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A SUPPLEMENT TO MANIN’S PROOF OF
THE HASSE INEQUALITY

JASBIR S. CHAHAL, AFZAL SOOMRO AND JAAP TOP

ABSTRACT. In 1956 Yu.I. Manin published an elemen-
tary proof of Helmut Hasse’s 1933 result stating that the
Riemann hypothesis holds in the case of an elliptic function
field over a finite field. We briefly explain how Manin’s proof
relates to more modern proofs of the same result. This en-
ables us to present an analogous elementary proof for the
case of finite fields of characteristic two, which was excluded
in the original argument.

1. Introduction and motivation. Let Fq denote a finite field of
cardinality q, and let E/Fq be an elliptic curve. A well-known result is
that

|#E(Fq)− q − 1| ≤ 2
√
q.

This is a special case of a more general conjecture which Artin formu-
lated in his thesis, and in fact this thesis already verifies the inequality
for some special cases, including all elliptic curves over F3,F5, and
F7. Establishing the inequality for elliptic curves in general became
a project of Hasse. His 1933 note [6] proves it for the fields Fp with
p ≥ 5 a prime number. Soon thereafter, in 1934, Hasse [7] succeeds
for all finite fields, and in 1936 he publishes a simplification [8] of his
argument. All of this was superseded by the work of Weil in the late
forties.

Hasse’s result is important for certain primality proofs and integer
factorization algorithms, and also in coding theory and in cryptography.
In 1956, Manin [13] presented a completely elementary proof of Hasse’s
inequality. However, in his presentation, he restricts himself to the
case that the characteristic of the finite field is different from two.
Several texts have discussed Manin’s proof, including the well-known
elementary analytic number theory book by Gel’fond and Linnik [4]
and also [1, 2, 3, 9, 12]. All of these use the same restriction that
the characteristic should be > 2. Since the characteristic two case is

Received by the editors on June 25, 2012.
DOI:10.1216/RMJ-2014-44-5-1457 Copyright c⃝2014 Rocky Mountain Mathematics Consortium

1457



1458 J.S. CHAHAL, M.A. SOOMRO AND J. TOP

needed in several applications of Hasse’s result, it seems appropriate
to have an elementary proof for this case as well. This is precisely the
aim of this note.

We start by recalling a well-known fact; this is a special case of an
assertion given in a famous paper of Safarevic and Tate [17]. This only
serves to clarify some ideas behind Manin’s proof. The constructions
in characteristic two presented in the last two sections of this note were
found using exactly the same ideas. However, if one is only interested
in the elementary proof as such, one does not need it.

Let E/k be an elliptic curve, and let −1 denote the minus one map
on E. Using a projection E × E → E one obtains a family of curves

E × E

(−1)× (−1)
−→ E/(−1) ∼= P1.

The generic fiber of this family is an elliptic curve Etw over the function
field k(P1) = k(t). Over the quadratic extension k(E) of k(t), the
elliptic curves E and Etw are isomorphic. In particular, this implies
that the associated groups of k(E)-rational points are isomorphic:

Etw(k(E)) ∼= E(k(E)).

Evidently, the group E(k(E)) may be regarded as the group Mork(E,E)
of all rational maps from E to E defined over k. Hence, via the above
isomorphism, the subgroup Etw(k(t)) ⊂ Etw(k(E)) is identified with a
subgroup of Mork(E,E). It is easy to see, and explicitly mentioned as,
formula (13) in [17], which is this subgroup:

Etw(k(t)) ⊂ Etw(k(E))y≀ y≀
{φ ∈ Mork(E,E) : φ ◦ (−1) = (−1) ◦ φ} ⊂ Mork(E,E).

∪
Endk(E)

Note that in the diagram we already indicate a source for points in
Etw(k(t)): the ring of k-rational endomorphisms of E.

The identity endomorphism 1 = id is a nonzero element of Endk(E).
Hence, it corresponds to a point in Etw(k(t)), which we denote as Q.
Note that, since Endk(E) is torsion free, Q ∈ Etw(k(t)) is a point of
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infinite order. This rather simple observation is one of the basic ideas
in a well-known paper by Gouvêa and Mazur [5], see also [16].

From now on, we assume that k = Fq is a finite field of cardinality
q. In this case, Endk(E) also contains the qth power Frobenius
endomorphism π. This corresponds to another point in Etw(k(t)),
which we denote as P0. Except possibly in the case that E/k is a
supersingular elliptic curve, the two endomorphisms 1 and π are linearly
independent, which implies that Q and P0 generate a rank 2 subgroup
of Etw(k(t)).

