
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 3, 2014

TENSOR PRODUCTS OF UNBOUNDED
OPERATOR ALGEBRAS

M. FRAGOULOPOULOU, A. INOUE AND M. WEIGT

ABSTRACT. The term GW ∗-algebra means a generalized
W ∗-algebra and corresponds to an unbounded generalization
of a standard von Neumann algebra. It was introduced
by the second named author in 1978 for developing the
Tomita-Takesaki theory in algebras of unbounded operators.
In this note we consider tensor products of unbounded
operator algebras resulting in a GW ∗-algebra. Existence
and uniqueness of the GW ∗-tensor product is encountered,
while “properly W ∗-infinite” GW ∗-algebras are introduced
and their structure is investigated.

1. Introduction. It is known that the Tomita-Takesaki theory
plays a significant role in the study of the structure of von Neumann al-
gebras and physical applications. The extension of the Tomita-Takesaki
theory to algebras of unbounded operators is a contribution of a long
period of systematic studies by the second named author and some of
his collaborators. These studies resulted in a monograph (see [13])
that builds on the structure of the so-called O∗-algebras on which the
unbounded Tomita-Takesaki theory is based. O∗-algebras were intro-
duced by Lassner [15], in 1972, aiming for the solution of questions that
appear in quantum statistics and quantum dynamics, that the alge-
braic formulation of quantum theories presented by Haag and Kastler,
in 1964, could not face; in this regard, see also [2, 18] and the corre-
sponding bibliography therein.

Among O∗-algebras, one finds the GW ∗-algebras (Inoue) (see [12]),
which are unbounded generalizations of the standard von Neumann
algebras. Other unbounded generalizations of von Neumann algebras
have been given by Dixon [6], in 1971, Araki and Jurzak [3], in 1982,
and Schmüdgen [17], in 1988. From all these, we consider only the
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corresponding concept due to Dixon (see Definition 2.1) and we connect
it with that of a GW ∗-algebra. We want to emphasize that there
is a physical justification for using tensor products. For instance,
tensor products are used to describe two quantum systems as one
joint system (see [1]). Another fact is that the physical significance
of tensor products always depends on the applications, which may
involve wave functions, spin states, oscillators etc.; see e.g., [4, 9].
To our knowledge, there is almost no literature on tensor products
of unbounded operator algebras. So, motivated by all the above, our
first attempt was to investigate the tensor product of Allan’s GB∗-
algebras, which generalize the classical C∗-algebras and, as Dixon
has proved in [5], they are algebras of unbounded operators. For
details on this study, see [8]. In the present paper, we define tensor
products of O∗-algebras resulting in GW ∗-algebras. Thus, Section 2 is
devoted to prerequisites for our study. Section 3 deals with unbounded
commutants that play an important role in the definition and main
results of GW ∗-algebras, as it happens in the case of standard von
Neumann algebras. In Section 4, three types of GW ∗-tensor products
are constructed, by using closed O∗-algebras and weak commutants.
We prove that all three coincide when our initial closed O∗-algebras
belong to a class of unbounded operator algebras that contains Dixon’s
“extended von Neumann algebras,” called EW ∗-algebras (Proposition
4.5). This gives the existence and uniqueness of our GW ∗-tensor
product in the aforementioned class of unbounded operator algebras.
In the final Section 5, we introduce the notion of “properlyW ∗-infinite”
GW ∗-algebras and investigate their structure. In this regard we prove
a generalization of the known von Neumann algebra result that reads as
follows: If M0 is a properly infinite von Neumann algebra on a Hilbert
space H and B(K) is the von Neumann algebra of all bounded linear
operators on a Hilbert space K, then M0 is realized (with respect to
a ∗-isomorphism) by the von Neumann algebra tensor product of M0

and B(K), for every separable Hilbert space K (see Theorem 5.3 and
Corollary 5.4).

