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ON ROOTS OF DEHN TWISTS

NAOYUKI MONDEN

ABSTRACT. Margalit and Schleimer [4] discovered a
nontrivial root of the Dehn twist about a nonseparating
curve on a closed oriented connected surface. We give a
complete set of conjugacy invariants for such a root by
using a classification theorem of Matsumoto and Montesinos
[5, 6] for pseudo-periodic maps of negative twists. As an
application, we determine the range of degree for roots of a
Dehn twist.

1. Introduction. Let Σg+1 be a closed, oriented connected surface
of genus g + 1 ≥ 2 and Mg+1 the mapping class group of Σg+1, the
group of isotopy classes of orientation-preserving homeomorphisms of
Σg+1. We denote by [h] ∈ Mg+1 the isotopy class of an orientation-
preserving homeomorphism h of Σg+1. It seems natural to ask whether
the Dehn twist about a curve C on Σg+1 has a root in Mg+1. In other
words, given an integer degree n > 1, does there exist [h] ∈ Mg+1 such
that [tC ] = [h]n? If C is separating, it is well-known that the Dehn
twist has a root of degree two (a “half twist”) derived from a chain
relation in Mg+1. Margalit and Schleimer [4] discovered a nontrivial
root of the Dehn twist about a nonseparating curve C on Σg+1. They
constructed a root of degree 2g−1 by using a relation coming from the
Artin group of type Bn.

In this paper we clarify several properties of roots of Dehn twists.
We first apply a classification theorem of Matsumoto and Montesinos
[5, 6] for pseudo-periodic maps of negative twists to roots of Dehn
twists and obtain a complete set of conjugacy invariants for a root of the
Dehn twist about a nonseparating curve C on Σg+1 (see Theorem 3.4).
Making use of these invariants, we then prove that the degree n of
a root of the Dehn twist about C must be odd, and it satisfies the
condition 3 ≤ n ≤ 2g − 1 (see Corollary 3.5).
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McCullough and Rajeevsarathy [7] have recently obtained the same
results as Theorem 3.4 and Corollary 3.5 without using the theorem of
Matsumoto and Montesinos [5, 6] (see [7, Theorem 2.1 and Corollary
2.2]). They have found more constraints on degree of roots of Dehn
twists (see [7, Corollaries 3.1, 3.2 and Theorem 4.2]).

In Section 2 we review definitions and basic properties of pseudo-
periodic maps and their conjugacy invariants. We apply Matsumoto-
Montesinos’ theorem to roots of Dehn twists and determine the range
of degree for roots of a Dehn twist in Section 3. Sections 4 and 5
are devoted to an explicit enumerate of the root of a Dehn twist of
degree three and an alternative proof of the latter part of Corollary 3.5,
respectively. We end with a discussion about roots of Dehn twists for
surfaces with boundary and punctures in Section 6.

2. Preliminaries. Matsumoto and Montesinos [5, 6] established
the theory of pseudo-periodic maps, which renewed Nielsen’s work [9]
on “surface transformation classes of algebraically finite type” from
the viewpoint of degenerations of Riemann surfaces. In this section we
review a part of their theory which is applied to roots of Dehn twists
in the next section.

Hereafter, all surfaces will be oriented, and all homeomorphisms
between them will be orientation-preserving. For us, a Dehn twist
means a left-handed Dehn twist. Let Σg+1 be a closed, connected
oriented surface of genus g + 1 ≥ 2.

2.1. Pseudo-periodic map and screw number. We begin with a
precise definition of pseudo-periodic maps.

Definition (Matsumoto-Montesions [5, 6], cf., Nielsen [9]). Let f :
Σg+1 → Σg+1 be a homeomorphism. f is called a pseudo-periodic map
if f is isotopic to a homeomorphism f ′ : Σg+1 → Σg+1 which satisfies
the following conditions:

(i) there exists a disjoint union C of simple closed curves C1, C2,
. . . , Cr on Σg+1 such that f ′(C) = C,

(ii) the restriction f ′|Σg+1−C of f ′ to the complement Σg+1 − C of
C is isotopic to a periodic map of Σg+1 − C.
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Note that if C is empty, f is isotopic to a periodic map of Σg+1. The
set {Ci}ri=1 of curves is called a system of cut curves subordinate to
f . If every connected component of Σg+1 − C has a negative Euler
characteristic, the system {Ci}ri=1 of cut curves is called admissible.