In Manin’s elementary proof, he introduces the points

Pn = P0 + nQ ∈ Etw(k(t)).

By construction, these correspond to

π + n ∈ Endk(E).

Using the assumption that the characteristic of k is not 2, Manin now
uses an explicit equation for Etw/k(t), and he defines a naive height
hn = h(Pn) of the points Pn. To see the relation with Endk(E), put

dn := deg(π + n).

Lemma 1.1. With notations as above, for every integer n, one has
hn = dn.

Proof. Recall from any of the descriptions of Manin’s proof that the
sequence (hn)n∈Z is determined by the three properties:

(1) h0 = q;
(2) h−1 = #E(Fq);
(3) For every n ∈ Z one has hn−1 + hn+1 = 2hn + 2.

So it suffices to show that (dn)n∈Z satisfies the same properties. It is
amusing to note that this can already be found in Hasse’s 1936 paper
[8]. We indicate the standard approach.
(1) Obviously, d0 = deg(π) = q.
(2) One has d−1 = deg(π − 1) = #E(Fq) (compare [15, Chapter IV]).
(3) Here one uses dual isogenies; for notations and properties see [15].
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In the ring Endk(E) ⊃ Z, one has

dn−1 + dn+1 = ( ̂π + n− 1)(π + n− 1) + ( ̂π + n+ 1)(π + n+ 1)
= (π̂ + n− 1)(π + n− 1) + (π̂ + n+ 1)(π + n+ 1)
= 2π̂π + 2n(π̂ + π) + 2n2 + 2
= 2(π̂ + n)(π + n) + 2 = 2dn + 2.

This proves the lemma. �

One could replace the elementary but somewhat intricate proofs that
Manin and others have for the fundamental properties of the sequence
(hn)n∈Z, by a more direct interpretation of hn as the degree of the
associated endomorphism. However, the point of the proof was that it
is elementary, while the approach via endomorphisms requires more
theory. In the remainder of this note we work out the details of
an elementary proof in characteristic two, guided by the exposition
presented above.

2. The ordinary case. Let d > 0 be an integer, and put q = 2d.
Suppose E/Fq is an elliptic curve with j-invariant j(E) ̸= 0. It is easily
verified (see [15, Appendix A], see also Hasse’s 1934 paper [7]) there
are a, b ∈ Fq, with b ̸= 0, such that E corresponds to the equation:

E : y2 + xy = x3 + ax2 + b.

The function field Fq(E) is written as Fq(t, s), where s satisfies the
quadratic equation

s2 + ts+ t3 + at2 + b = 0

over the rational function field Fq(t). Define the elliptic curveEtw/Fq(t)
by the equation

Etw : y2 + txy = t2x3 + t3x2 + bx2 + bt2.

Then E and Etw are not isomorphic over Fq(t), but they are isomorphic
over Fq(t, s). Indeed, an isomorphism is given by

E −→ Etw : (x, y) 7−→ (x, sx+ ty).

Note that E and Etw have a unique rational point of exact order 2,
defined by x = 0.
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We view the identity map on E as a point (t, s) ∈ E(Fq(t, s)). Via
the given isomorphism, this becomes the point

Q := (t, 0) on Etw.

We do the same with the Frobenius map. This gives (tq, sq) ∈
E(Fq(t, s)); hence, the point

P0 := (tq, stq + tsq) on Etw.

Note that both Q,P0 are Fq(t)-rational points. This is evident from
the discussion in the previous section; a direct proof follows from the
observation that the unique automorphism of the quadratic extension
Fq(t, s) over Fq(t) is defined by s 7→ s + t. Clearly this automorphism
fixes stq + tsq. We can actually say more.

Lemma 2.1. One has that stq + tsq ∈ Fq[t] has degree (3q + 2)/2.

Proof. Note that the function stq + tsq on E is well-defined at every
point of E except the point O at infinity. We already showed that
this function is in Fq(t). If it had a denominator, then every zero of
the denominator would produce points ̸= O on E where stq + tsq is
undefined. This shows that, indeed, stq + tsq is a polynomial in t.

