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A STUDY ON THE INTEGRAL OF THE PRODUCT
OF SEVERAL BERNOULLI POLYNOMIALS

DAE SAN KIM AND TAEKYUN KIM

ABSTRACT. The purpose of this paper is to give some
properties of several Bernoulli polynomials to express the
integral of those polynomials from 0 to 1 in terms of beta
and gamma functions. From those properties, we derive
some relations on the integral of the product of Bernoulli
polynomials and new identities on the Bernoulli numbers.

1. Introduction. The Bernoulli polynomials are given by the gen-
erating function as follows:

F (t, x) =
t

et − 1
ext = eB(x)t =

∞∑
n=0

Bn(x)
tn

n!
,(1)

with the usual convention about replacing Bn(x) by Bn(x) (see [1–4,
6–23]). In the special case, x = 0, Bn(0) = Bn are called the nth
Bernoulli numbers. From (1), we have

(2) Bn(x) = (B + x)n =

n∑
l=0

(
n

l

)
Blx

n−l, n ∈ Z+.

By (1) and (2), we get the recurrence relation for the Bernoulli numbers
as follows:

(3) B0 = 1, (B + 1)n −Bn =

{
1, if n = 1,

0, for n > 1.
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From (2), we note that

d

dx
Bn(x) =

n−1∑
l=0

(
n

l

)
Bl(n− l)xn−l−1(4)

= n

n−1∑
l=0

(
n− 1

l

)
Blx

n−l−1 = nBn−1(x).

By (4), we get

(5)

∫ 1

0

Bn(x) dx =
1

n+ 1

∫ 1

0

d

dx
(Bn+1(x)) dx =

Bn+1(1)−Bn+1

n+ 1
.

Let n ∈ N. Then, by (3) and (5), we see that∫ 1

0

Bn(x) dx = 0.(6)

Let C([0, 1]) be the space of continuous functions on [0, 1]. For
f ∈ C([0, 1]), the Bernstein operator for f is defined by

Bn(f, x) =
n∑

k=0

f(
k

n
)Bk,n(x), for 0 ≤ x ≤ 1,(7)

where

Bk,n(x) = xk(1− x)n−k, n, k ∈ Z+ = N ∪ {0}, (see [8]).(8)

Here Bk,n(x) are called the Bernstein polynomials of degree n. By (8),
we easily see that Bk,n(x) = Bn−k,n(1 − x). From(1), we can derive
the following equation:

t

et − 1
ext =

−t

e−t − 1
e−(1−x)t, (see [8]).(9)

Thus, by (1) and (9), we get

∞∑
n=0

Bn(x)
tn

n!
=

∞∑
n=0

(−1)nBn(1− x)
tn

n!
, (see [8]).(10)
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By comparing the coefficients on both sides of (10), we obtain the
following reflection symmetric relation for Bernoulli polynomials:

Bn(x) = (−1)nBn(1− x), (n ∈ Z+ = N ∪ {0}).(11)

The purpose of this paper is to give some properties of several
Bernoulli polynomials to express the integral of those polynomials from
0 to 1 in terms of beta and gamma functions. From those properties,
we derive some relations on the integral of the product of Bernoulli
polynomials and new identities on the Bernoulli numbers.

One may compare our results with those of Carlitz in [5].

2. On the integral of the product of Bernoulli polynomials.
Let us take the integral for the product of Bernoulli polynomials and
xn as follows: for n ∈ Z+,
(12)∫ 1

0

xnBn(x) dx =

n∑
l=0

(
n

l

)
Bn−l

∫ 1

0

xn+ldx =

n∑
l=0

(
n

l

)
Bn−l

n+ l + 1
.

On the other hand, by (11), we get∫ 1

0

xnBn(x)dx = (−1)n
∫ 1

0

xnBn(1− x) dx(13)

= (−1)n
n∑

l=0

(
n

l

)
Bn−l

∫ 1

0

xn(1− x)ldx

= (−1)n
n∑

l=0

(
n

l

)
Bn−l

Γ(n+ 1)Γ(l + 1)

Γ(n+ l + 2)

= (−1)n
n∑

l=0

Bn−l

n+ l + 1

(
n
l

)(
n+l
l

) ,
where Γ(x) is the gamma function with Γ(n+1) = n!(n ∈ N). By (12)
and (13), we obtain

Proposition 2.1. For n ∈ Z+, we have

n∑
l=0

(
n

l

)
Bn−l

n+ l + 1
= (−1)n

n∑
l=0

Bn−l

n+ l + 1

(
n
l

)(
n+l
l

) .
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Let n ∈ N with n ≥ 3. Then we see that∫ 1

0

xnBn(x) dx =
Bn

n+ 1
− n

n+ 1

∫ 1

0

xn+1Bn−1(x) dx(14)

=
Bn

n+ 1
− Bn−1

n+ 1

n

n+ 2
+ (−1)2

n(n− 1)

(n+ 1)(n+ 2)

×
∫ 1

0

xn+2Bn−2(x) dx.

