SUB- AND SUPER-ADDITIVE PROPERTIES OF THE PSI FUNCTION

HORST ALZER

ABSTRACT. We prove the following sub- and superadditive properties of the psi function.
(i) The inequality

$$
\psi\left((x+y)^{\alpha}\right) \leq \psi\left(x^{\alpha}\right)+\psi\left(y^{\alpha}\right) \quad(\alpha \in \mathbf{R})
$$

holds for all $x, y>0$ if and only if $\alpha \leq \alpha_{0}=$ $-1.0266 \ldots$ Here, α_{0} is given by

$$
2^{\alpha_{0}}=\inf _{t>0} \frac{\psi^{-1}(2 \psi(t))}{t}=0.4908 \ldots
$$

(ii) The inequality

$$
\psi\left(x^{\beta}\right)+\psi\left(y^{\beta}\right) \leq \psi\left((x+y)^{\beta}\right) \quad(\beta \in \mathbf{R})
$$

is valid for all $x, y>0$ if and only if $\beta=0$.

1. Introduction. Euler's classical gamma function is defined for positive real numbers x by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t=\frac{e^{-\gamma x}}{x} \prod_{k=1}^{\infty}\left\{\left(1+\frac{x}{k}\right)^{-1} e^{x / k}\right\}
$$

We are concerned with the logarithmic derivative of the Γ-function,

$$
\psi(x)=\frac{d}{d x} \log \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)},
$$

which is known as psi (or digamma) function. In view of its relevance in various fields, like, for example, the theory of special functions, statistics and mathematical physics, the ψ-function has been the subject of intensive work, and many interesting properties were discovered. Here are some of them:

[^0]Series and integral representations:

$$
\psi(x)=-\gamma-\frac{1}{x}+\sum_{k=1}^{\infty} \frac{x}{k(k+x)}=-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} d t
$$

Asymptotic formula:

$$
\psi(x) \sim \log (x)-\frac{1}{2 x}-\frac{1}{12 x^{2}}+\frac{1}{120 x^{4}}-+\cdots \quad(x \rightarrow \infty)
$$

Reflection and recurrence formulas:

$$
\psi(1-x)=\psi(x)+\pi \cot (\pi x), \quad \psi(x+1)=\psi(x)+\frac{1}{x}
$$

Additional information on the ψ-function can be found, for instance, in [1, Chapter 6].

Numerous research articles were published in the recent past providing inequalities for the gamma and psi functions and their derivatives. We refer to the detailed bibliography [23] as well as to $[4,14,18,24,25,26,27,28,29]$, and the references given therein.

In this paper, we are interested in certain sub- and super-additive properties of ψ. We recall that a function $f:(0, \infty) \rightarrow \mathbf{R}$ is said to be sub-additive, if

$$
f(x+y) \leq f(x)+f(y) \quad \text { for all } \quad x, y>0
$$

If the converse inequality holds, then f is called super-additive. These functions have applications in different mathematical branches, like, for example, semi-group theory and functional analysis, and also in economics. See $[\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 6}],[\mathbf{1 7}$, Chapter 16], $[\mathbf{1 9}, \mathbf{2 0}, \mathbf{2 2}]$ for more information on this subject.

We ask: do there exist real parameters α and β such that $\psi\left(x^{\alpha}\right)$ is subadditive and that $\psi\left(x^{\beta}\right)$ is super-additive on $(0, \infty)$? It is our aim to answer this question. In the next section, we collect some lemmas which we need to prove our main results. In Section 3, we determine all $\alpha, \beta \in \mathbf{R}$ such that the inequalities

$$
\psi\left((x+y)^{\alpha}\right) \leq \psi\left(x^{\alpha}\right)+\psi\left(y^{\alpha}\right)
$$

and

$$
\psi\left(x^{\beta}\right)+\psi\left(y^{\beta}\right) \leq \psi\left((x+y)^{\beta}\right)
$$

are valid for all $x, y>0$. We conclude our paper with a few remarks. Among others, we study convexity and concavity properties of $\psi\left(x^{\alpha}\right)$. These remarks are given in Section 4.

The numerical values have been calculated via the computer program MAPLE V, Release 5.1.
2. Lemmas. Throughout this paper, we denote by $x_{0}=1.4616 \ldots$ the only positive zero of ψ. The first three lemmas provide known monotonicity properties of functions which are defined in terms of the ψ-function. Proofs are given in [2, 3].

Lemma 1. The function

$$
x \longmapsto x \psi(x)
$$

is strictly decreasing on $\left(0, r_{0}\right]$, where $r_{0}=0.2160 \ldots$.
Lemma 2. Let $k \in \mathbf{N}$. The function

$$
\begin{equation*}
\tau_{k}(x)=x^{k+1}\left|\psi^{(k)}(x)\right| \tag{2.1}
\end{equation*}
$$

is strictly increasing on $(0, \infty)$.
Lemma 3. Let $k \in \mathbf{N}$. The function

$$
\begin{equation*}
\Delta_{k}(x)=x \frac{\psi^{(k+1)}(x)}{\psi^{(k)}(x)} \tag{2.2}
\end{equation*}
$$

is strictly increasing on $(0, \infty)$.
Lemma 4. Let

$$
\begin{equation*}
P_{b}(x)=x^{b} \psi^{\prime}(x) \quad(b \in \mathbf{R}) . \tag{2.3}
\end{equation*}
$$

(i) If $b<1.98$, then P_{b} is strictly decreasing on $(0,0.08)$.
(ii) If $1.97<b<1.98$, then P_{b} is strictly convex on $\left(0, x_{0}\right)$.