Remark 1 ([5], Lemma 2.1). For any pseudo-periodic map f : Σg+1 →
Σg+1, there exists an admissible system of cut curves subordinate to f .

Let f : Σg+1 → Σg+1 be a pseudo-periodic map and {Ci}ri=1 an
admissible system of cut curves subordinate to f . We fix an orientation
of each curve Ci arbitrarily. Deforming f by an isotopy, if necessary,
we assume that f keeps C = C1 ∪ · · · ∪ Cr invariant: f(C) = C.

Choose and fix a curve Ci. Let α be the smallest positive integer
such that fα(Ci) = Ci and fα preserves the orientation of Ci. If we
take a point on Ci and its small disk neighborhood D in Σg+1, D−Ci

is a disjoint union of two connected components ∆ and ∆′. Let b
(respectively b′) be the connected component of Σg+1−C which includes
∆ (respectively ∆′), and β (respectively β′) the smallest positive integer

such that fβ(b) = b (respectively fβ′
(b′) = b′). Note that α is a

common multiple of β and β′. Since f |Σg+1−C is isotopic to a periodic

map of Σg+1 − C, there exists a positive integer n such that (fβ |b)n is
isotopic to the identity map idb of b. Let nb be the smallest one among
such integers n. We choose a positive integer nb′ for b′ in a similar
way. Let L be the least common multiple of nbβ and nb′β

′. Since fL|b
(respectively fL|b′) is isotopic to the identity idb (respectively idb′),
the restriction fL|b∪Ci∪b′ of f

L to the union b ∪Ci ∪ b′ is isotopic to a
power of a left-handed Dehn twist map tCi about Ci. Let e be a unique
integer such that fL|b∪Ci∪b′ is isotopic to teCi

on b ∪ Ci ∪ b′.

Definition (Nielsen [9], Matsumoto and Montesinos [5, 6]). For a
pseudo-periodic map f and a fixed curve Ci above, we define the screw
number s(Ci) of f about Ci to be the rational number eα/L.

A system {Ci}ri=1 of cut curves subordinate to f is called precise if
it is admissible and the screw number s(Ci) for each curve Ci is not
zero. For an admissible system of cut curves subordinate to f , one can
make it precise by removing all curves with screw number zero from
the system.



990 NAOYUKI MONDEN

If every curve Ci in a precise system {Ci}ri=1 subordinate to f has
negative screw number, f is called a pseudo-periodic map of negative
twist.

The next technical term was introduced by Nielsen.

Definition (Nielsen [9], Matsumoto and Montesinos [5, 6]). For
a pseudo-periodic map f and a fixed curve Ci above, Ci is called
amphidrome with respect to f if there exists an integer γ such that
fγ(Ci) is equal to Ci with the opposite orientation. Here we assume
that f(C) = C. It is easily seen that γ can be taken to be α/2.

We now recall a theorem of Matsumoto and Montesinos.

Theorem 2.1 (Matsumoto and Montesinos [5, 6]). Let f : Σg+1 →
Σg+1 be a pseudo-periodic map of negative twist. The conjugacy class
of [f ] in Mg+1 is completely determined by following data:

(i) A precise system of cut curves C =
∪r

i Ci on Σg+1,
(ii) for cut curve Ci ∈ C, α and the screw number s(Ci) of f ,
(iii) Ci’s character of being amphidrome or not with respect to f ,
(iv) for each connected component b of Σg+1 − C, β and nb,
(v) for each connected component b of Σg+1−C, the conjugacy class

of the periodic map fβ |b, and
(vi) the action of f on the oriented graph GC whose vertices and

edges correspond to connected components of Σg+1 − C and
{Ci}ri=1.

2.2. Valency. Let Σ be an oriented connected surface, and let f :
Σ → Σ be a smooth periodic map of order n > 1. Let p be a
point on Σ. There is a positive integer α(p) such that the points
p, f(p), . . . , fα(p)−1(p) are mutually distinct and fα(p)(p) = p. If
α(p) < n, we call p a multiple point of f . Note that a multiple point is
an isolated and interior point of Σ.

