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SUB- AND SUPER-ADDITIVE PROPERTIES
OF THE PSI FUNCTION

HORST ALZER

ABSTRACT. We prove the following sub- and super-
additive properties of the psi function.
(i) The inequality

ψ
(
(x+ y)α

)
≤ ψ(xα) + ψ(yα) (α ∈ R)

holds for all x, y > 0 if and only if α ≤ α0 =
−1.0266 . . . . Here, α0 is given by

2α0 = inf
t>0

ψ−1
(
2ψ(t)

)
t

= 0.4908 . . . .

(ii) The inequality

ψ(xβ) + ψ(yβ) ≤ ψ
(
(x+ y)β

)
(β ∈ R)

is valid for all x, y > 0 if and only if β = 0.

1. Introduction. Euler’s classical gamma function is defined for
positive real numbers x by

Γ(x) =

∫ ∞

0

e−ttx−1dt =
e−γx

x

∞∏
k=1

{(
1 +

x

k

)−1

ex/k
}
.

We are concerned with the logarithmic derivative of the Γ-function,

ψ(x) =
d

dx
log Γ(x) =

Γ′(x)

Γ(x)
,

which is known as psi (or digamma) function. In view of its relevance in
various fields, like, for example, the theory of special functions, statis-
tics and mathematical physics, the ψ-function has been the subject of
intensive work, and many interesting properties were discovered. Here
are some of them:

2010 AMS Mathematics subject classification. Primary 33B15, 39B62.
Keywords and phrases. Psi function, sub-additive, super-additive, inequalities,

convex, concave.
Received by the editors on June 5, 2012 and in revised form on June 18, 2012.

DOI:10.1216/RMJ-2014-44-5-1399 Copyright c⃝2014 Rocky Mountain Mathematics Consortium

1399



1400 HORST ALZER

Series and integral representations:

ψ(x) = −γ − 1

x
+

∞∑
k=1

x

k(k + x)
= −γ +

∫ ∞

0

e−t − e−xt

1− e−t
dt.

Asymptotic formula:

ψ(x) ∼ log(x)− 1

2x
− 1

12x2
+

1

120x4
−+ · · · (x→ ∞).

Reflection and recurrence formulas:

ψ(1− x) = ψ(x) + π cot(πx), ψ(x+ 1) = ψ(x) +
1

x
.

Additional information on the ψ-function can be found, for instance,
in [1, Chapter 6].

Numerous research articles were published in the recent past pro-
viding inequalities for the gamma and psi functions and their deriva-
tives. We refer to the detailed bibliography [23] as well as to
[4, 14, 18, 24, 25, 26, 27, 28, 29], and the references given therein.

In this paper, we are interested in certain sub- and super-additive
properties of ψ. We recall that a function f : (0,∞) → R is said to be
sub-additive, if

f(x+ y) ≤ f(x) + f(y) for all x, y > 0.

If the converse inequality holds, then f is called super-additive. These
functions have applications in different mathematical branches, like,
for example, semi-group theory and functional analysis, and also in
economics. See [5, 6, 7, 10, 11, 12, 16], [17, Chapter 16], [19, 20, 22]
for more information on this subject.

We ask: do there exist real parameters α and β such that ψ(xα) is
subadditive and that ψ(xβ) is super-additive on (0,∞)? It is our aim
to answer this question. In the next section, we collect some lemmas
which we need to prove our main results. In Section 3, we determine
all α, β ∈ R such that the inequalities

ψ
(
(x+ y)α

)
≤ ψ(xα) + ψ(yα)

and
ψ(xβ) + ψ(yβ) ≤ ψ

(
(x+ y)β

)
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are valid for all x, y > 0. We conclude our paper with a few remarks.
Among others, we study convexity and concavity properties of ψ(xα).
These remarks are given in Section 4.

The numerical values have been calculated via the computer program
MAPLE V, Release 5.1.

2. Lemmas. Throughout this paper, we denote by x0 = 1.4616 . . .
the only positive zero of ψ. The first three lemmas provide known
monotonicity properties of functions which are defined in terms of the
ψ-function. Proofs are given in [2, 3].

Lemma 1. The function

x 7−→ xψ(x)

is strictly decreasing on (0, r0], where r0 = 0.2160 . . . .

Lemma 2. Let k ∈ N. The function

(2.1) τk(x) = xk+1|ψ(k)(x)|

is strictly increasing on (0,∞).