Proof. (i) Let $b<1.98$ and $0<x<0.08$. Differentiation leads to

$$
x^{-b} P_{b}^{\prime}(x)=b \frac{\psi^{\prime}(x)}{x}+\psi^{\prime \prime}(x) .
$$

Since ψ^{\prime} is positive on $(0, \infty)$, we obtain

$$
\begin{equation*}
x^{-b} P_{b}^{\prime}(x)<1.98 \frac{\psi^{\prime}(x)}{x}+\psi^{\prime \prime}(x)=\frac{\psi^{\prime}(x)}{x}\left[1.98+\Delta_{1}(x)\right] \tag{2.4}
\end{equation*}
$$

where Δ_{1} is defined in (2.2). Applying Lemma 3 gives

$$
\begin{equation*}
\Delta_{1}(x)<\Delta_{1}(0.08)=-1.982 \ldots \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5) reveals that $P_{b}^{\prime}(x)<0$.
(ii) Let $1.97<b<1.98$. We consider two cases.

Case 1. $0<x<0.1$. By differentiation, we get

$$
x^{4-b} P_{b}^{\prime \prime}(x)=\left(b^{2}-b\right) \tau_{1}(x)-2 b \tau_{2}(x)+\tau_{3}(x),
$$

where $\tau_{1}, \tau_{2}, \tau_{3}$ are defined in (2.1). Using $\tau_{1}(0)=\lim _{x \rightarrow 0} \tau_{1}(x)=1$, $\tau_{3}(0)=\lim _{x \rightarrow 0} \tau_{3}(x)=6$, and Lemma 2 yields

$$
x^{4-b} P_{b}^{\prime \prime}(x) \geq b^{2}-b-2 b \tau_{2}(0.1)+6=q(b), \quad \text { say. }
$$

Since q is decreasing on $[1.97,1.98]$ with $q(1.98)=0.013 \ldots$, we obtain $P_{b}^{\prime \prime}(x)>0$.

Case 2. $0.1 \leq x \leq x_{0}$. We have

$$
\frac{x^{2-b}}{\psi^{\prime}(x)} P_{b}^{\prime \prime}(x)=b^{2}-b+2 b \Delta_{1}(x)+\Delta_{1}(x) \Delta_{2}(x)
$$

with Δ_{1} and Δ_{2} as defined in (2.2). Since Δ_{1} and Δ_{2} are negative and increasing, we conclude that the product $\Delta_{1} \Delta_{2}$ is decreasing. Let $0.1 \leq r \leq x \leq s \leq x_{0}$. Then, we get

$$
\begin{aligned}
\frac{x^{2-b}}{\psi^{\prime}(x)} P_{b}^{\prime \prime}(x) & \geq 1.97^{2}-1.97+2 \cdot 1.98 \Delta_{1}(r)+\Delta_{1}(s) \Delta_{2}(s) \\
& =K(r, s), \quad \text { say }
\end{aligned}
$$

Since

$$
K\left(0.1+\frac{k}{150}, 0.1+\frac{k+1}{150}\right)>0
$$

for $k=0,1, \ldots, 203$ and $K\left(1.46, x_{0}\right)=0.037 \ldots$, we find that $P_{b}^{\prime \prime}$ is positive on $\left(0, x_{0}\right)$.

Lemma 5. Let $c=0.49084$. For $t>0$ we have

$$
\psi(c t)<2 \psi(t)
$$

Proof. To show that $g(t)=2 \psi(t)-\psi(c t)$ is positive on $(0, \infty)$ we consider three cases.

Case 1. $0<t \leq 0.2$. Let $0<a \leq 1.08$ and $h_{a}(t)=t \psi(a t)$. Since $0<a t \leq 0.216$, we conclude from Lemma 1 that h_{a} is decreasing on $(0,0.2]$. We set $0 \leq r \leq t \leq s \leq 0.2$ and obtain

$$
\operatorname{tg}(t)=2 h_{1}(t)-h_{c}(t) \geq 2 h_{1}(s)-h_{c}(r)=H(r, s), \quad \text { say }
$$

By direct computation, we find

$$
\begin{aligned}
& H(0,0.03)=0.0055 \ldots, \\
& H\left(0.03+\frac{k}{100}, 0.03+\frac{k+1}{100}\right)>0 \quad \text { for } k=0,1,2,3,4 \\
& H\left(0.08+\frac{k}{400}, 0.08+\frac{k+1}{400}\right)>0 \quad \text { for } k=0,1, \ldots, 12, \\
& H\left(0.1125+\frac{k}{2000}, 0.1125+\frac{k+1}{2000}\right)>0 \quad \text { for } k=0,1, \ldots, 27, \\
& H\left(0.1265+\frac{k}{12000}, 0.1265+\frac{k+1}{12000}\right)>0 \quad \text { for } k=0,1, \ldots, 101, \\
& H\left(0.135+\frac{k}{20000}, 0.135+\frac{k+1}{20000}\right)>0 \quad \text { for } k=0,1, \ldots, 99 \\
& H\left(0.14+\frac{k}{8000}, 0.14+\frac{k+1}{8000}\right)>0 \quad \text { for } k=0,1, \ldots, 79, \\
& H\left(0.15+\frac{k}{900}, 0.15+\frac{k+1}{900}\right)>0 \quad \text { for } k=0,1, \ldots, 44 .
\end{aligned}
$$