To find the degree of this polynomial one uses the valuation v (order
of vanishing) corresponding to O. As is well-known, v(t) = −2 and
v(s) = −3, hence v(stq + tsq) = −3q − 2. Since a nonzero polynomial
f ∈ Fq[t] of degree d has valuation v(f) = −2d, the lemma follows. �

One of the properties of the points Q and P0 is that their x-
coordinate is a nonconstant polynomial. This implies that, even if
one would write this x-coordinate as a quotient of polynomials, the
numerator would have a larger degree than the denominator. A natural
way to interpret this observation is in terms of the discrete valuation v
on Fq[t], given as

v(f) := − deg(f),

for nonzero polynomials f . This is extended in the usual way to Fq(t)
by v(f/g) = v(f) − v(g). Note that τ = 1/t has the properties
Fq(τ) = Fq(t) and v(τ) = 1. We will use τ as a coordinate of this
field.
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In order to make reduction modulo τ more explicit, write

ξ := t−2x and η := t−4y.

In these coordinates, the equation for Etw is

η2 + τξη = ξ3 + τξ2 + bτ4ξ2 + bτ6.

The reduction modulo τ of this equation is the curve

E/Fq : η2 = ξ3.

Moreover, one has a well-defined map

Etw(Fq(t))
mod τ−→ E(Fq).

With the usual notations (see, e.g., [15, Chapter VII, Section 2]) let
Ens := E−{(0, 0)}, and let Etw

0 (Fq(t)) be the set of points in Etw(Fq(t))

whose reduction modulo τ is in Ens(Fq). It is well known that

Etw
0 (Fq(t))

mod τ−→ Ens(Fq)

is a homomorphism of groups. The kernel of this homomorphism is
denoted Etw

1 (Fq(t)). By definition, this kernel consists of the point O
at infinity and all affine points which, in the (ξ, η) coordinates, satisfy
v(ξ) < 0. In the original (x, y) coordinates, using t−2x = ξ, this means
2+v(x) < 0. So, writing x as a quotient of polynomials in t, this means

2− deg(numer (x)) + deg(denom (x)) < 0.

This argument shows the following.

Lemma 2.2. Let P ∈ Etw(Fq(t)) have x-coordinate x(P ) = f/g for
polynomials f, g ∈ Fq[t]. Then

P ∈ Etw
1 (Fq(t)) ⇐⇒ deg(f) > deg(g) + 2

and
P ∈ Etw

0 (Fq(t)) ⇐⇒ deg(f) ≥ deg(g) + 2.

As an easy example, observe that P0 ∈ Etw
0 (Fq(t)) for all q, and

P0 ∈ Etw
1 (Fq(t)) precisely when q ̸= 2. Moreover, Q /∈ Etw

0 (Fq(t)).
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One can do an analogous calculation for the reduction modulo t. In
this case, both P0 and Q reduce modulo t to the singular point of the
reduction.

Remark 2.3. An easy calculation (compare [14] for a more intrinsic
way of seeing this) shows that the only places of Fq(t) where Etw has
singular reduction, are t = 0 and t = ∞. In both cases, the reduction
is of type I∗4 in Kodaira’s terminology [15, Appendix C, Section 15].
In particular, this implies that

2Etw(Fq(t)) ⊂ Etw
0 (Fq(t)).

This also follows from a direct, elementary calculation. Hence, consid-
ering reduction modulo τ , 2Q ∈ Etw

0 (Fq(t)) whereas Q /∈ Etw
0 (Fq(t)).

Remark 2.4. Note that the situation for odd characteristic is some-
what simpler, as we will briefly indicate here.

Assume k is a finite field of odd cardinality r. Let E/k be an elliptic
curve defined by an equation

E : y2 = x3 + ax2 + bx+ c.

Put f(t) := t3 + at2 + bt+ c ∈ k[t], and define Etw/k(t) by

Etw : f(t)y2 = x3 + ax2 + bx+ c.

As before, elements in Endk(E) provide points in Etw(k(t)), so one
obtains points Q = (t, 1) and P0 = (tr, f(t)(r−1)/2) corresponding to
the identity and the Frobenius endomorphisms, respectively.

We again put τ = 1/t. An equation for Etw which is minimal at τ
is obtained by introducing ξ := x/t. The new equations reads

(1 + aτ + bτ2 + cτ3)y2 = ξ3 + aτξ2 + bτ2ξ + cτ3.

In the new coordinates, Q = (1, 1) and P0 has ξ-coordinate equal
to τ1−r. Hence, both points are in the subgroup Etw

0 (k(t)). As in
Lemma 2.2, this subgroup consists of the point O and of all points P
such that the valuation at τ of ξ(P ) is at most 0. Writing x(P ) = f/g
for polynomials f, g ∈ k[t], this translates into 1−deg(f)+deg(g) ≤ 0,
in other words,

deg(f) > deg(g).
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In particular, since Etw
0 (k(t)) is a group, this property holds for the x-

coordinate of any nonzero point P0 +nQ. Note that this fact is proven
in all published versions of Manin’s elementary argument without a
reference to reduction theory.

