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INTEGER POINTS ON ELLIPTIC CURVES

R.C. VAUGHAN

ABSTRACT. We show that the number of integer points
on an elliptic curve y2 = f(x) with X0 < x ≤ X0 + X is

≪ X1/2 where the implicit constant depends at most on the
degree of f(x). This improves on various bounds of Cohen
[4], Bombieri and Pila [1] and of Pila [9], and others. In
particular it follows that the number of positive integral
solutions to x3 + y2 = n is ≪ n1/6.

1. Introduction and statement of results.

Theorem 1.1. Suppose that c ∈ Z\{0} and f is a polynomial of
degree d with integer coefficients such that cy2 − f(x) is absolutely
irreducible. Suppose further that X0 and X are real numbers with
X ≥ 1, and let Nf (X;X0) be the number of integral points (x, y) with
X0 < x ≤ X0 +X and cy2 = f(x). Then

Nf (X;X0) ≪ X1/2

where the implicit constant depends at most on d.

Of course, we should not forget Siegel’s theorem [12] which tells
us that the total number of integral points on the curve is finite.
However, Siegel’s method gives no local bound. The version of Hilbert’s
irreducibility theorem given by Fried [5] gives a bound similar to the
theorem above, but the arbitrary constants therein could depend on f ,
and in particular on the coefficients of f . The bound of Cohen [4] (see
Serre [11]),

Nf (X;X0) ≪ X1/2(logX)γ ,
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where 0 < γ < 1, has an extraneous logarithmic factor and that of
Bombieri and Pila [1], and Pila [9],

Nf (X;X0) ≪ X1/2(logX)2d+3

would only be directly applicable when max[X0,X0+X] |f(x)| ≪ Xd with
an implicit constant which is independent of f . The bounds of Bombieri
and Pila [1], and Pila [9], are formulated slightly differently. They
count the number of lattice points on the curve which also lie in a
square of side length N . Thus, the relationship between x and N
also depends on f(x) and so can be affected by the intrusion of large
coefficients of f . There has been some quite recent work by Helfgott
and Venkatash [7] in which it is shown, for example, that the total
number of integer solutions of the equation

y2 = x3 − 27∆

is
≪ |∆|θ+ε, where θ = 0.20070 . . . ,

and, in the slightly more general case of

y2 = x3 +D,

they obtain the bound
≪ D0.22377... .

There are two further papers which give bounds which, whilst weaker
than Theorem 1.1, are of a similar nature and are more general.
Broberg [2] has shown that

Nf (X;X0) ≪ X1/2+ε∥f∥(cX0)
ε

where ∥f∥ denotes the height of f , and the method also applies when f
is a binary form, and Browning and Heath-Brown [3] have shown that

Nf (X;X0) ≪ X1/k+ε

when the equation to be studied is replaced by

cyk = f(x).
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For this equation, the argument given here, under the assumption of
absolute irreducibility, would only give

Nf (X;X0) ≪ X1/d(k)

where d(k) is the divisor function. We remark in passing that this
curious exponent occurs because∑

p≤x

(k, p− 1)
log p

p
∼ d(k) log x.

However, when 3 ≤ k, the bound of Pila [9], modulo the above remark
concerning the coefficients of f , would give the stronger bound

Nf (X;X0) ≪ X1/k(logX)2d+3.

Our initial interest in this subject was stimulated by the following
special case, a segment of the Mordell equation.

Theorem 1.2. Let n ∈ N. Then the number R(n) of solutions of the
equation

x3 + y2 = n

in positive integers x, y satisfies

R(n) ≪ n1/6.

In general one would conjecture that if k and l are integers with

min{k, l} ≥ 2,

then the number N(n) of solutions of xk+yl = n in positive integers is
≪ nε. Whilst this is easily established when (k, l) > 1, it is otherwise
open. Yet in the case (k, l) = 1 one might even ponder the stronger
statements

N(n) ≪ log n or N(n) ≪ log log n.