This leads to $g(t)>0$ for $t \in(0,0.2]$.
Case 2. $0.2 \leq t \leq x_{0}$. Let $0.2 \leq r \leq t \leq s \leq x_{0}$. Since ψ is strictly increasing on $(0, \infty)$, we obtain

$$
g(t) \geq 2 \psi(r)-\psi(c s)=I(r, s), \quad \text { say }
$$

We have

$$
\begin{aligned}
& I\left(0.2+\frac{k}{1500}, 0.2+\frac{k+1}{1500}\right)>0 \quad \text { for } k=0,1, \ldots, 149 \\
& I\left(0.3+\frac{k}{160}, 0.3+\frac{k+1}{160}\right)>0 \quad \text { for } k=0,1, \ldots, 15
\end{aligned}
$$

$$
\begin{gathered}
I\left(0.4+\frac{k}{50}, 0.4+\frac{k+1}{50}\right)>0 \text { for } k=0,1, \ldots, 29, \\
I\left(1, x_{0}\right)=0.017 \ldots
\end{gathered}
$$

Thus, $g(t)>0$ for $t \in\left[0.2, x_{0}\right]$.
Case 3. $\quad t \geq x_{0}$. Since $\psi(t) \geq 0$ and $\psi(t)>\psi(c t)$, we get $g(t)=\psi(t)+[\psi(t)-\psi(c t)]>0$.

Lemma 6. Let $\alpha \in[-1.027,-1.026]$ and

$$
F_{\alpha}(s, t)=\psi(s)+\psi(t)-\psi\left(\left[s^{1 / \alpha}+t^{1 / \alpha}\right]^{\alpha}\right) .
$$

There exists a function σ_{α} such that $F_{\alpha}(s, t) \geq \sigma_{\alpha}(s)$ for all $s, t \in \mathbf{R}$ with $0<s \leq t \leq x_{0}$ and $\lim _{s \rightarrow 0} \sigma_{\alpha}(s)=\infty$.

Proof. We distinguish two cases.
Case 1. $t<0.08$. We have $0<s \leq t<0.08$. Partial differentiation yields

$$
t^{1-1 / \alpha} \frac{\partial}{\partial t} F_{\alpha}(s, t)=P_{a}(t)-P_{a}\left(\left[s^{1 / \alpha}+t^{1 / \alpha}\right]^{\alpha}\right)
$$

with $a=1-1 / \alpha$ and P_{b} as defined in (2.3). Since

$$
a<1.98 \quad \text { and } \quad 0<\left[s^{1 / \alpha}+t^{1 / \alpha}\right]^{\alpha}<t<0.08
$$

we conclude from Lemma 4 (i) that $(\partial / \partial t) F_{\alpha}(s, t)<0$. This implies that $t \mapsto F_{\alpha}(s, t)$ is strictly decreasing on $[s, 0.08]$. Thus, we obtain

$$
\begin{equation*}
F_{\alpha}(s, t) \geq F_{\alpha}(s, 0.08) \tag{2.6}
\end{equation*}
$$

Let $A=\left[s^{1 / \alpha}+0.08^{1 / \alpha}\right]^{\alpha}$. We have $0<A<0.08$. Using the identity $\psi(x)=\psi(x+1)-1 / x$ and the monotonicity of ψ gives

$$
\begin{align*}
F_{\alpha}(s, 0.08) & =\psi(0.08)+\psi(s+1)-\psi(A+1)+\frac{1}{A}-\frac{1}{s} \tag{2.7}\\
& \geq \psi(0.08)+\psi(1)-\psi(1.08)+\frac{1}{A}-\frac{1}{s} .
\end{align*}
$$

Since $-\alpha>1$, we get

$$
\begin{equation*}
\frac{1}{A}-\frac{1}{s}=\frac{1}{s}\left[\left(1+\left(\frac{0.08}{s}\right)^{1 / \alpha}\right)^{-\alpha}-1\right] \geq 0.08^{1 / \alpha} s^{-1-1 / \alpha} \tag{2.8}
\end{equation*}
$$

Combining (2.6)-(2.8) gives

$$
\begin{equation*}
F_{\alpha}(s, t) \geq c_{0}+0.08^{1 / \alpha} s^{-1-1 / \alpha} \tag{2.9}
\end{equation*}
$$

with $c_{0}=\psi(0.08)+\psi(1)-\psi(1.08)=-13.077 \ldots$
Case 2. $0.08 \leq t$. We have $0<s \leq t \leq x_{0}$ and $0.08 \leq t$. Let $B=\left[s^{1 / \alpha}+t^{1 / \alpha}\right]^{\alpha}$. Then, $B \leq 2^{-1.026} x_{0}$. We obtain

$$
\begin{align*}
F_{\alpha}(s, t) & \geq \psi(s)+\psi(0.08)-\psi(B) \tag{2.10}\\
& =\psi(0.08)+\psi(s+1)-\psi(B+1)+\frac{1}{B}-\frac{1}{s} \\
& \geq \psi(0.08)+\psi(1)-\psi\left(2^{-1.026} x_{0}+1\right)+\frac{1}{B}-\frac{1}{s} .
\end{align*}
$$