2. Preliminaries. Let H1 and H2 be Hilbert spaces. The algebraic
tensor product of H1 and H2

H1 ⊗H2 :=

{ n∑
i=1

ξ1,i ⊗ ξ2,i, ξ1,i ∈ H1, ξ2,i ∈ H2

}
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is a pre-Hilbert space under the inner product

(ξ | η) :=
n∑

i=1

m∑
j=1

(ξ1,i | η1,j)(ξ2,i | η2,j),

with

ξ =
n∑

i=1

ξ1,i ⊗ ξ2,i and η =
m∑
j=1

η1,j ⊗ η2,j .

The completion of H1 ⊗H2, under the norm induced by the previous
inner product, is a Hilbert space denoted by H1⊗̄H2, and it is called
the Hilbert space tensor product of the Hilbert spaces H1, H2. Let
D1 and D2 be dense subspaces of H1 and H2, respectively. Then the
algebraic tensor product D1 ⊗D2 of D1 and D2 is a dense subspace of
H1⊗̄H2.

Let x1 and x2 be linear operators on D1 and D2, respectively. The
linear operator x1 ⊗ x2 is defined by

(x1 ⊗ x2)(ξ1 ⊗ ξ2) := x1ξ1 ⊗ x2ξ2, ξ1 ∈ D1, ξ2 ∈ D2.

In particular, if x1 ∈ B(H1) and x2 ∈ B(H2), where B(Hi), i = 1, 2, is
the algebra of all bounded linear operators on Hi, i = 1, 2, then x1⊗x2

has a continuous extension x1 ⊗ x2 to the Hilbert space H1⊗̄H2, called
the tensor product of x1 and x2, and denoted by x1⊗̄x2.

If M1 and M2 are von Neumann algebras on H1 and H2, respec-
tively, then the von Neumann algebra on H1⊗̄H2 generated by the op-
erators {x1⊗̄x2, x1 ∈ M1, x2 ∈ M2} is called the W ∗-tensor product

of M1 and M2, denoted by M1

W∗

⊗ M2. We shall use this W ∗-tensor
product in order to define unbounded tensor products generated by
M1 and M2, in Section 4.

To define tensor products of O∗-algebras, we review the basic defi-
nitions and properties of O∗- and GW ∗-algebras. For more details, we
refer to [13, 18]. Let D be a dense subspace of a Hilbert space H.
Denote by L†(D) the set of all linear operators x from D to D such
that the domain D(x∗) of the adjoint x∗ of x contains D and x∗D ⊂ D.
Then L†(D) is a ∗-algebra under the usual algebraic operations, and
the involution x 7→ x† := x∗ �D. A ∗-subalgebra M of L†(D) is called
an O∗-algebra on D in H. The locally convex topology on D induced
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by the seminorms {∥ ·∥x : x ∈ M}, where ∥ξ∥x := ∥ξ∥+∥xξ∥, ξ ∈ D, is
called the graph topology on D and is denoted by τM. If the locally con-

vex space D[τM] is complete, then M is called closed. Denote by D̃(M)

the completion of D[τM]. Then D̃(M) =
∩

x∈M D(x), where x denotes

the closure of x. Now put x̃ = x �D̃(M), x ∈ M and M̃ = {x̃ : x ∈ M}.
Then M̃ is the smallest closed extension of M, which is called the clo-

sure of M. It is easily shown that M is closed if and only if M = M̃
if and only if D = D̃(M) =

∩
x∈M D(x).

Now let M1 and M2 be O∗-algebras on D1 and D2, respectively.
Then

M1 ⊗M2 :=

{ n∑
k=1

x1,k ⊗ x2,k, with x1,k ∈ M1 and x2,k ∈ M2

}
is an O∗-algebra on the algebraic tensor product D1 ⊗D2. The closure
of M1 ⊗M2 is called tensor product of the O∗-algebras M1 and M2

and is denoted by M1⊗̃M2. The domain of the closed O∗-algebra
M1⊗̃M2 is denoted by D1⊗̃D2; namely,

D1⊗̃D2 =
∩

x∈M1⊗M2

D(x).

For x1 ∈ M1 and x2 ∈ M2, x1 ⊗ x2 �D1⊗̃D2
is denoted by x1⊗̃x2, and

M1⊗̃M2 :=

{ n∑
k=1

x1,k⊗̃x2,k, x1,k ∈ M1, x2,k ∈ M2

}
.