Continuing this process, we obtain the following equation:∫ 1

0

xnBn(x) dx(15)

=
Bn

n+ 1
+

n−1∑
l=2

n(n− 1) · · · (n− l + 2)

(n+ 1)(n+ 2) · · · (n+ l)
Bn−l+1(−1)l−1

+ (−1)n−1 n(n− 1) · · · 2
(n+ 1)(n+ 2) · · · (2n− 1)

∫ 1

0

x2n−1B1(x) dx

=
Bn

n+ 1
+

n−1∑
l=2

n(n− 1) · · · (n− l + 2)

(n+ 1)(n+ 2) · · · (n+ l)
Bn−l+1(−1)l−1

+ (−1)n−1 n!

(n+ 1)(n+ 2) · · · (2n− 1)

(
1

2n
B1 +

1

2n+ 1

)
.

Therefore, by (13) and (15), we obtain the following theorem.

Theorem 2.2. For n ∈ N, with n ≥ 3, we have

Bn

n+ 1
+

n−1∑
l=2

n(n− 1) · · · (n− l + 2)

(n+ 1)(n+ 2) · · · (n+ l)
(−1)n−l−1Bn−l+1

+
1(
2n
n

)(1

2
− 2n

2n+ 1

)
=

n∑
l=0

(
n
l

)(
n+l
l

) Bn−l

n+ l + 1
.

Our result in (13) is related to Euler’s beta function, which is defined
by

(16) B(n,m) =

∫ 1

0

xn−1(1− x)m−1dx.
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Thus, by (16), we know the following relation between beta and gamma
function:

B(n,m) =
Γ(n)Γ(m)

Γ(n+m)
.(17)

For n, k ∈ Z+, let us consider the following integral for the product of
Bernoulli polynomials and xk:∫ 1

0

xkBn(x) dx = (−1)n
∫ 1

0

xkBn(1− x) dx(18)

= (−1)n
n∑

l=0

(
n

l

)
Bn−l

∫ 1

0

xk(1− x)ldx

= (−1)n
n∑

l=0

(
n

l

)
Bn−lB(k + 1, l + 1)

= (−1)n
n∑

l=0

(
n

l

)
Bn−l

Γ(k + 1)Γ(l + 1)

Γ(l + k + 2)
.

Therefore, by (18), we obtain the following proposition.

Proposition 2.3. For n, k ∈ Z+, we have∫ 1

0

xkBn(x) dx = (−1)n
n∑

l=0

(
n

l

)
Bn−l

Γ(k + 1)Γ(l + 1)

Γ(l + k + 2)

= (−1)n
n∑

l=0

Bn−l

l + k + 1

(
n
l

)(
k+l
l

) .
Let us assume that n, k ∈ N. Then

(19)

∫ 1

0

xkBn(x) dx =
Bn+1

n+ 1
− k

n+ 1

∫ 1

0

xk−1Bn+1(x) dx.

From (18) and (19), we can derive the following equation:∫ 1

0

xkBn(x) dx =
Bn+1

n+ 1
− k

n+ 1

n+1∑
l=0

(
n+ 1

l

)
(20)

×Bn+1−l(−1)n+1B(k, l + 1)
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=
Bn+1

n+ 1
+

k(−1)n

n+ 1

n+1∑
l=0

(
n+ 1

l

)
×Bn+1−lB(k, l + 1).

By Proposition 2.3 and equation (20), we obtain the following theorem.

Theorem 2.4. For n, k ∈ N, we have

Bn+1

n+ 1
=

k

n+ 1

n+1∑
l=0

(
n+ 1

l

)
Bn+1−l

Γ(k)Γ(l + 1)

Γ(k + l + 1)

−
n∑

l=0

(
n

l

)
Bn−l

Γ(k + 1)Γ(l + 1)

Γ(l + k + 2)
.