Furthermore,

$$
\begin{align*}
\frac{1}{B}-\frac{1}{s} & =\frac{1}{s}\left[\left(1+\left(\frac{t}{s}\right)^{1 / \alpha}\right)^{-\alpha}-1\right] \tag{2.11}\\
& \geq \frac{1}{s}\left(\frac{t}{s}\right)^{1 / \alpha} \\
& \geq x_{0}^{1 / \alpha} s^{-1-1 / \alpha} .
\end{align*}
$$

From (2.10) and (2.11), we get

$$
\begin{equation*}
F_{\alpha}(s, t) \geq c_{0}^{*}+x_{0}^{1 / \alpha} s^{-1-1 / \alpha} \tag{2.12}
\end{equation*}
$$

with $c_{0}^{*}=\psi(0.08)+\psi(1)-\psi\left(2^{-1.026} x_{0}+1\right)=-13.752 \ldots$
We have $x_{0}^{1 / \alpha}<0.08^{1 / \alpha}$ and $c_{0}^{*}<c_{0}$. Thus, from (2.9) and (2.12), we obtain for $s, t \in \mathbf{R}$ with $0<s \leq t \leq x_{0}$:

$$
F_{\alpha}(s, t) \geq c_{0}^{*}+x_{0}^{1 / \alpha} s^{-1-1 / \alpha}=\sigma_{\alpha}(s), \quad \text { say } .
$$

Since $-1-1 / \alpha<0$, we conclude that $\lim _{s \rightarrow 0} \sigma_{\alpha}(s)=\infty$.
3. Main results. We are now ready to describe completely the suband super-additive properties of $\psi\left(x^{\alpha}\right)$.

Theorem 1. Let α be a real number. The inequality

$$
\begin{equation*}
\psi\left((x+y)^{\alpha}\right) \leq \psi\left(x^{\alpha}\right)+\psi\left(y^{\alpha}\right) \tag{3.1}
\end{equation*}
$$

holds for all positive real numbers x and y if and only if

$$
\begin{equation*}
\alpha \leq \alpha_{0}=-1.0266 \ldots . \tag{3.2}
\end{equation*}
$$

Here, α_{0} is given by

$$
\begin{equation*}
2^{\alpha_{0}}=\inf _{t>0} \frac{\psi^{-1}(2 \psi(t))}{t}=0.4908 \ldots \tag{3.3}
\end{equation*}
$$

(As usual, ψ^{-1} denotes the inverse function of ψ.)

Proof. First, we assume that (3.1) is valid for all $x, y>0$. If $\alpha>0$, then we obtain

$$
\lim _{x \rightarrow 0} \psi\left((x+y)^{\alpha}\right)=\psi\left(y^{\alpha}\right) \quad \text { and } \quad \lim _{x \rightarrow 0}\left[\psi\left(x^{\alpha}\right)+\psi\left(y^{\alpha}\right)\right]=-\infty
$$

a contradiction. Hence, $\alpha \leq 0$. If $\alpha=0$, then (3.1) is equivalent to $0 \leq \psi(1)$. But, $\psi(1)=-\gamma<0$. It follows that $\alpha<0$. We set $x=y$ and $t=x^{\alpha}$. Then, we get for $t>0$:

$$
\psi\left(2^{\alpha} t\right) \leq 2 \psi(t)
$$

Therefore,

$$
2^{\alpha} \leq \frac{\psi^{-1}(2 \psi(t))}{t}=J(t), \quad \text { say }
$$

This gives $\alpha \leq \alpha_{0}$, where $2^{\alpha_{0}}=\inf _{t>0} J(t)$. From Lemma 5 we conclude that

$$
0.49084<J(t) \quad \text { for } t>0
$$

so that $J(0.13654)=0.49084 \ldots$ leads to

$$
0.49084 \leq 2^{\alpha_{0}} \leq 0.49084 \ldots
$$

It follows that

$$
2^{\alpha_{0}}=0.4908 \ldots \quad \text { and } \quad \alpha_{0}=-1.0266 \ldots
$$

Next, we prove: if $\alpha \leq \alpha_{0}$ with α_{0} as given in (3.2) and (3.3), respectively, then (3.1) is valid for all $x, y>0$. We set $x=s^{1 / \alpha}$ and $y=t^{1 / \alpha}$. Then, (3.1) can be written as

$$
\psi\left(\left[s^{1 / \alpha}+t^{1 / \alpha}\right]^{\alpha}\right) \leq \psi(s)+\psi(t)
$$