If M1 and M2 are bounded O∗-algebras, then D1⊗̃D2 = H1⊗̄H2

and x1⊗̃x2 = x1⊗̄x2 = x1 ⊗ x2, for all x1 ∈ M1 and x2 ∈ M2.
M1⊗̃M2 is the linear span of {x1⊗̄x2; x1 ∈ M1, x2 ∈ M2} and
the double commutant (M1⊗̃M2)

′′ of M1⊗̃M2 equals the W ∗-tensor

product M′′
1

W∗

⊗ M′′
2 of the von Neumann algebras M′′

1 and M′′
2 (see

[19, Theorem IV.5.9]).

We next define EW ∗- and GW ∗-algebras, which are unbounded
generalizations of von Neumann algebras. A crucial role, for the study
of the structure of these unbounded operator algebras, is played by a
von Neumann subalgebra, related to the “bounded part” of the algebras
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under consideration. The same is true for the Allan’s GB∗-algebras (see
the Introduction).

Definition 2.1. A closed O∗-algebra M on D in H, containing the
identity operator 1, is said to be an extended W ∗-algebra (abbreviated
to EW ∗-algebra), if it is symmetric, that is, (1 + x∗x)−1 exists and
belongs to Mb, for all x ∈ M, and Mb := {x : x ∈ Mb} is a von
Neumann algebra on H, where Mb := {x ∈ M : x ∈ B(H)}.

The concept of an EW ∗-algebra was introduced by Dixon [6]. Every
EW ∗-algebra satisfies the following properties:

(2.1) MbD ⊂ D, Mb
′D ⊂ D and M = {a ∈ L†(D) : aηMb},

where the symbol aηMb means that the operator a is affiliated with
the von Neumann algebra Mb. This means that a commutes with all
operators in (Mb)

′, that is, ca ⊂ ac, for all c ∈ (Mb)
′.

For constructions of EW ∗-algebras, see [6, 11].

To define GW ∗-algebras, we need some unbounded commutants for
an O∗-algebra M on D in H, which we recall (see [2, 13]).

M′
w := {a ∈ B(H) : (axξ | η) = (aξ | x†η), ∀ x ∈ M and ξ, η ∈ D}.

M′
c := {a ∈ L†(D) : ax = xa, ∀ x ∈ M}.

The weak commutant M′
w of M is a closed ∗-invariant subspace

of B(H) with respect to the weak operator topology, but it is not
necessarily a von Neumann algebra; this happens when, for instance,
M′

wD ⊂ D [2, pp. 60 and 66]. The unbounded commutant M′
c of M

is an O∗-algebra on D. Suppose that M′
wD ⊂ D. Then, an unbounded

bicommutant M′′
wc of M, is given by

M′′
wc := (M′

w �D)′c = {x ∈ L†(D) : xaξ = axξ, ∀ a ∈ M′
w, ξ ∈ D}.

M′′
wc is a closed O∗-algebra on D containing M. We denote by

L†(D,H) the set of all linear operators x from D to H such that
D(x∗) ⊃ D. Then L†(D,H) is a †-invariant vector space under the usual
algebraic operations and the involution x 7→ x† := x∗ �D. Moreover,
L†(D,H) contains B(H) �D, and it is complete under the strong∗-
topology τ∗s induced by the family of seminorms {p∗ξ : ξ ∈ D}, where
p∗ξ(x) := ∥xξ∥+∥x†ξ∥, for all x ∈ L†(D,H). In [13, Proposition 1.7.5],
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it is shown that

M′′
wc = the τ∗s − closure of (M′

w)
′ �D in L†(D)

= {x ∈ L†(D) : xη(M′
w)

′}.

We can now state the following:

Definition 2.2 ([13, Definition 1.7.4]). A closed O∗-algebra M on D
in H is called a generalized W ∗-algebra (for brevity GW ∗-algebra), if
M′

wD ⊂ D and M′′
wc = M.

A useful characterization of a GW ∗-algebra, that we shall use repeat-
edly in what follows, is the following [13, Proposition 1.7.5]: A closed
O∗-algebra M on D in H such that M′

wD ⊂ D is a GW ∗-algebra if
and only if M = {a ∈ L†(D) : aη(M′

w)
′}.