That is,

Bn+1

n+ 1
=

k

n+ 1

n+1∑
l=0

(
n+1
l

)(
k+l−1

l

) Bn+1−l

k + l
−

n∑
l=0

(
n
l

)(
k+l
l

) Bn−l

l + k + 1
.

Definite integrals for the product of two Bernoulli polynomials can
be given by the following relation:∫ 1

0

Bn(x)Bm(x) dx =
n∑

l=0

(
n

l

)
Bl(−1)m(21)

×
m∑

k=0

(
m

k

)
Bk

∫ 1

0

xn−l(1− x)m−kdx

=
n∑

l=0

(
n

l

)
Bl(−1)m

×
m∑

k=0

(
m

k

)
BkB(n− l + 1,m− k + 1)

=

n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)m

×BlBkB(n− l + 1,m− k + 1).
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Let m,n ∈ N with m ≥ 2. Then we get∫ 1

0

Bn(x)Bm(x) dx = − m

n+ 1

∫ 1

0

Bn+1(x)Bm−1(x) dx.

Continuing this process, we get

(22)

∫ 1

0

Bn(x)Bm(x) dx

= (−1)m−1 m(m− 1) · · · 1
(n+ 1)(n+ 2) · · · (n+m− 1)

∫ 1

0

Bn+m−1(x)B1(x) dx.

It is easy to show that∫ 1

0

Bn+m−1(x)B1(x) dx =

[
Bn+m(x)

m+ n
B1(x)

]1
0

(23)

− 1

m+ n

∫ 1

0

Bm+n(x) dx

=
Bm+n

m+ n
B1(1)−

Bn+m

m+ n
B1

=
Bm+n

m+ n
+

Bm+nB1

m+ n
− Bm+nB1

m+ n
.

From (22) and (23), we note that∫ 1

0

Bn(x)Bm(x) dx = (−1)m−1 m!Bn+m

(n+ 1)(n+ 2) · · · (n+m)
(24)

= (−1)m−1m!n!Bn+m

(n+m)!
= (−1)m−1 Bm+n(

m+n
n

) .
Therefore, by (21) and (23), we obtain the following theorem.

Theorem 2.5. For m,n ∈ N with m ≥ 2, we have

−Bn+m(
m+n
n

) =
n∑

l=0

m∑
k=0

(
n

l

)(
m

k

)
BlBk

Γ(n− l + 1)Γ(m− k + 1)

Γ(n+m− l − k + 2)
.

That is,

−Bn+m(
m+n
n

) =

n∑
l=0

m∑
k=0

(
n
l

)(
m
k

)(
n+m−l−k

n−l

) BlBk

n+m− l − k + 1
.
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From (21), we note that

(25)

∫ 1

0

Bn(x)Bm(x) dx

=

n∑
l=0

m∑
k=0

m−k∑
j=0

(
n

l

)(
m

k

)(
m− k

j

)
(−1)k−j BlBk

n+m− l − k − j + 1
.

Therefore, by (25), we obtain the following corollary.

Corollary 2.6. For m,n ∈ N with m ≥ 2, we have

(−1)m−1 Bn+m(
m+n
n

)
=

n∑
l=0

m∑
k=0

m−k∑
j=0

(
n

l

)(
m

k

)(
m− k

j

)
(−1)k−j BlBk

n+m− l − k − j + 1
.

From (1), we can derive the following equation:

∞∑
m,n=0

(mBm−1(x)Bn(x) + nBn−1(x)Bm(x))
tm

m!

sn

n!
(26)

=
d

dx

(
t

et − 1
etx

)(
s

es − 1
esx

)
=

d

dx

(
tse(s+t)x

(et − 1)(es − 1)

)
= (t+ s)

ts

(et − 1)(es − 1)
e(s+t)x.

It is easy to show that

(t+ s)
ts

(et − 1)(es − 1)
e(s+t)x

(27)

=
(s+ t)ex(s+t)

es+t − 1

(
st+

st

et − 1
+

st

es − 1

)
=

( ∞∑
l=0

Bl(x)
(t+ s)l

l!

)(
st+ s

∞∑
r=0

Br
tr

r!
+ t

∞∑
r=0

Br
sr

r!

)
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=

( ∞∑
m,n=0

Bm+n(x)t
msn

m!n!

)( ∞∑
r=0

B2r

(2r)!
(t2rs+ ts2r)

)

=
∞∑

m,n=0

{ ∞∑
r=0

B2r

(2r)!