Lemma 3. Let k ∈ N. The function

(2.2) ∆k(x) = x
ψ(k+1)(x)

ψ(k)(x)

is strictly increasing on (0,∞).

Lemma 4. Let

(2.3) Pb(x) = xbψ′(x) (b ∈ R).

(i) If b < 1.98, then Pb is strictly decreasing on (0, 0.08).
(ii) If 1.97 < b < 1.98, then Pb is strictly convex on (0, x0).

Proof. (i) Let b < 1.98 and 0 < x < 0.08. Differentiation leads to

x−bP ′
b(x) = b

ψ′(x)

x
+ ψ′′(x).
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Since ψ′ is positive on (0,∞), we obtain

(2.4) x−bP ′
b(x) < 1.98

ψ′(x)

x
+ ψ′′(x) =

ψ′(x)

x
[1.98 + ∆1(x)],

where ∆1 is defined in (2.2). Applying Lemma 3 gives

(2.5) ∆1(x) < ∆1(0.08) = −1.982 . . . .

Combining (2.4) and (2.5) reveals that P ′
b(x) < 0.

(ii) Let 1.97 < b < 1.98. We consider two cases.

Case 1. 0 < x < 0.1. By differentiation, we get

x4−bP ′′
b (x) = (b2 − b)τ1(x)− 2bτ2(x) + τ3(x),

where τ1, τ2, τ3 are defined in (2.1). Using τ1(0) = limx→0 τ1(x) = 1,
τ3(0) = limx→0 τ3(x) = 6, and Lemma 2 yields

x4−bP ′′
b (x) ≥ b2 − b− 2bτ2(0.1) + 6 = q(b), say.

Since q is decreasing on [1.97, 1.98] with q(1.98) = 0.013 . . ., we obtain
P ′′
b (x) > 0.

Case 2. 0.1 ≤ x ≤ x0. We have

x2−b

ψ′(x)
P ′′
b (x) = b2 − b+ 2b∆1(x) + ∆1(x)∆2(x),

with ∆1 and ∆2 as defined in (2.2). Since ∆1 and ∆2 are negative
and increasing, we conclude that the product ∆1∆2 is decreasing. Let
0.1 ≤ r ≤ x ≤ s ≤ x0. Then, we get

x2−b

ψ′(x)
P ′′
b (x) ≥ 1.972 − 1.97 + 2 · 1.98∆1(r) + ∆1(s)∆2(s)

= K(r, s), say.

Since

K
(
0.1 +

k

150
, 0.1 +

k + 1

150

)
> 0

for k = 0, 1, . . . , 203 and K(1.46, x0) = 0.037 . . ., we find that P ′′
b is

positive on (0, x0). �

Lemma 5. Let c = 0.49084. For t > 0 we have

ψ(ct) < 2ψ(t).
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Proof. To show that g(t) = 2ψ(t) − ψ(ct) is positive on (0,∞) we
consider three cases.

Case 1. 0 < t ≤ 0.2. Let 0 < a ≤ 1.08 and ha(t) = tψ(at). Since
0 < at ≤ 0.216, we conclude from Lemma 1 that ha is decreasing on
(0, 0.2]. We set 0 ≤ r ≤ t ≤ s ≤ 0.2 and obtain

tg(t) = 2h1(t)− hc(t) ≥ 2h1(s)− hc(r) = H(r, s), say.

By direct computation, we find

H(0, 0.03) = 0.0055 . . . ,

H

(
0.03 +

k

100
, 0.03 +

k + 1

100

)
> 0 for k = 0, 1, 2, 3, 4,

H

(
0.08 +

k

400
, 0.08 +

k + 1

400

)
> 0 for k = 0, 1, . . . , 12,

H

(
0.1125 +

k

2000
, 0.1125 +

k + 1

2000

)
> 0 for k = 0, 1, . . . , 27,

H

(
0.1265 +

k

12000
, 0.1265 +

k + 1

12000

)
> 0 for k = 0, 1, . . . , 101,

H

(
0.135 +

k

20000
, 0.135 +

k + 1

20000

)
> 0 for k = 0, 1, . . . , 99,

H

(
0.14 +

k

8000
, 0.14 +

k + 1

8000

)
> 0 for k = 0, 1, . . . , 79,

H

(
0.15 +

k

900
, 0.15 +

k + 1

900

)
> 0 for k = 0, 1, . . . , 44.