We now continue with the case j ̸= 0 in characteristic 2.

Lemma 2.5. Suppose P ∈ Etw
0 (Fq(t)). Then

deg(numer (x(P +Q))) = deg(denom (x(P +Q))) + 1.

Proof. This is obvious when P = O. Hence, assume P ̸= O, and
write P = (f/g, y) for polynomials f, g ∈ Fq[t]. The rational function
y ∈ Fq(t) then satisfies

(∗) (g2y)2 + tfg(g2y) + t2f3g + t2bg4 + t3f2g2 + bf2g2 = 0,

which implies g2y ∈ Fq[t].

The assumption P ∈ Etw
0 means by Lemma 2.2 that deg(g) ≤

deg(f)− 2. This implies

deg(g2y) < deg(tf2),

since otherwise the first term on the left-hand-side of (∗) would have
strictly larger degree than any of the other terms. A calculation shows

x(P +Q) =
g2y + t2fg + tf2

f2 + g2t2
.

The discussion above implies that the numerator in this expression has
degree deg(tf2) while the denominator has degree deg(f2). This proves
the lemma. �

The following is a consequence of Lemma 2.5.

Corollary 2.6. For Pn := P0 + nQ, we have Pn ̸= O and

deg(numer (x(Pn))) > deg(denom (x(Pn))).

Proof. The point Pn corresponds to π + n ∈ End (E), which is
nonzero because E is ordinary. Hence, Pn ̸= O.
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If n is even, then both P0 and nQ are in Etw
0 (Fq(t)) since Etw/Etw

0

is a group of exponent 2. Hence, also Pn = P0 + nQ ∈ Etw
0 (Fq(t)).

Lemma 2.2 implies

deg(numer (x(Pn))) ≥ deg(denom (x(Pn))) + 2

in this case.

If n is odd, write Pn = Pn−1 +Q. The argument above shows that
Pn−1 ∈ Etw

0 (Fq(t)), and Lemma 2.5 therefore implies

deg(numer (x(Pn))) = deg(denom (x(Pn))) + 1.

This proves the corollary. �

As in the characteristic > 2 case, put

dn := deg(numer (x(Pn))).

Proposition 2.7. The integers dn have the following three properties.

(i) d0 = q.
(ii) d−1 = #E(Fq).
(iii) dn−1 + dn+1 = 2dn + 2.

Proof. (i) is obvious from the definition.

To see (ii), a calculation shows

x(P−1) =
N(t)

(tq + t)2
,

where N(t) = t2q+1+ tq+2+ tq+1+ stq + tsq ∈ Fq[t]. Using Lemma 2.1,
deg(N(t)) = 2q + 1. Furthermore, (tq + t)2 =

∏
α∈Fq

(t + α)2. To

compute d−1, we have to examine which of these factors t + α divide
N(t), i.e., satisfy N(α) = 0. Now

N(α) = α2 + α(β + βq),

with β ∈ Fq2 satisfying β2 + αβ = α3 + aα2 + b. So, if (α, β) ∈ E(Fq),
then N(α) = α2 ̸= 0 unless α = 0. And if β /∈ Fq, then βq = β + α;
hence, N(α) = 0.

This describes all relevant zeroes of N(t). To say something about
their multiplicity, first extend the derivation ′ = d/dt from Fq(t) to
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Fq(t, s) using
ts′ + s = t2.

This yields
N ′(t) = t2q + tq + stq−1 + tq+1 + sq.

Hence, N ′(0) =
√
b ̸= 0, so 0 is a simple zero of N(t). For any

α ∈ Fq which is not the x-coordinate of a rational point on E, we
find N ′(α) = 0. So these α’s are zeroes of N(t) of multiplicity at
least 2. The number of such α’s equals q − 1−#E(Fq)− 2/2. Hence,

d−1 = 2q + 1− 1− 2

(
q − 1− #E(Fq)− 2

2

)
= #E(Fq).

It remains to prove (iii). For this, write Pn = (fn/gn, yn) for coprime
polynomials fn, gn, and yn ∈ Fq(t). Using Pn±1 = Pn ± Q, one
calculates

fn−1

gn−1
=

tfn(tgn + fn) + tfngn + g2nyn
(tgn + fn)2

and
fn+1

gn+1
=

tfn(tgn + fn) + g2nyn
(tgn + fn)2

;

hence,
fn−1fn+1

gn−1gn+1
=

t2f2
n + bg2n

(tgn + fn)2
.