2. The proof. We use the larger sieve of Gallagher [6], which we
state in the following very slightly unusual form. For completeness, we
include the short proof.
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Lemma 2.1. [6]. Suppose that Q ≥ 1 and X ≥ 1, Q, X and X0

are real numbers, and {cn} is a sequence of non-negative real numbers
with the property that cn = 0 unless X0 < n ≤ X0 + X. Define
Z(q, a) =

∑
n≡a (mod q) cn, Z = Z(1, 0), and let Aq be a set of residue

classes a such that Z(q, a) = 0 when a /∈ Aq. Finally, let g(q) denote
the cardinality of Aq, and let Q ⊂ [1, Q] ∩ N be such that g(q) ̸= 0
whenever q ∈ Q. Then, whenever the denominator on the right is
positive, we have

Z2 ≤
∑

q∈Q Λ(q)− logX∑
q∈Q(Λ(q)/g(q))− logX

∑
m

c2m.

Proof. By squaring out it is easily seen that∑
a∈Aq

∣∣∣∣Z(q, a)− Z

g(q)

∣∣∣∣2 =
∑
m,n

m≡n (mod q)

cmcn − Z2

g(q)

=
∑
m

c2m +
∑
m ̸=n

m≡n (mod q)

cmcn − Z2

g(q)
.

Let

λ =
∑
q∈Q

Λ(q)
∑
a∈Aq

∣∣∣∣Z(q, a)− Z

g(q)

∣∣∣∣2.
Then

λ =
∑
q∈Q

Λ(q)
∑
m

c2m +
∑
m ̸=n

cmcn
∑

q|m−n
q∈Q

Λ(q)− Z2
∑
q∈Q

Λ(q)

g(q)
.

The sum
∑

q|m−n
q∈Q

Λ(q) is at most
∑

q|m−n Λ(q) = log |m− n| ≤ logX.

Hence,

λ ≤
(∑

q∈Q
Λ(q)− logX

)∑
m

c2m −
(∑

q∈Q

Λ(q)

g(q)
− logX

)
Z2,

and the lemma follows on noticing that λ ≥ 0. �

We suppose first of all that the coefficients of f have greatest
common divisor 1. We apply the lemma with cn = 0 unless X0 <
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n ≤ X0 + X and f(n)/c is a perfect square in which case we take
cn = 1. Let p be an odd prime. If p - c and a is such that f(a)c−1

is a quadratic non-residue modulo p, and x ≡ a (mod p), then f(x)/c
cannot be a perfect square. Hence, Z(p, a) = 0. Thus,

g(p) =
1

2
g0(p) +

1

2

p∑
a=1

(
1 +

(
cf(a)

p

)
L

)
,

where g0(p) is the number of solutions of f(x) ≡ 0 (mod p). Since f
is non-trivial modulo p, we have g0(p) ≤ d, and since cy2 − f(x) is
absolutely irreducible, then by [10, Theorem 2B or 2C] of Schmidt we
have

p∑
a=1

(
f(a)

p

)
L

≪ √
p.

Thus, we can certainly choose Ap so that g(p) = p/2 + O(
√
p) and

g(p) > 0 when p > p0(d), and then

(2.1)
1

g(p)
=

2

p
+O(p−3/2).

If p | c, then there are at most d values of a so that f(a) ≡ cy2

(mod p) for some y, and hence for p > p0(d) we can choose Ap so that
g(p) = p/2 + O(1), whence (2.1) holds once more. We now take Q to
be the set of primes p with p0 < p ≤ Q, where Q is a parameter at our
disposal. Then by [8, Theorem 6.9] of Montgomery and Vaughan,∑

q∈Q

Λ(q) = Q+O(Q/ logQ)

and by Theorem 2.7 ibidem,∑
q∈Q

Λ(q)

g(q)
= 2 logQ+O(1).

We now choose Q = CX1/2 for a suitable constant C. Then∑
q∈Q

Λ(q)

g(q)
− logX ≫ 1,
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and since cm = 1 or 0, it follows from the lemma that∑
m

cm ≪ X1/2,

as required.

Now suppose that the coefficients of f have a greatest common
divisor d > 1. We may certainly suppose that (c, d) = 1. Put d = d1d

2
2

where d1 is square free. Thus, for a solution d1d2 | y. Hence, we
can replace f by f1 = f/d and y by yd1d2 to obtain the equation
cd1y

2 = f1(x), and appeal to the previous case.
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