Let
−→
C = {

−→
C1,

−→
C2, . . . ,

−→
Cs} be a set of oriented and disjoint sim-

ple closed curves in the surface Σ, and g be a map g : Σ → Σ

such that g(
−→
C ) =

−→
C and g|−→C is periodic. Let mj be the smallest
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positive integer such that gmj (
−→
Cj) =

−→
Cj . The restriction gmj |−→

Cj
is

a periodic map of
−→
Cj . Let λj > 0 be the order of this map, the

(g|−→
Cj
)mjλj is the identity map on

−→
Cj . Let q be a point on Cj , and

suppose that the images of q under the iteration of gmj are ordered
as (q, gmjσj (q), g2mjσj (q), . . . , g(λj−1)mjσj (q)) viewed in the direction of
−→
Cj , where σj is an integer with 0 ≤ σj ≤ λj−1 such that gcd(σj , λj) = 1
when λj > 1, and σj = 0 when λj = 1. Let δj be the integer with
0 ≤ δj ≤ λj − 1 which satisfies σjδj ≡ 1 (mod λj) when λj > 0, and

δj = 0 when λj = 1. Then the action of gmj on
−→
Cj is the rotation

of angle 2πδj/λj with a suitable parametrization of
−→
Cj as an oriented

circle.

Definition. [8] The triple (mi, λi, σi) and (mi, λi, δi) are called the

valency and the second valency of
−→
Cj ∈

−→
C with respect to g.

Nielsen also defined the valency of a boundary curve as its valency
with respect to f assuming it has the orientation induced by that of
the surface Σ. The valency of a multiple point p is defined to be the
valency of the boundary curve ∂Dp, oriented from the outside of a disk
neighborhood Dp of p.

The quotient space Σ/f is an orbifold. Its underlying space is a
compact surface. Let π : Σ → Σ/f be the quotient map. For a multiple
point p ∈ Σ of f , π(p) is a branch point of Σ/f . Thus, we can speak
of the valency of a branch point of Σ/f . Also, we can speak of the
valency of a boundary curve of Σ/f .

In order to prove Theorem 3.4, we need the following theorems.

Theorem 2.2. [8] Let f be a periodic map on Σg of period n, and let
(mi, λi, σi) be the valency of branch points pi (i = 1, . . . , k) of Σg/f
with respect to f . We denote by g′ the genus of Σg/f .

There is a periodic map f whose data is [n, g′; (σ1, λ1), . . . , (σk, λk)]
if and only if the following conditions are satisfied :

(i) {2(g − 1)}/n = 2(g′ − 1) +
∑k

i=1(1− 1/λi),

(ii)
∑k

j=1(σj/λi)n ≡ 0 (mod n).
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We consider two data sets to be the same if they differ by reordering
the pairs (σ1, λ1), . . . , (σk, λk). Nielsen also proved that this data
set determines a periodic map up to conjugacy. Equation (i) is the
Riemann-Hurwitz formula.

Matsumoto and Montesinos proved the following theorem.

Theorem 2.3 ([9, Section 15], [3, Theorem 13.3], [5, Theorem 2.1,
Corollary 3.3.1, Corollary 3.7.1]). Any pseudo-periodic map of Σg+1 is
isotopic to a pseudo-periodic map f such that :

(i) There exists a system of disjoint annular neighborhoods {Ai}ri=1

of the precise system of cut curves C =
∪r

i=1 Ci subordinate to
f such that f(A) = A, where A =

∪r
i=1 Ai;

(ii) the map f |Σg−A : Σg −A → Σg −A is periodic;

(iii) let (m0
i , λ

0
i , δ

0
i ) and (m1

i , λ
1
i , δ

1
i ) be the second valencies of the

boundary curves ∂0Ai and ∂1Ai of Ai with respect to f , re-
spectively. ∂0Ai and ∂1Ai are regarded as boundary curves of
Σg −A.

Then, If Ci is non-amphidrome,
(a) m0

i = m1
i ,

(b) s(Ci) + δ0i /λ
0
i + δ1i /λ

1
i is an integer.

If Ci is amphidrome,
(a) m0

i = m1
i= an even number,

(b) δ0i = δ1i and λ0
i = λ1

i ,
(c) s(Ci)/2 + δi/λi is an integer,
(λi denotes λ0

i = λ1
i and δi denotes δ0i = δ1i ).