From this, the result follows by comparing degrees, using an argument
as presented in, e.g., [1, 4]. �

Using Proposition 2.7, an easy argument as presented in all literature
on Manin’s elementary proof shows how Hasse’s inequality for E/Fq

follows.

3. The supersingular case. As before, put q = 2d for some integer
d ≥ 1. Let E/Fq be an elliptic curve with j-invariant j(E) = 0. By
[15, Appendix A], we may assume that E is given by an equation

E : y2 + ay = x3 + bx+ c

for some a, b, c ∈ Fq with a ̸= 0. The function field Fq(E) is written as
Fq(t, s), with s2 + as = t3 + bt+ c. The quadratic twist of E/Fq(t) via
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the extension Fq(t, s) ⊃ Fq(t) is:

Etw/Fq(t) : y
2 + ay = x3 + bx+ t3 + bt.

An isomorphism E
∼→ Etw over Fq(t, s) is given by (x, y) 7→ (x, y + s).

Corresponding to (t, s) and (tq, sq) in E(Fq(t, s)) we have the points:

Q := (t, 0) and P0 := (tq, sq + s)

in Etw(Fq(t)). As in Lemma 2.1, one obtains

Lemma 3.1. The polynomial sq + s ∈ Fq[t] has degree 3q/2.

The only place of Fq(t), where Etw has singular reduction, is the
place with uniformizer τ := 1/t. A Weierstrass minimal model at
τ is obtained using the variables ξ := t−2x and η := t−3y. The
corresponding equation is:

η2 + aτ3η = ξ3 + bτ4ξ + τ3 + bτ5.

Note that P0 ∈ Etw
0 (Fq(t)) while Q /∈ Etw

0 (Fq(t)).

The reduction at τ is of type I∗0 . In particular, this implies that
2Etw(Fq(t)) ⊂ Etw

0 (Fq(t)), a fact that also follows from a direct
calculation.

We remark in passing that the equation for Etw is of degree 3 in the
variables x, y, t. Hence, it defines a (cubic) rational elliptic surface over
Fq. Such surfaces, including their possible configurations of singular
fibers, were studied by Lang [10, 11].

Observing that P = (f/g, ∗) is in Etw
0 precisely when deg(f) ≥

deg(g) + 2, an argument as given in the proof of Corollary 2.6 shows
the following.

Lemma 3.2. If Pn := P0 + nQ ̸= O, then write x(Pn) = fn/gn for
polynomials fn, gn ∈ Fq[t].

One has deg(fn) > deg(gn).

Write

dn :=

{
0 if Pn = O;

deg(fn) if Pn =
(

fn
gn

, yn

)
with gcd(fn, gn) = 1.
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Proposition 3.3. The integers dn have the following three properties.

(i) d0 = q.
(ii) d−1 = #E(Fq).
(iii) dn−1 + dn+1 = 2dn + 2.

Proof. (i) is clear. As for (ii), one calculates

x(P0 −Q) =
N(t)

(tq + t)2
,

where N(t) = t2q+1 + tq+2 + b(tq + t) + a(sq + s) + a2. By Lemma 3.1,
N(t) ∈ Fq[t] has degree 2q + 1.

Let α ∈ Fq and choose β ∈ Fq2 such that (α, β) ∈ E(Fq2). Then

N(α) = a(βq + β) + a2

=

{
a2 ̸= 0 if (α, β) ∈ E(Fq);
0 if (α, β) /∈ E(Fq).

The derivation ′ = d/dt extends to Fq(t, s) as

as′ = t2 + b.

Therefore,
N ′(t) = t2q + t2,

which vanishes for all α ∈ Fq. This shows

d−1 = 2q + 1− 2 ·
(
q − #E(Fq)− 1

2

)
= #E(Fq).

Finally, (iii) is evident in case one of Pn, Pn±1 equals O. In the
remaining case, using Pn±1 = Pn ±Q one calculates

fn−1

gn−1
=

(tfn + bgn)(tgn + fn) + ag2n(yn + a)

(tgn + fn)2

and
fn+1

gn+1
=

(tfn + bgn)(tgn + fn) + ag2nyn
(tgn + fn)2

;

hence,
fn−1fn+1

gn−1gn+1
=

t2f2
n + b2g2n + a2gn(tgn + fn)

(tgn + fn)2
.
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As in Proposition 2.7, this implies the result. �

Again, Hasse’s inequality for E/Fq follows, as explained in all
published accounts on Manin’s elementary proof.
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