2.9) |n|−α(1+λn)
∑
i≤n

|an,i|1+λnE|Xi|1+λn < 1.

By assumption (2.7),

(2.10)
∑
n

|n|αp−2
∑
i≤n

P (|an,iXi| ≥ ϵ|n|α)

≤ ϵ−1−λn

∑
n

|n|αp−2|n|−α(1+λn)
∑
i≤n

|an,i|1+λnE|Xi|1+λn < ∞,
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and, for q ≥ 2,

(2.11)
∑
n

|n|αp−2|n|−αq
∑
i≤n

|an,i|qE|Xi|qI[|an,iXi| ≤ ϵ|n|α]

≤
∑
n

|n|αp−2−α(1+λn)
∑
i≤n

|an,i|1+λnE|Xi|1+λn < ∞.

By (2.7) and (2.9), we estimate

(2.12)
∑
n

|n|αp−2|n|−αq

(∑
i≤n

a2n,iEX2
i I[|an,iXi| < ϵ|n|α]

)q/2

≤
∑
n

|n|αp−2−α(1+λn)q/2

(∑
i≤n

|an,i|1+λnE|Xi|1+λn

)q/2

< ∞.

Hence (2.10)–(2.12) satisfy (a), (b) and (c), respectively.

Finally, we have

|n|−α max
j≤n

∣∣∣∣∑
i≤j

an,iEXiI[|an,iXi| ≤ ϵ|n|α]
∣∣∣∣

= |n|−α max
j≤n

∣∣∣∣∑
i≤j

an,iEXiI[|an,iXi| > ϵ|n|α]
∣∣∣∣

≤ |n|−α max
j≤n

∑
i≤j

|an,i|E|Xi|I[|an,iXi| > ϵ|n|α]

= |n|−α(1+λn)
∑
i≤n

|an,i|1+λnE|Xi|1+λn → 0 as |n| → ∞,

which satisfies condition (d). Hence, the proof is completed. �

Corollary 2.5. Let {Xn,n ∈ Zd
+} be a field of ρ∗-mixing random

variables satisfying (1.1), EXn = 0 and E|Xn|p < ∞ for 1 < p ≤ 2.
Let {an,i,n ∈ Zd

+, i ≤ n be a field of real numbers satisfying

(2.13)
∑
i≤n

|an,i|pE|Xi|p = O(|n|δ)
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for some 0 < δ < 1. Then, for any ϵ > 0, α > 1/2 and αp > 1

(2.14)
∑
n

|n|αp−2P

(
max
j≤n

|
∑
i≤j

an,iXi| > ϵ|n|α
)

< ∞.

Proof. Let q = 2/δ. By (2.13), and the Chebyshev inequality, we
have

(2.15)
∑
n

|n|αp−2
∑
i≤n

P (|an,iXi| > ϵ|n|α)

≤ ϵ−p
∑
n

|n|αp−2
∑
i≤n

|an,i|pE|Xi|p

|n|αp
≤ C

∑
n

|n|−2+δ < ∞,

(2.16)
∑
n

|n|α(p−q)−2
∑
i≤n

|an,i|qE|Xi|qI[|an,iXi| ≤ ϵ|n|α]

≤ C
∑
n

|n|−2
∑
i≤n

|an,i|pE|Xi|p ≤ C
∑
n

|n|−2+δ < ∞,

and, for some q ≥ 2,

∑
n

|n|α(p−q)−2(log2 |n|)qd
(∑

i≤n

a2n,iE(X2
i I[|an,iXi| ≤ ϵ|n|α])

)q/2

(2.17)

≤ C
∑
n

|n|α(p−q)−2(log2 |n|)qd(|n|α(2−p))q/2
(∑

i≤n

|an,i|pE|Xi|p
)q/2

≤ C
∑
n

|n|αp−αq−2+αq−αpq/2+qδ/2(log2 |n|)qd

≤ C
∑
n

|n|αp(1−q/2)−1(log2 |n|)qd < ∞ since
δq

2
≤ 1.

Hence, by (2.15)–(2.17), conditions (a)–(c) in Theorem 2.2 are satisfied,
respectively.

To complete the proof, it is enough to note that, by the assumption
EXn = 0 for n ∈ Zd

+ and by (2.13), we get for j ≤ n

|n|−α
∑
i≤j

|an,i|E|Xi|I[|an,iXi| ≤ ϵ|n|α] → 0 as |n| → ∞,
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which satisfies (d). Hence, by Theorem 2.3, the proof is complete. �

Definition 2.6. A field {Xn,n ∈ Zd
+} of random variables is said to

be stochastically dominated by a random variable X if there exists a
constant D such that

P (|Xn| > x) ≤ DP (|X| > x)

for all x ≥ 0 and n ∈ Zd
+.

Corollary 2.7. Let {Xn,n ∈ Zd
+} be a field of ρ∗-mixing random

variables with EXn = 0 and E|Xn|p < ∞ for n ∈ Zd
+ and 1 < p ≤ 2.

Let the random variables {Xn} be stochastically dominated by a random
variable X, such that E|X|p < ∞ and {an,i,n ∈ Zd

+, i ≤ n} are a field
of real numbers satisfying the condition∑

i≤n

|an,i|p = O(|n|δ)

for some 0 < δ < 2/q and q ≥ 2. Then, for any ϵ > 0, α > 1/2 and
αp > 1 (2.14) holds.
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