Bm+n(x)

m!n!

(
t2r+msn+1 + tm+1s2r+n

)}

=

∞∑
m,n=0

∞∑
r=0

B2r

(2r)!

(
Bm−2r+n−1(x)

(m− 2r)!(n− 1)!

tmsnm!

m!

+
tmsnn!Bm−2r+n−1(x)

(m− 1)!(n− 2r)!

1

n!

)
=

∞∑
m,n=0

{ ∞∑
r=0

B2r

((
m

2r

)
nBm−2r+n−1(x)

+

(
n

2r

)
mBm−2r+n−1(x)

)}
tm

m!

sn

n!
.

By (26) and (27), we get

(28) mBm−1(x)Bn(x) + nBm(x)Bn−1(x)

=
∞∑
r=0

B2rBm+n−2r−1(x)

((
m

2r

)
n+

(
n

2r

)
m

)
.

Thus, we have

d

dx
(Bm(x)Bn(x)) = mBm−1(x)Bn(x) + nBm(x)Bn−1(x)

(29)

=

∞∑
r=0

B2rBm+n−2r−1(x)

{(
m

2r

)
n+

(
n

2r

)
m

}
.

Thus, by (29), we get

Bm(x)Bn(x) =

∫
d

dx
(Bm(x)Bn(x)) dx(30)

=

∞∑
r=0

B2rBm+n−2r(x)

m+ n− 2r

((
m

2r

)
n+

(
n

2r

)
m

)
+ C,
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where C is some constant. Let m,n ∈ N. Then we see that

(31)

∫ 1

0

Bm(x)Bn(x) dx = C

∫ 1

0

dx = C.

Hence,

C =

∫ 1

0

Bm(x)Bn(x) dx = (−1)m−1 n!m!

(n+m)!
Bn+m, (cf. (24)).

From (30), and (31), we have

(32) Bm(x)Bn(x)

=
∞∑
r=0

((
m

2r

)
n+

(
n

2r

)
m

)
B2r

Bm+n−2r(x)

m+ n− 2r
+(−1)m+1 m!n!

(m+ n)!
Bm+n,

where m,n ∈ N. For m,n, p ∈ N, by (24) and (32), we get

∫ 1

0

Bm(x)Bn(x)Bp(x) dx

(33)

=

∫ 1

0

Bp(x)(Bm(x)Bn(x)) dx

=
∞∑
r=0

((
m

2r

)
n+

(
n

2r

)
m

)
B2r

m+ n− 2r

×
∫ 1

0

Bm+n−2r(x)Bp(x) dx

+
(−1)m+1Bm+n(

m+n
n

) ∫ 1

0

Bp(x) dx

=
∞∑
r=0

((
m

2r

)
n+

(
n

2r

)
m

)
B2r

p!(m+n−2r)!(−1)p+1Bm+n+p−2r

(m+n−2r)(m+n+p−2r)!

= (−1)p+1
∞∑
r=0

((
m

2r

)
n+

(
n

2r

)
m

)
B2rBm+n+p−2r(

m+n+p−2r
p

)
(m+ n− 2r)

.
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On the other hand,

∫ 1

0

Bm(x)Bn(x)Bp(x) dx = (−1)p
m∑
l=0

n∑
j=0

p∑
k=0

(
m

l

)(
n

j

)(
p

k

)(34)

×Bm−lBn−jBk

∫ 1

0

xl+j(1− x)p−kdx

= (−1)p
m∑
l=0

n∑
j=0

p∑
k=0

(
m

l

)(
n

j

)(
p

k

)
×Bm−lBn−jBkB(l + j + 1, p− k + 1)

= (−1)p
m∑
l=0

n∑
j=0

p∑
k=0

(
m

l

)(
n

j

)(
p

k

)
×Bm−lBn−jBk

Γ(l+j+1)Γ(p−k+1)

Γ(l+j+p−k+2)

Therefore, by (33) and (34), we obtain the following theorem.

Theorem 2.7. For m,n, p ∈ N, we have

∞∑
r=0

((
m

2r

)
n+

(
n

2r

)
m

)
B2rBm+n+p−2r(

m+n+p−2r
p

)
(m+ n− 2r)

= −
m∑
l=0

n∑
j=0

p∑
k=0

(
m

l

)(
n

j

)(
p

k

)
Bm−lBn−jBk

(l + j + p− k + 1)
(
l+j+p−k

l+j

) .
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