When M is a GW ∗-algebra on D in H, we shall also use the
terminology that M is a GW ∗-algebra on D over (the von Neumann
algebra) (M′

w)
′.

Now take the maximal O∗-algebra L†(D). Then L†(D)′w = C1, and
when L†(D) is moreover closed, it is a GW ∗-algebra with (L†(D)′w)

′ =
B(H), but it is clearly not an EW ∗-algebra. If M is a closed O∗-algebra
on D in H, suppose that M′

wD ⊂ D and (M′
w)

′D ⊂ D. Then M is
an EW ∗-algebra with Mb = (M′

w)
′ and the GW ∗-algebra M′′

wc is the
maximal EW ∗-algebra with Mb = (M′

w)
′. It is now evident from the

preceding and (2.2) that every GW ∗-algebra, with an identity element
and the property (M′

w)
′D ⊂ D, is an EW ∗-algebra.

Recall that a classical W ∗-algebra is always a C∗-algebra. So, a
natural question is whether a GW ∗-algebra, respectively, an EW ∗-
algebra is a GB∗-algebra. This is not always true. Conditions under
which this happens are presented in [6, 12]. More precisely, concerning
EW ∗-algebras, Zakirov and Chilin [21, Theorem 3] proved, in 1991,
that a GB∗-algebra, is algebraically ∗-isomorphic to some EW ∗-algebra
if and only if its bounded part is a W ∗-algebra.

In what follows we use a lot of standard results and definitions from
the theory of von Neumann algebras. For all these, the reader is referred
to [14, 16, 19].

3. Commutants. Let M (respectively, N ) be a closed O∗-algebra
on D (respectively, E) in H (respectively, K) such that M′

w and N ′
w
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are von Neumann algebras. A necessary and sufficient condition for
M′

w to be a von Neumann algebra is given by [2, Lemma 2.5.6(1)]. In
this section, we investigate the weak commutant of the tensor product
M⊗̃N .

Recall that the tensor product of two von Neumann algebras M1,
M2 acting on the Hilbert spaces H1,H2 respectively, is denoted by

M1

W∗

⊗ M2 (see Section 2) and, by definition, is the von Neumann
algebra generated by the *-algebra M1⊗M2 (algebraic tensor product
of the ∗−algebras M1,M2) acting on the Hilbert space tensor product

H1⊗̄H2. In other words, M1

W∗

⊗ M2 is the closure of M1 ⊗ M2

in the weak-operator topology of B(H1⊗̄H2) [14, page 812, 11.2.].

According to the celebrated Sakai theorem [16], M1

W∗

⊗ M2 has a

unique predual Banach space denoted by (M1

W∗

⊗ M2)∗. Blecher
and Paulsen as well as Effros and Ruan discovered independently

that (M1

W∗

⊗ M2)∗ = (M1)∗
op
⊗ (M2)∗, with respect to an isometric

isomorphism, where (M1)∗, (M2)∗ are preduals of the von Neumann

algebras M1, M2, respectively, and
op
⊗ is the so-called (completed)

operator-projective tensor product (see, e.g., [10, page x, 3] and the
corresponding references therein). By our assumptions for M, N we

clearly obtain that M′
w

W∗

⊗ N ′
w ⊂ (M⊗̃N )′w, but we do not know if the

inverse inclusion is also true. Thus, we are led to the following

Question 3.1. Under what conditions does one have that (M⊗̃N )′w =

M′
w

W∗

⊗ N ′
w?

In this regard, we have

Proposition 3.1. Suppose that (Mb)
′′ = (M′

w)
′ and (Nb)

′′ = (N ′
w)

′.

Then (M⊗̃N )′w = M′
w

W∗

⊗ N ′
w.