This leads to g(t) > 0 for t ∈ (0, 0.2].

Case 2. 0.2 ≤ t ≤ x0. Let 0.2 ≤ r ≤ t ≤ s ≤ x0. Since ψ is strictly
increasing on (0,∞), we obtain

g(t) ≥ 2ψ(r)− ψ(cs) = I(r, s), say.

We have

I

(
0.2 +

k

1500
, 0.2 +

k + 1

1500

)
> 0 for k = 0, 1, . . . , 149,

I

(
0.3 +

k

160
, 0.3 +

k + 1

160

)
> 0 for k = 0, 1, . . . , 15,
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I

(
0.4 +

k

50
, 0.4 +

k + 1

50

)
> 0 for k = 0, 1, . . . , 29,

I(1, x0) = 0.017 . . . .

Thus, g(t) > 0 for t ∈ [0.2, x0].

Case 3. t ≥ x0. Since ψ(t) ≥ 0 and ψ(t) > ψ(ct), we get
g(t) = ψ(t) + [ψ(t)− ψ(ct)] > 0. �

Lemma 6. Let α ∈ [−1.027,−1.026] and

Fα(s, t) = ψ(s) + ψ(t)− ψ
(
[s1/α + t1/α]α

)
.

There exists a function σα such that Fα(s, t) ≥ σα(s) for all s, t ∈ R
with 0 < s ≤ t ≤ x0 and lims→0 σα(s) = ∞.

Proof. We distinguish two cases.

Case 1. t < 0.08. We have 0 < s ≤ t < 0.08. Partial differentiation
yields

t1−1/α ∂

∂t
Fα(s, t) = Pa(t)− Pa([s

1/α + t1/α]α)

with a = 1− 1/α and Pb as defined in (2.3). Since

a < 1.98 and 0 < [s1/α + t1/α]α < t < 0.08,

we conclude from Lemma 4 (i) that (∂/∂t)Fα(s, t) < 0. This implies
that t 7→ Fα(s, t) is strictly decreasing on [s, 0.08]. Thus, we obtain

(2.6) Fα(s, t) ≥ Fα(s, 0.08).

Let A = [s1/α + 0.081/α]α. We have 0 < A < 0.08. Using the identity
ψ(x) = ψ(x+ 1)− 1/x and the monotonicity of ψ gives

Fα(s, 0.08) = ψ(0.08) + ψ(s+ 1)− ψ(A+ 1) +
1

A
− 1

s
(2.7)

≥ ψ(0.08) + ψ(1)− ψ(1.08) +
1

A
− 1

s
.

Since −α > 1, we get

(2.8)
1

A
− 1

s
=

1

s

[(
1 +

(
0.08

s

)1/α)−α

− 1

]
≥ 0.081/αs−1−1/α.
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Combining (2.6)–(2.8) gives

(2.9) Fα(s, t) ≥ c0 + 0.081/αs−1−1/α

with c0 = ψ(0.08) + ψ(1)− ψ(1.08) = −13.077 . . . .

Case 2. 0.08 ≤ t. We have 0 < s ≤ t ≤ x0 and 0.08 ≤ t. Let
B = [s1/α + t1/α]α. Then, B ≤ 2−1.026x0. We obtain

Fα(s, t) ≥ ψ(s) + ψ(0.08)− ψ(B)(2.10)

= ψ(0.08) + ψ(s+ 1)− ψ(B + 1) +
1

B
− 1

s

≥ ψ(0.08) + ψ(1)− ψ(2−1.026x0 + 1) +
1

B
− 1

s
.

Furthermore,

1

B
− 1

s
=

1

s

[(
1 +

( t
s

)1/α)−α

− 1
]

(2.11)

≥ 1

s

( t
s

)1/α

≥ x
1/α
0 s−1−1/α.

From (2.10) and (2.11), we get

(2.12) Fα(s, t) ≥ c∗0 + x
1/α
0 s−1−1/α

with c∗0 = ψ(0.08) + ψ(1)− ψ(2−1.026x0 + 1) = −13.752 . . . .

We have x
1/α
0 < 0.081/α and c∗0 < c0. Thus, from (2.9) and (2.12),

we obtain for s, t ∈ R with 0 < s ≤ t ≤ x0:

Fα(s, t) ≥ c∗0 + x
1/α
0 s−1−1/α = σα(s), say.