3. The conjugacy classes of roots of the Dehn twist about a
nonseparating curve. In this section we will prove Theorem 3.4.

Let C be a nonseparating curve on Σg+1, and let tC be a represen-
tative of the Dehn twist about C. By isotopy, we may assume that
tC(C) = C. tC |Σg+1−C is isotopic to the identity in the complement of
C. Suppose that [h] is a root of [tC ] of degree n > 1. Since

[tC ] = [h]n = [h][h]n[h]−1 = [h][tC ][h]
−1 = [th(C)],

we see that h(C) is isotopic to C. Changing h by isotopy, we may
assume that h(C) = C. Since tC = hn and h(C) = C, h|Σg+1−{C}
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must be isotopic to a periodic map of order n. Therefore, h is a pseudo-
periodic map, and an admissible system of cut curves C is C.

From Theorem 2.3, changing h by isotopy, we may assume that there
exists an annular neighborhood A of C such that h(A) = A and that
h|Σg+1−A is a periodic map of order n. Let (m0, λ0, δ0) and (m1, λ1, δ1)
be the second valencies of ∂0A and ∂1A with respect to h, respectively.

Claim 3.1. C is non-amphidrome with respect to h.

Proof. For contradiction, we assume that C is amphidrome with
respect to h.

We will find the screw number s(C) of h. Let b be Σg+1 − C, and

let α, β and nb be the smallest positive integers such that hα(
−→
C ) =

−→
C ,

hβ(b) = b, and (hβ |b)nb is isotopic to id|b, respectively.Since h(C) = C
and C is amphidrome, we have α = m0 = m1 = 2. Moreover, we have

β = 1 and nb = L. Thus, since hn(
−→
C ) = tC(

−→
C ) =

−→
C and α = 2,

we may write n as 2k. By definition of L > 0, L is a divisor of n
(z := n/L ∈ Z≥1). Since tC = hn = (hL)z = (teC)

z = tezC , we see that
e = z = 1 and L = 2k = n. From the above arguments, we have

s(C) = eα/L = 1/k.

By Theorem 2.3, we have

(1) δ/λ = (2k − 1)/2k,

(Here λ denotes λ0 = λ1, and δ denotes δ0 = δ1.) However, since
n = 2k and the action of h2 is the rotation of angle 2πδ/λ in the circle,
δ/λ must be equal to δ/k. This contradicts (1). Therefore, we see that
C is non-amphidrome with respect to h. �

Lemma 3.2. δ0 + δ1 = n− 1 (1 ≤ δν ≤ n− 2, ν = 0, 1).

Proof. In order to prove Lemma 3.2 we will use Theorem 2.3. We
will determine the screw number s(C) of h. Since h(C) = C and C is
non-amphidrome (by Claim 3.1), we have α = m0 = m1 = 1. Thus, we
have s(C) = 1/n by the argument of Claim 3.1. Furthermore, we find
that λν = order of h|−−→

∂νA
(by mνλν = order of h|−−→

∂νA
for ν = 0, 1). By

Theorem 2.3, we have δ0/λ0 + δ1/λ1 = (n− 1)/n.
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Let ∂ν be the boundary components of Σg+1 −A which correspond
to ∂νA (ν = 0, 1). Then, since h|Σg+1−A is a periodic map of order

n(= L), the period λν of h|∂νA is equal to n. We note that δν is not
equal to 0. If δν = 0, then n = λν is equal to 1 by the definition of λν .
This contradicts n > 1. �

Proposition 3.3. For a root [h] of [tC ] of degree n in Mg+1, the
conjugacy class of [h] in Mg+1 is completely determined by n and the
conjugacy class of h|Σg+1−A.

Proof. We prove Proposition 3.3 by using Theorem 2.1.

Let GC be the oriented graph GC whose vertices and edges corre-
spond to connected components of Σg+1−C and C, respectively. Since
C is non-amphidrome with respect to h, we find that the action of h
on the oriented graph GC is identity. Therefore, for h, we have C = C,
α = 1, β = 1, nb = n, that C is non-amphidrome with respect to h,
and that the action of h on GC is identity. These are the same data as
h−1.