Since ψ is increasing on $(0, \infty)$ and $a \mapsto\left[s^{1 / a}+t^{1 / a}\right]^{a}$ is increasing on $(-\infty, 0)$, see [8, page 18], we obtain

$$
\psi\left(\left[s^{1 / \alpha}+t^{1 / \alpha}\right]^{\alpha}\right) \leq \psi\left(\left[s^{1 / \alpha_{0}}+t^{1 / \alpha_{0}}\right]^{\alpha_{0}}\right) .
$$

Hence, it suffices to show that, if $0<s \leq t$, then

$$
\begin{equation*}
\psi\left(\left[s^{1 / \alpha_{0}}+t^{1 / \alpha_{0}}\right]^{\alpha_{0}}\right) \leq \psi(s)+\psi(t) \tag{3.4}
\end{equation*}
$$

To prove (3.4) we consider two cases.
Case 1. $x_{0}<t$. s Since $\left[s^{1 / \alpha_{0}}+t^{1 / \alpha_{0}}\right]^{\alpha_{0}}<s$, we get

$$
\psi\left(\left[s^{1 / \alpha_{0}}+t^{1 / \alpha_{0}}\right]^{\alpha_{0}}\right)<\psi(s)<\psi(s)+\psi(t)
$$

Case 2. $t \leq x_{0}$. Let $W=\left\{(s, t) \in \mathbf{R}^{2} \mid 0<s \leq t \leq x_{0}\right\}$ and

$$
F(s, t)=\psi(s)+\psi(t)-\psi\left(\left[s^{1 / \alpha_{0}}+t^{1 / \alpha_{0}}\right]^{\alpha_{0}}\right)
$$

We set

$$
M=\max _{0.01 \leq s \leq t \leq x_{0}} F(s, t)
$$

Applying Lemma 6 (with $\alpha=\alpha_{0}$) reveals that there exists a number $\delta>0$ such that, for all $s, t \in \mathbf{R}$ with $0<s<\delta$ and $s \leq t \leq x_{0}$, we have $F(s, t) \geq M$. Let $\delta^{*}=\min \{\delta, 0.01\}$. We show that, for all $(\widetilde{s}, \widetilde{t}) \in W$ we have

$$
\begin{equation*}
F(\widetilde{s}, \tilde{t}) \geq \min _{\delta^{*} \leq s \leq t \leq x_{0}} F(s, t) \tag{3.5}
\end{equation*}
$$

Case 2.1. $\delta^{*} \leq \widetilde{s}$. Then we have $\delta^{*} \leq \widetilde{s} \leq \widetilde{t} \leq x_{0}$. This implies that (3.5) holds.

Case 2.2. $\widetilde{s} \leq \delta^{*}$. Then, $0<\widetilde{s} \leq \delta, \widetilde{s} \leq \widetilde{t} \leq x_{0}$ and $\delta^{*} \leq 0.01$. It follows that

$$
F(\widetilde{s}, \widetilde{t}) \geq M \geq \min _{0.01 \leq s \leq t \leq x_{0}} F(s, t) \geq \min _{\delta^{*} \leq s \leq t \leq x_{0}} F(s, t)
$$

Thus, there exist real numbers s_{0}, t_{0} with $\left(s_{0}, t_{0}\right) \in W$ such that $F(s, t) \geq F\left(s_{0}, t_{0}\right)$ for all $(s, t) \in W$. We suppose that $\left(s_{0}, t_{0}\right)$ is an interior point of W. Then we obtain

$$
\left.s_{0}{ }^{b_{0}} \frac{\partial F(s, t)}{\partial s}\right|_{(s, t)=\left(s_{0}, t_{0}\right)}=P_{b_{0}}\left(s_{0}\right)-P_{b_{0}}(C)=0
$$

and

$$
\left.t_{0} b_{0} \frac{\partial F(s, t)}{\partial t}\right|_{(s, t)=\left(s_{0}, t_{0}\right)}=P_{b_{0}}\left(t_{0}\right)-P_{b_{0}}(C)=0
$$

where $b_{0}=1-1 / \alpha_{0}, C=\left[s_{0}^{1 / \alpha_{0}}+t_{0}^{1 / \alpha_{0}}\right]^{\alpha_{0}}$, and P_{b} as defined in (2.3). It follows that

$$
P_{b_{0}}\left(s_{0}\right)=P_{b_{0}}\left(t_{0}\right)=P_{b_{0}}(C)
$$

with $0<C<s_{0}<t_{0}<x_{0}$ and $1.97<b_{0}<1.98$. This contradicts Lemma 4 (ii). Thus, we have either $0<s_{0}=t_{0} \leq x_{0}$ or $0<s_{0} \leq t_{0}=$ x_{0}. In the first case, we obtain

$$
F\left(s_{0}, t_{0}\right)=2 \psi\left(t_{0}\right)-\psi\left(2^{\alpha_{0}} t_{0}\right)
$$

Since

$$
2^{\alpha_{0}} \leq \frac{\psi^{-1}\left(2 \psi\left(t_{0}\right)\right)}{t_{0}}
$$

we get $F\left(s_{0}, t_{0}\right) \geq 0$. And, the second case leads to

$$
F\left(s_{0}, t_{0}\right)=\psi\left(s_{0}\right)-\psi(C)>0 .
$$

The proof of Theorem 1 is complete.