Since −1− 1/α < 0, we conclude that lims→0 σα(s) = ∞. �

3. Main results. We are now ready to describe completely the sub-
and super-additive properties of ψ(xα).

Theorem 1. Let α be a real number. The inequality

(3.1) ψ
(
(x+ y)α

)
≤ ψ(xα) + ψ(yα)

holds for all positive real numbers x and y if and only if

(3.2) α ≤ α0 = −1.0266 . . . .
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Here, α0 is given by

(3.3) 2α0 = inf
t>0

ψ−1
(
2ψ(t)

)
t

= 0.4908 . . . .

(As usual, ψ−1 denotes the inverse function of ψ.)

Proof. First, we assume that (3.1) is valid for all x, y > 0. If α > 0,
then we obtain

lim
x→0

ψ
(
(x+ y)α

)
= ψ(yα) and lim

x→0
[ψ(xα) + ψ(yα)] = −∞,

a contradiction. Hence, α ≤ 0. If α = 0, then (3.1) is equivalent to
0 ≤ ψ(1). But, ψ(1) = −γ < 0. It follows that α < 0. We set x = y
and t = xα. Then, we get for t > 0:

ψ(2αt) ≤ 2ψ(t).

Therefore,

2α ≤
ψ−1

(
2ψ(t)

)
t

= J(t), say.

This gives α ≤ α0, where 2α0 = inft>0 J(t). From Lemma 5 we
conclude that

0.49084 < J(t) for t > 0,

so that J(0.13654) = 0.49084 . . . leads to

0.49084 ≤ 2α0 ≤ 0.49084 . . . .

It follows that

2α0 = 0.4908 . . . and α0 = −1.0266 . . . .

Next, we prove: if α ≤ α0 with α0 as given in (3.2) and (3.3),
respectively, then (3.1) is valid for all x, y > 0. We set x = s1/α

and y = t1/α. Then, (3.1) can be written as

ψ
(
[s1/α + t1/α]α

)
≤ ψ(s) + ψ(t).

Since ψ is increasing on (0,∞) and a 7→ [s1/a + t1/a]a is increasing on
(−∞, 0), see [8, page 18], we obtain

ψ
(
[s1/α + t1/α]α

)
≤ ψ

(
[s1/α0 + t1/α0 ]α0

)
.
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Hence, it suffices to show that, if 0 < s ≤ t, then

(3.4) ψ
(
[s1/α0 + t1/α0 ]α0

)
≤ ψ(s) + ψ(t).

To prove (3.4) we consider two cases.

Case 1. x0 < t. s Since [s1/α0 + t1/α0 ]α0 < s, we get

ψ
(
[s1/α0 + t1/α0 ]α0

)
< ψ(s) < ψ(s) + ψ(t).

Case 2. t ≤ x0. Let W = {(s, t) ∈ R2 | 0 < s ≤ t ≤ x0} and

F (s, t) = ψ(s) + ψ(t)− ψ
(
[s1/α0 + t1/α0 ]α0

)
.

We set
M = max

0.01≤s≤t≤x0

F (s, t).

Applying Lemma 6 (with α = α0) reveals that there exists a number
δ > 0 such that, for all s, t ∈ R with 0 < s < δ and s ≤ t ≤ x0, we have
F (s, t) ≥ M . Let δ∗ = min{δ, 0.01}. We show that, for all (s̃, t̃) ∈ W
we have

(3.5) F (s̃, t̃) ≥ min
δ∗≤s≤t≤x0

F (s, t).

Case 2.1. δ∗ ≤ s̃. Then we have δ∗ ≤ s̃ ≤ t̃ ≤ x0. This implies that
(3.5) holds.

Case 2.2. s̃ ≤ δ∗. Then, 0 < s̃ ≤ δ, s̃ ≤ t̃ ≤ x0 and δ∗ ≤ 0.01. It
follows that

F (s̃, t̃) ≥M ≥ min
0.01≤s≤t≤x0

F (s, t) ≥ min
δ∗≤s≤t≤x0

F (s, t).