Since s(C) of h is equal to 1/n from the proof of Lemma 3.2, we see
that s(C) of h−1 is equal to −1/n. Therefore, h−1 is negative twist.
If we restrict our attention to roots of t−1

C , by using Theorem 2.1, the

conjugacy class of the root [h−1] of [t−1
C ] is completely determined by n

and the conjugacy class of the periodic map h−1|Σg+1−C . Therefore, the
conjugacy class of [h] is completely determined by n and the conjugacy
class of h|Σg+1−A. This completes the proof of Proposition 3.3. �

Theorem 3.4. Let [h] be a root of [tC ] of degree n in Mg+1.

There is a representative h whose data is [n, g′, (σ0, σ1); (σ1, λ1), . . . ,
(σk, λk)] if and only if the following conditions are satisfied :

(i) 2g/n = 2g′ +
∑k

i=1(1− 1/λi),

(ii)
∑k

i=1 σin/λi + σ0 + σ1 ≡ 0 (mod n),
(iii) σ0 + σ1 + σ0σ1 ≡ 0 (mod n),

where n, g′, σν , σi and λi are nonnegative integers such that

(1) 1 < n, 0 ≤ g′ ≤ g−1, each 1 ≤ σi ≤ λi−1, each 1 ≤ σν ≤ n−2,
and each λi divides n,
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(2) gcd(σ0, n) = gcd(σ1, n) = 1 and each gcd(σi, λi) = 1.

Moreover, this data set determines a root of [tC ] up to conjugacy in
Mg.

We consider two data sets to be the same if they differ by interchang-
ing σ0 and σ1 or reordering the pairs (σ1, λ1), . . . , (σk, λk). McCullough
and Rajeevsarathy also got a similar data set in [7]. We follow the no-
tation [n, g′, (σ0, σ1); (σ1, λ1), . . . , (σk, λk)] of [7].

Proof. We first show that there are data satisfying the condition for
a representative h. From the above arguments, we may assume that
there exists an annulus A of C such that h(A) = A and h|Σg+1−A

is a periodic map of order n. Therefore, by pasting a disk Dν to
∂ν(Σg+1 −A) (ν = 0, 1), we can extend a periodic map f of order

n on Sg
∼= Σg

∼= Σg+1 −A ∪ D0 ∪ D1 preserving Dν . Since C is
non-amphidrome with respect to h, a center point qν of Dν is a fixed
point of f . We denote by q̂ν the branch point π(qν) on Sg/f , where
π : Sg → Sg/f is the quotient map. By Lemma 3.2, the second valency
of q̂ν with respect to f is (1, n, δν) (ν = 0, 1) such that δ0 + δ1 = n− 1
(1 ≤ δν ≤ n− 2).

Let p̂i and q̂ν (i = 1, . . . , k, ν = 0, 1) be branch points on Sg/f ,
respectively. Let (mi, λi, σi) and (1, n, σν) be the valencies of p̂i and
q̂i, respectively. By the definition of the valency, we see that σνδν ≡ 1
(mod n). From 1 ≤ δν ≤ n − 2, we have 1 ≤ σν ≤ n − 2. Since
n− 1 = δ0 + δ1 ≡ 1/σ0 + 1/σ1 (mod n), we have

σ0 + σ1 + σ0σ1 ≡ 0 (mod n).

From Theorem 2.2 we have parts (i) and (ii) of Theorem 3.4.

We next show that there is a representative h for data satisfying the
condition. If there are such integers, then by Theorem 2.2, there is a
periodic map f : Σg → Σg such that the valencies of branch points p̂i
and q̂ν (i = 1, . . . , k, ν = 0, 1) with respect to f are (mi, λi, σi) and
(1, n, σν), respectively. We note that a lift qν of q̂ν to Σg is a fixed point
of f , so there is a disk neighborhood Dν of qν such that f(Dν) = Dν

and f |Σg−D0∪D1
is a periodic map of Σg −D0 ∪D1. From the valency

of q̂ν with respect to f and part (iii) of Theorem 3.4, we find that the
second valency of ∂Dν with respect to f is (1, n, δν) (ν = 0, 1) such
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that δ0 + δ1 = n− 1 (1 ≤ δν ≤ n− 2). When we attach an annulus A,
we obtain Sg+1

∼= Σg+1. Let C be a simple closed curve on A which
is parallel to ∂0A and ∂1A. By the conditions of the second valencies
of ∂D0 and ∂D1 we can extend f |Σg−D0∪D1

to a homeomorphism h of

Sg+1 such that (h)n is isotopic to t1−n
C . Then, since by the construction

of h, h and tC commute with each other, htC is a representative of a
root of [tC ] with the data set.