Theorem 2. Let β be a real number. The inequality

$$
\begin{equation*}
\psi\left(x^{\beta}\right)+\psi\left(y^{\beta}\right) \leq \psi\left((x+y)^{\beta}\right) \tag{3.6}
\end{equation*}
$$

is valid for all positive real numbers x and y if and only if $\beta=0$.

Proof. Since $\psi(1)=-\gamma$, we conclude that (3.6) holds if $\beta=0$. Next, we assume that (3.6) is valid for all $x, y>0$. If $\beta<0$, then the sum on the left-hand side tends to ∞ as $x \rightarrow 0$, whereas the right-hand side converges to $\psi\left(y^{\beta}\right)$. Hence, $\beta \geq 0$. We suppose that $\beta>0$ and set $x=y, t=x^{\beta}$. Then, (3.6) reads

$$
2 \psi(t) \leq \psi\left(2^{\beta} t\right)
$$

This yields for $t>1$:

$$
\begin{equation*}
2 \frac{\psi(t)}{\log (t)} \leq \frac{\psi\left(2^{\beta} t\right)}{\log \left(2^{\beta} t\right)}\left(1+\frac{\beta \log (2)}{\log (t)}\right) \tag{3.7}
\end{equation*}
$$

Applying $\lim _{t \rightarrow \infty} \psi(t) / \log (t)=1$ leads to $2 \leq 1$. This contradiction gives $\beta=0$.
4. Final remarks. (I) In what follows, we set $\Phi_{\alpha}(x)=\psi\left(x^{\alpha}\right)$. The inequalities (3.1) and (3.6) are related to Jensen's inequality and its converse. Therefore, it is natural to ask for all real parameters α such that Φ_{α} is convex/concave on $(0, \infty)$.

Remark 1. The inequality

$$
\begin{equation*}
\psi\left(\left(\frac{x+y}{2}\right)^{\alpha}\right)<\frac{\psi\left(x^{\alpha}\right)+\psi\left(y^{\alpha}\right)}{2} \quad(\alpha \in \mathbf{R} \backslash\{0\}) \tag{4.1}
\end{equation*}
$$

holds for all $x, y>0$ with $x \neq y$ if and only if $\alpha \in[-1,0)$. The converse of (4.1) is valid for all $x, y>0$ with $x \neq y$ if and only if $\alpha>0$.

Proof. Differentiation gives for $\alpha \neq 0$:

$$
\frac{x^{2-\alpha}}{\alpha^{2} \psi^{\prime}\left(x^{\alpha}\right)} \Phi_{\alpha}^{\prime \prime}(x)=\Delta_{1}\left(x^{\alpha}\right)+1-\frac{1}{\alpha}
$$

where Δ_{1} is defined in (2.2). Using this identity as well as Lemma 3 (with $k=1$) and the limit relations

$$
\lim _{t \rightarrow 0} \Delta_{1}(t)=-2, \quad \lim _{t \rightarrow \infty} \Delta_{1}(t)=-1
$$

we conclude that $\Phi_{\alpha}^{\prime \prime}(x)>0$ for $x>0$ if and only if $-1 \leq \alpha<0$, and $\Phi_{\alpha}^{\prime \prime}(x)<0$ for $x>0$ if and only if $\alpha>0$.
(II) An application of Remark 1 leads to the following functional inequality.

Remark 2. The inequality

$$
\psi\left((x+y)^{\alpha}\right)+\psi\left(z^{\alpha}\right) \leq \psi\left(x^{\alpha}\right)+\psi\left((y+z)^{\alpha}\right) \quad(\alpha \in \mathbf{R} \backslash\{0\})
$$

holds for all $x, y, z>0$ with $x \leq z$ if and only if $\alpha \in[-1,0)$.
Proof. Let $-1 \leq \alpha<0$ and

$$
Q_{\alpha}(x, y, z)=\Phi_{\alpha}(x)+\Phi_{\alpha}(y+z)-\Phi_{\alpha}(x+y)-\Phi_{\alpha}(z)
$$

Since Φ_{α} is convex on $(0, \infty)$, we obtain

$$
\frac{\partial}{\partial y} Q_{\alpha}(x, y, z)=\Phi_{\alpha}^{\prime}(y+z)-\Phi_{\alpha}^{\prime}(x+y) \geq 0
$$

This gives

$$
Q_{\alpha}(x, y, z) \geq Q_{\alpha}(x, 0, z)=0
$$

Let $Q_{\alpha}(x, y, z) \geq 0$ for all $x, y, z>0$ with $x \leq z$. If $\alpha>0$, then $\lim _{x \rightarrow 0} Q_{\alpha}(x, y, z)=-\infty$. This contradiction leads to $\alpha<0$. Then, for $z \geq x$, we get

$$
\begin{aligned}
Q_{\alpha}(x, x, z) & =\Phi_{\alpha}(x)+\Phi_{\alpha}(x+z)-\Phi_{\alpha}(2 x)-\Phi_{\alpha}(z) \geq 0 \\
& =Q_{\alpha}(x, x, x)
\end{aligned}
$$

This gives

$$
\begin{align*}
0 \leq(2 x)^{\alpha+1} \frac{d}{d z} Q_{\alpha}(x, x, z) & \left.\right|_{z=x} \tag{4.2}\\
& =\alpha\left[(2 x)^{2 \alpha} \psi^{\prime}\left((2 x)^{\alpha}\right)-2^{\alpha+1} x^{2 \alpha} \psi^{\prime}\left(x^{\alpha}\right)\right]
\end{align*}
$$