Thus, there exist real numbers s0, t0 with (s0, t0) ∈ W such that
F (s, t) ≥ F (s0, t0) for all (s, t) ∈ W . We suppose that (s0, t0) is an
interior point of W . Then we obtain

s0
b0
∂F (s, t)

∂s

∣∣∣∣
(s,t)=(s0,t0)

= Pb0(s0)− Pb0(C) = 0

and

t0
b0
∂F (s, t)

∂t

∣∣∣∣
(s,t)=(s0,t0)

= Pb0(t0)− Pb0(C) = 0
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where b0 = 1− 1/α0, C = [s
1/α0

0 + t
1/α0

0 ]α0 , and Pb as defined in (2.3).
It follows that

Pb0(s0) = Pb0(t0) = Pb0(C)

with 0 < C < s0 < t0 < x0 and 1.97 < b0 < 1.98. This contradicts
Lemma 4 (ii). Thus, we have either 0 < s0 = t0 ≤ x0 or 0 < s0 ≤ t0 =
x0. In the first case, we obtain

F (s0, t0) = 2ψ(t0)− ψ(2α0t0).

Since

2α0 ≤
ψ−1

(
2ψ(t0)

)
t0

,

we get F (s0, t0) ≥ 0. And, the second case leads to

F (s0, t0) = ψ(s0)− ψ(C) > 0.

The proof of Theorem 1 is complete. �

Theorem 2. Let β be a real number. The inequality

(3.6) ψ(xβ) + ψ(yβ) ≤ ψ
(
(x+ y)β

)
is valid for all positive real numbers x and y if and only if β = 0.

Proof. Since ψ(1) = −γ, we conclude that (3.6) holds if β = 0. Next,
we assume that (3.6) is valid for all x, y > 0. If β < 0, then the sum
on the left-hand side tends to ∞ as x→ 0, whereas the right-hand side
converges to ψ(yβ). Hence, β ≥ 0. We suppose that β > 0 and set
x = y, t = xβ . Then, (3.6) reads

2ψ(t) ≤ ψ(2βt).

This yields for t > 1:

(3.7) 2
ψ(t)

log(t)
≤ ψ(2βt)

log(2βt)

(
1 +

β log(2)

log(t)

)
.

Applying limt→∞ ψ(t)/ log(t) = 1 leads to 2 ≤ 1. This contradiction
gives β = 0. �
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4. Final remarks. (I) In what follows, we set Φα(x) = ψ(xα). The
inequalities (3.1) and (3.6) are related to Jensen’s inequality and its
converse. Therefore, it is natural to ask for all real parameters α such
that Φα is convex/concave on (0,∞).

Remark 1. The inequality

(4.1) ψ

((
x+ y

2

)α)
<
ψ(xα) + ψ(yα)

2
(α ∈ R \ {0})

holds for all x, y > 0 with x ̸= y if and only if α ∈ [−1, 0). The converse
of (4.1) is valid for all x, y > 0 with x ̸= y if and only if α > 0.

Proof. Differentiation gives for α ̸= 0:

x2−α

α2ψ′(xα)
Φ′′

α(x) = ∆1(x
α) + 1− 1

α
,

where ∆1 is defined in (2.2). Using this identity as well as Lemma 3
(with k = 1) and the limit relations

lim
t→0

∆1(t) = −2, lim
t→∞

∆1(t) = −1,

we conclude that Φ′′
α(x) > 0 for x > 0 if and only if −1 ≤ α < 0, and

Φ′′
α(x) < 0 for x > 0 if and only if α > 0. �

(II) An application of Remark 1 leads to the following functional
inequality.

Remark 2. The inequality

ψ((x+ y)α) + ψ(zα) ≤ ψ(xα) + ψ((y + z)α) (α ∈ R \ {0})

holds for all x, y, z > 0 with x ≤ z if and only if α ∈ [−1, 0).

Proof. Let −1 ≤ α < 0 and

Qα(x, y, z) = Φα(x) + Φα(y + z)− Φα(x+ y)− Φα(z).

Since Φα is convex on (0,∞), we obtain

∂

∂y
Qα(x, y, z) = Φ′

α(y + z)− Φ′
α(x+ y) ≥ 0.

This gives
Qα(x, y, z) ≥ Qα(x, 0, z) = 0.
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Let Qα(x, y, z) ≥ 0 for all x, y, z > 0 with x ≤ z. If α > 0, then
limx→0Qα(x, y, z) = −∞. This contradiction leads to α < 0. Then,
for z ≥ x, we get

Qα(x, x, z) = Φα(x) + Φα(x+ z)− Φα(2x)− Φα(z) ≥ 0

= Qα(x, x, x).