Finally, we prove the last part of Theorem 3.4. From Proposition 3.3,
the conjugacy class of [h] in Mg+1 is completely determined by the
conjugacy class of h|Σg+1−A and n. Moreover, the conjugacy class of

h|Σg+1−A and n correspond to the conjugacy class of f by a homeomor-

phism preserving {D0, D1} and period n. If we restrict our attention
to the conjugacy class of f by a homeomorphism preserving {D0, D1}
and period, for Theorem 2.2 we see that the data set determines a root
of [tC ] up to conjugacy in Mg+1.

This completes the proof of Theorem 3.4. �

Corollary 3.5. Suppose that there is a root of [tC ] of degree n. Then,
3 ≤ n ≤ 2g + 1, and n is odd.

Proof. By (iii) and (2) of Theorem 3.4, we see that n is odd.

For n = 3, if g′ = 0, k = g and σ0 = σ1 = 1, we can select σi

(i = 1, . . . , g) which satisfy the condition (2). It means that there
always exists the root of degree 3 for g ≥ 1.

Suppose n > 2g + 1. By condition (i), we have 1 > 2g/n =

2g′ +
∑k

i=1(1 − 1/λi) so g′ = 0 and k = 1. From conditions (2)
and (3) we have nσ1/λ1 ≡ σ0σ1 (mod n). Therefore, we see that
0 ≡ nσ1 ≡ σ0σ1λ1 (mod n). This means that σ0σ1λ1/n = σ0σ1/m1 is
an integer (we note that m1λ1 = n). Since gcd(σ0, n) = gcd(σ1, n) = 1
and m1λ1 = n, we see that m1 must be equal to 1. This, in turn,
means that λ1 = n. Thus, we have 2g/n = 1− 1/n so n = 2g+1. This
contradicts n > 2g + 1. Since Margalit and Schleimer constructed the
root of degree 2g + 1, we have n ≤ 2g + 1. �

4. Dehn twist expression of the root of degree 3. We give
an explicit enumerate of the root of [tC ] of degree 3 by using the star
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relation given by Gervais [2]. In this section, we denote by tC the
isotopy class of the Dehn twist about C on Σg+1.

We consider the torus with three boundary components d1, d2, d3,
and let a1, a2, a3 and b be simple closed curves in Figure 1.

a

a a

d

d

d

b

Figure 1. The curves of star relation.

α s

β

ά

α s sg -

β

ά

αg - sg -

βg -

άg -

αg

βg

άg

αg+

άg+

γ

Figure 2. The curves αi, α′
i, βi (i = 1, . . . , g + 1), γ and sj (j =

1, . . . , g − 1).

The star relation is as follows:

(ta1ta2ta3tb)
3 = td1td2td3 .

If a1 = a2, then td3 is trivial, and the relation becomes

(t2a1
ta3tb)

3 = td1td2

Let αi, α′
i, βi (i = 1, . . . , g + 1) and γ be nonseparating simple

closed curves, and let sj (j = 1, . . . , g − 1) be the separating simple
closed curve in Figure 2.

We define

ρ1 = (tα1tβ1)
2

ρi = t2αi
tα′

i
tβi (i = 2, . . . , g − 1)

ρg = tαg tγtα′
g
tβg
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and

ĥ =

{
ρgρ

−1
g−1ρg−2 · · · ρ−1

3 ρ2ρ
−1
1 (if g + 1 is odd),

ρgρ
−1
g−1ρg−2 · · · ρ3ρ−1

2 ρ1 (if g + 1 is even).

We note that ρ31 = ts1 , that ρ1 . . . , ρg commute with each other and

that ĥ and tαg+1 commute with each other. Then, by the star relation,

we have ĥ3 = t2αg+1
. When we define

h = tαg+1 ĥ
−1,

h is the root of tαg+1 of degree 3.