We let x tend to ∞ and make use of the limit relation $\lim _{t \rightarrow 0} t^{2} \psi^{\prime}(t)=$ 1. Then, (4.2) leads to $0 \leq \alpha\left(1-2^{\alpha+1}\right)$. Thus, $\alpha \geq-1$.
(III) The weighted power mean of order r is defined for positive real numbers a_{1}, \ldots, a_{n} and w_{1}, \ldots, w_{n} with $w_{1}+\cdots+w_{n}=1$ by

$$
M(r)=\left(\sum_{k=1}^{n} w_{k} a_{k}^{r}\right)^{1 / r} \quad(r \in \mathbf{R} \backslash\{0\})
$$

The main properties of this family of mean-values are collected in [15, Chapter 2]. In 1972, Beesack [9] presented a proof for the following remarkable inequality:

$$
\begin{equation*}
\frac{M(t)-M(r)}{M(t)-M(s)}<\frac{s(t-r)}{r(t-s)} \quad(0<r<s<t) \tag{4.3}
\end{equation*}
$$

The validity of (4.3) for the special case $w_{1}=\cdots=w_{n}=1 / n$ was conjectured by Hsu in 1955. Here is a counterpart of (4.3) for the psi function.

Remark 3. The inequality

$$
\begin{equation*}
\frac{\psi\left(t^{\alpha}\right)-\psi\left(r^{\alpha}\right)}{\psi\left(t^{\alpha}\right)-\psi\left(s^{\alpha}\right)}<\frac{s(t-r)}{r(t-s)} \quad(\alpha \in \mathbf{R} \backslash\{0\}) \tag{4.4}
\end{equation*}
$$

holds for all real numbers r, s, t with $0<r<s<t$ if and only if $\alpha<0$ or $0<\alpha \leq 1$.

Proof. Let $0<r<s<t$. To prove (4.4) we consider two cases.

Case 1. $0<\alpha \leq 1$. Since $\Phi_{-\alpha}$ is strictly convex on $(0, \infty)$, we obtain for $x, y>0$ with $x \neq y$ and $\lambda \in(0,1)$:

$$
\begin{equation*}
\Phi_{-\alpha}(\lambda x+(1-\lambda) y)<\lambda \Phi_{-\alpha}(x)+(1-\lambda) \Phi_{-\alpha}(y) \tag{4.5}
\end{equation*}
$$

We set

$$
x=\frac{1}{t}, \quad y=\frac{1}{r}, \quad \text { and } \quad \lambda=\frac{t(s-r)}{s(t-r)}
$$

Then, (4.5) gives

$$
\Phi_{\alpha}(s)<\frac{t(s-r)}{s(t-r)} \Phi_{\alpha}(t)+\frac{r(t-s)}{s(t-r)} \Phi_{\alpha}(r)
$$

This is equivalent to

$$
\begin{equation*}
r(t-s)\left[\Phi_{\alpha}(t)-\Phi_{\alpha}(r)\right]<s(t-r)\left[\Phi_{\alpha}(t)-\Phi_{\alpha}(s)\right] \tag{4.6}
\end{equation*}
$$

The function Φ_{α} is strictly increasing on $(0, \infty)$, so that (4.6) implies (4.4).

Case 2. $\alpha<0$. The strict concavity of $\Phi_{-\alpha}$ reveals that (4.5) and (4.6) are valid with " $>$ " instead of " $<$." Since Φ_{α} is strictly decreasing on $(0, \infty)$, we conclude that (4.6) leads to (4.4).

Conversely, let (4.4) be valid for all r, s, t with $0<r<s<t$. We assume that $\alpha>1$. Then we get

$$
R_{\alpha}(r, t)<R_{\alpha}(s, t)
$$

with

$$
R_{\alpha}(x, t)=x \frac{\psi\left(t^{\alpha}\right)-\psi\left(x^{\alpha}\right)}{t-x}
$$

Let $0<x<t$. We obtain

$$
\begin{align*}
0 & \leq(t-x)^{2} x^{\alpha} \frac{\partial}{\partial x} R_{\alpha}(x, t) \tag{4.7}\\
& =-t\left[x^{\alpha} \psi\left(x^{\alpha}\right)-x^{\alpha} \psi\left(t^{\alpha}\right)\right]+\alpha(x-t) x^{2 \alpha} \psi^{\prime}\left(x^{\alpha}\right)
\end{align*}
$$

and let x tend to 0 . Then, the expression on the right-hand side of (4.7) converges to $t(1-\alpha)$. Hence, $\alpha \leq 1$.
(IV) The logarithmic mean of two positive real numbers x, y with $x \neq y$ is defined by

$$
L(x, y)=\frac{x-y}{\log (x)-\log (y)}
$$

This mean value plays a role not only in mathematics, but it also has applications in physics and economics. For more information on this subject we refer to [21] and the references given therein. In 2008, Chu et al. [13] proved an elegant inequality involving the psi function and the logarithmic mean:

$$
\begin{align*}
(y-x) \psi(\sqrt{x y})< & (L(x, y)-x) \psi(x)+(y-L(x, y)) \psi(y) \tag{4.8}\\
& (2 \leq x<y)
\end{align*}
$$