This gives

(4.2) 0 ≤ (2x)α+1 d

dz
Qα(x, x, z)

∣∣∣∣z=x

= α
[
(2x)2αψ′((2x)α)− 2α+1x2αψ′(xα)

]
.

We let x tend to ∞ and make use of the limit relation limt→0 t
2ψ′(t) =

1. Then, (4.2) leads to 0 ≤ α(1− 2α+1). Thus, α ≥ −1. �

(III) The weighted power mean of order r is defined for positive real
numbers a1, . . . , an and w1, . . . , wn with w1 + · · ·+ wn = 1 by

M(r) =

( n∑
k=1

wka
r
k

)1/r

(r ∈ R \ {0}).

The main properties of this family of mean-values are collected in [15,
Chapter 2]. In 1972, Beesack [9] presented a proof for the following
remarkable inequality:

(4.3)
M(t)−M(r)

M(t)−M(s)
<
s(t− r)

r(t− s)
(0 < r < s < t).

The validity of (4.3) for the special case w1 = · · · = wn = 1/n was
conjectured by Hsu in 1955. Here is a counterpart of (4.3) for the psi
function.

Remark 3. The inequality

(4.4)
ψ(tα)− ψ(rα)

ψ(tα)− ψ(sα)
<
s(t− r)

r(t− s)
(α ∈ R \ {0})

holds for all real numbers r, s, t with 0 < r < s < t if and only if α < 0
or 0 < α ≤ 1.

Proof. Let 0 < r < s < t. To prove (4.4) we consider two cases.
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Case 1. 0 < α ≤ 1. Since Φ−α is strictly convex on (0,∞), we
obtain for x, y > 0 with x ̸= y and λ ∈ (0, 1):

(4.5) Φ−α(λx+ (1− λ)y) < λΦ−α(x) + (1− λ)Φ−α(y).

We set

x =
1

t
, y =

1

r
, and λ =

t(s− r)

s(t− r)
.

Then, (4.5) gives

Φα(s) <
t(s− r)

s(t− r)
Φα(t) +

r(t− s)

s(t− r)
Φα(r).

This is equivalent to

(4.6) r(t− s)[Φα(t)− Φα(r)] < s(t− r)[Φα(t)− Φα(s)].

The function Φα is strictly increasing on (0,∞), so that (4.6) implies
(4.4).

Case 2. α < 0. The strict concavity of Φ−α reveals that (4.5) and
(4.6) are valid with “>” instead of “<.” Since Φα is strictly decreasing
on (0,∞), we conclude that (4.6) leads to (4.4).

Conversely, let (4.4) be valid for all r, s, t with 0 < r < s < t. We
assume that α > 1. Then we get

Rα(r, t) < Rα(s, t)

with

Rα(x, t) = x
ψ(tα)− ψ(xα)

t− x
.

Let 0 < x < t. We obtain

0 ≤ (t− x)2xα
∂

∂x
Rα(x, t)(4.7)

= −t[xαψ(xα)− xαψ(tα)] + α(x− t)x2αψ′(xα),

and let x tend to 0. Then, the expression on the right-hand side of
(4.7) converges to t(1− α). Hence, α ≤ 1. �

(IV) The logarithmic mean of two positive real numbers x, y with
x ̸= y is defined by

L(x, y) =
x− y

log(x)− log(y)
.
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This mean value plays a role not only in mathematics, but it also has
applications in physics and economics. For more information on this
subject we refer to [21] and the references given therein. In 2008, Chu
et al. [13] proved an elegant inequality involving the psi function and
the logarithmic mean:

(y − x)ψ(
√
xy) <

(
L(x, y)− x

)
ψ(x) +

(
y − L(x, y)

)
ψ(y)(4.8)

(2 ≤ x < y).

The authors conjectured that (4.8) is valid for all x, y > 0 with y > x.
However, this conjecture is not true. To show this we set y = x0 and
multiply both sides of (4.8) by

√
x0x. This leads to

(x0 − x)
√
x0xψ(

√
x0x) <

(
L(x, x0)− x

)√
x0xψ(x)

= (−xψ(x))
[
√
x0x+

x0 − x

2
√
x/x0 log

√
x/x0

]
.

If x tends to 0, then the expression on the left-hand side converges to
−x0, whereas the right-hand side tends to −∞, a contradiction.

Acknowledgments. I thank the referee for completing the list of
references by some recently published papers on this subject.
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