5. A root of elementary matrices. In this section we give an
alternative proof of the latter part of Corollary 3.5.

The action of Mg+1 on H1(Σg+1;Z) preserves the algebraic intersec-
tion forms, so it induces a representation ϕ : Mg+1 → Sp(2(g + 1),Z),
which is well known to be surjective. Suppose g + 1 = 2. An element
4×4 matrix A ∈ Sp(4,Z) satisfies that AJ tA = J , where tA is transpose
of A and J is

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

Let α1 be a nonseparating simple closed curve in Figure 2, and let S
be

S = ρ(tα1) =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 , (S−1 =


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

).

We assume that S = A2, where A(∈ Sp(4,Z)) is

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .
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Since A−1 = S−1A, we have tAJ = JA−1 = JS−1A. By

tAJ =


−a31 −a41 a11 a21
−a32 −a42 a12 a22
−a33 −a43 a13 a23
−a34 −a44 a14 a24


and

JS−1A =


−a11 + a31 −a12 + a32 −a13 + a33 −a14 + a34

a41 a42 a43 a44
−a11 −a12 −a13 −a14
−a21 −a22 −a23 −a24


we have

(2) a11/2 = a31.

Since SA = AS, we have
a11 a12 a13 a14
a21 a22 a23 a24

a11 + a31 a12 + a32 a13 + a33 a14 + a34
a41 a42 a43 a44



=


a11 + a13 a12 a13 a14
a21 + a23 a22 a23 a24
a31 + a33 a32 a33 a34
a41 + a43 a42 a43 a44


We have a12 = a13 = a14 = 0. By S = A2, we have

a11 = ±1.(3)

By equations (2) and (3) we have a31 = a11/2 = ±1/2. This contradicts
A ∈ Sp(4,Z). Similar arguments apply to the case g > 2.

6. Roots in the mapping class group of a surface. In this
section we consider a root of the Dehn twist about a nonseparating
curve on a surface with boundary components and punctures.

Let D1, . . . , Db be disjoint b open disks in Σg+1, and let x1, . . . , xp

be p marked points in Σg+1. We denote by Mb
g+1,p the group of isotopy

classes of orientation-preserving homeomorphisms of Σg+1 permuting p
marked points and fixing D1, . . . , Db pointwise, modulo isotopies which
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do not move the marked points and fixD1, . . . , Db pointwise. Therefore,
we regardMb

g+1,p as a subgroup ofMg+1. It is well known thatMb
g+1,p

is isomorphic to the mapping class group of a surface of genus g + 1
with b boundary components and p punctures. If b = 0, we omit b from
the notation. Let C be a nonseparating curve C on Σg+1 (g + 1 ≥ 2)
disjoint from D1, . . . , Db and x1, . . . , xp.

Theorem 6.1. If b > 0, then tC ∈ Mb
g+1,p has no roots.

Proof. Suppose that there is a root [h] of [tC ] of degree n in Mb
g+1,p.

Since [h](C) = C from the property of roots, [h]n|Σg+1−C = id.

From the arguments of Section 3, there is a representation h such
that there is an annular neighborhood A of C, and h|Σg+1−A is a

periodic map of Σg+1 −A satisfying h|Di = id|Di . By pasting two

disks to two boundary curves of Σg+1 −A, we get a periodic map f
on Sg

∼= Σg of order n such that f |Di = id|Di . However, since Mb
g,p

(b > 0) is torsion free, nth power of the isotopy class of f is not an
identity in Mb

g,p. This means [h]n|Σg+1−A ̸= id. This contradicts

[hb
p]

n|Σb
g+1,p−C = id. �

Theorem 6.2. If p ̸≡ 0, 1 (mod 2g + 1), tC ∈ Mg+1,p has no roots of
degree 2g + 1. In particular, if p ≡ 2 (mod 3), then tC ∈ M2,p has no
roots.

Proof. Let h be a representative of a root of [tC ] of degree 2g+ 1 in
Mg+1, and let A be an annular neighborhood of C such that h|Σg+1−A

is a periodic map on Σg+1 −A of order 2g + 1. By the proofs of
Theorem 3.4 and Corollary 3.5, h|Σg+1−A has only one fixed point in

Σg+1 −A. Therefore, if p ≡ r (mod 2g + 1) and 1 < r < 2g + 1, then

there is no Z2g+1-action on Σg+1 −A. This means that tC ∈ Mg+1,p

has no roots of degree 2g + 1. �
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