The authors conjectured that (4.8) is valid for all $x, y>0$ with $y>x$. However, this conjecture is not true. To show this we set $y=x_{0}$ and multiply both sides of (4.8) by $\sqrt{x_{0} x}$. This leads to

$$
\begin{aligned}
\left(x_{0}-x\right) \sqrt{x_{0} x} \psi\left(\sqrt{x_{0} x}\right) & <\left(L\left(x, x_{0}\right)-x\right) \sqrt{x_{0} x} \psi(x) \\
& =(-x \psi(x))\left[\sqrt{x_{0} x}+\frac{x_{0}-x}{2 \sqrt{x / x_{0}} \log \sqrt{x / x_{0}}}\right]
\end{aligned}
$$

If x tends to 0 , then the expression on the left-hand side converges to $-x_{0}$, whereas the right-hand side tends to $-\infty$, a contradiction.

Acknowledgments. I thank the referee for completing the list of references by some recently published papers on this subject.

REFERENCES

1. M. Abramowitz and I.A. Stegun, eds., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1965.
2. H. Alzer, A power mean inequality for the gamma function, Monatsh. Math. 131 (2000), 179-188.
3. \qquad , Mean-value inequalities for the polygamma functions, Aequat. Math. 61 (2001), 151-161.
4. \qquad , Sharp inequalities for the digamma and polygamma functions, Forum. Math. 16 (2004), 181-221.
5. \qquad , Sub- and superadditive properties of Euler's gamma function, Proc. Amer. Math. Soc. 135 (2007), 3641-3648.
6. H. Alzer and S. Ruscheweyh, A subadditive property of the gamma function, J. Math. Anal. Appl. 285 (2003), 564-577.
7. E.F. Beckenbach, Superadditivity inequalities, Pac. J. Math. 14 (1964), 421438.
8. E.F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1983.
9. P.R. Beesack, On weighted means of order r, Univ. Beograd. Publ. Elektr. Fak. Mat. Fiz. 381-409 (1972), 21-24.
10. A. Bruckner, Minimal superadditive extensions of superadditive functions, Pac. J. Math. 10 (1960), 1155-1162.
11. \qquad , Tests for the superadditivity of functions, Proc. Amer. Math. Soc. 13 (1962), 126-130.
12. \qquad , Some relations between locally superadditive functions and convex functions, Proc. Amer. Math. Soc. 15 (1964), 61-65.
13. Y. Chu, X. Zhang and X. Tang, An elementary inequality for psi function, Bull. Inst. Math. Acad. Sinica (N.S.) 3 (2008), 373-380.
14. Y. Chu, X. Zhang and Z. Zhang, The geometric convexity of a function involving gamma function with applications, Comm. Korean Math. Soc. 25 (2010), 373-383.
15. G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1952.
16. E. Hille and R.S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, RI, 1957.
17. M. Kuczma, An introduction to the theory of functional equations and inequalities, Birkhäuser, Basel, 2009.
18. Y.-P. Lv, T.-C. Sun and Y.-M. Chu, Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic, J. Inequal. Appl. 2011, 2011:36, 8 pages.
19. J. Matkowski and T. Swiatkowski, On subadditive functions, Proc. Amer. Math. Soc. 119 (1993), 187-197.
20. L.P. Østerdal, Subadditive functions and their (pseudo-)inverses, J. Math. Anal. Appl. 317 (2006), 724-731.
21. A.O. Pittenger, The logarithmic mean in n variables, Amer. Math. Month. 92 (1985), 99-104.
22. R.A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1960), 489-494.
23. J. Sándor, A bibliography on gamma functions: Inequalities and applications, http://www.math.ubbcluj.ro/ \sim jsandor/letolt/art42.pdf.
24. Y. Song, Y. Chu and L. Wu, An elementary double-inequality for gamma function, Int. J. Pure Appl. Math. 38 (2007), 549-554.
25. L. Wu and Y. Chu, An inequality for the psi functions, Appl. Math. Sci. 2 (2008), 545-550.
26. X. Zhang and Y. Chu, An inequality involving the gamma function and the psi function, Int. J. Mod. Math. 3 (2008), 67-73.
27. T.-H. Zhao and Y.-M. Chu, A class of logarithmically completely monotonic functions associated with a gamma function, J. Inequal. Appl. 2010, Article ID 392431, 11 pages.
28. T.-H. Zhao, Y.-M. Chu and Y.-P. Jiang, Monotonic and logarithmically convex properties of a function involving gamma functions, J. Inequal. Appl. 2009, Article ID 728612, 13 pages.
29. T.-H. Zhao, Y.-M. Chu and H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal. 2011, Article ID 896483, 13 pages.

Morsbacher Str. 10, D-51545 Waldbröl, Germany
Email address: H.Alzer@gmx.de

[^0]: 2010 AMS Mathematics subject classification. Primary 33B15, 39B62.
 Keywords and phrases. Psi function, sub-additive, super-additive, inequalities, convex, concave.

 Received by the editors on June 5, 2012 and in revised form on June 18, 2012.