Proof. Let a ∈ (M′
w)

′ and b ∈ (N ′
w)

′. By our assumptions, there
exist nets {xα} in Mb and {yβ} in Nb such that xα → a and yβ → b
with respect to the strong∗-topology τ∗s . Thus, if C ∈ (M⊗N )′w, it
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follows that

(C(a⊗ b)(ξ1 ⊗ η1) | ξ2 ⊗ η2) = lim
α,β

(C(xα ⊗ yβ)(ξ1 ⊗ η1) | ξ2 ⊗ η2)

= lim
α,β

(C(ξ1 ⊗ η1) | (x†
α ⊗ y†β)(ξ2 ⊗ η2))

= (C(ξ1 ⊗ η1) | (a∗ ⊗ b∗)(ξ2 ⊗ η2)).

for all ξ1, ξ2 ∈ D and η1, η2 ∈ E . This implies that (see also [19,

Theorem IV.5.9]) C ∈ ((M′
w)

′ W∗

⊗ (N ′
w)

′)′ = (M′
w)

′′ W∗

⊗ (N ′
w)

′′ =

M′
w

W∗

⊗ N ′
w. �

Corollary 3.2. If M and N are EW ∗-algebras, then (M ⊗ N )′w =

M′
w

W∗

⊗ N ′
w.

Proof. From [11, Definition 2.7, Proposition 2.9], we have that
Mb = (M′

w)
′ and Nb = (N ′

w)
′. Moreover, Mb = (Mb)

′′ and
Nb = (Nb)

′′, so the result follows from Proposition 3.1. �

4. GW ∗-tensor products. Throughout the present section, M
(respectively, N ) are closed O∗-algebras on D (respectively, E) in H
(respectively, K) such that M′

wD ⊂ D and N ′
wE ⊂ E . The latter

inclusions occur whenever M (respectively, N ) is a GW ∗-algebra (see
Definition 2.2). Moreover, by the latter inclusions, M′

w and N ′
w are

von Neumann algebras [2, Proposition 2.3.5]; therefore, the same is
true for their commutants.

Note that, in general, we do not know whether the inclusion

(4.1) (M⊗N )′w(D⊗̃E) ⊂ D⊗̃E

is true. So let us suppose that (4.1) is valid. Then, the same is,
of course, true for M⊗̃N , consequently (ibid) ((M⊗̃N )′w)

′ is a von
Neumann algebra, so that we may put

(4.2) M
GW∗

⊗ N = {x ∈ L†(D⊗̃E) : xη((M⊗̃N )′w)
′}.

Then M
GW∗

⊗ N is a GW ∗-algebra on D⊗̃E over ((M⊗̃N )′w)
′ accord-

ing to [13, Proposition 1.7.5]. On the other hand, from the same

reference as before, it follows that M
GW∗

⊗ N is the strong∗-closure of
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((M⊗̃N )′w)
′ �D⊗̃E , which coincides with (M ⊗ N )′′wc (see Section 2).

Thus, we may set the following

Definition 4.1. M
GW∗

⊗ N is said to be a GW ∗-tensor product of the
closed O∗-algebras M and N , as above.

Because of (4.1), the preceding GW ∗-tensor product M
GW∗

⊗ N does
not always exist. So we define another GW ∗-tensor product of the
above closed O∗-algebras M and N , which always exists. Indeed, put

(4.3) (M′
w)

′ GW∗

⊗ (N ′
w)

′ = {x ∈ L†(D⊗̃E) : xη(M′
w)

′ W
∗

⊗ (N ′
w)

′}.

Note that if (M⊗̃N )′w = M′
w

W∗

⊗ N ′
w, then (M′

w)
′ GW∗

⊗ (N ′
w)

′ = M
GW∗

⊗
N , since by the commutation theorem of the W ∗-tensor products [19,

Theorem IV.5.9] we have that (M′
w)

′ W∗

⊗ (N ′
w)

′ = (M′
w

W∗

⊗ N ′
w)

′ =
((M⊗̃N )′w)

′.

Concerning (4.3) we have the following

Proposition 4.2. (M′
w)

′ GW∗

⊗ (N ′
w)

′ is a GW∗-algebra on D⊗̃E over

(M′
w)

′ W∗

⊗ (N ′
w)

′ containing M⊗̃N . Furthermore, (M′
w)

′ GW∗

⊗ (N ′
w)

′

is the strong∗-closure of ((M′
w)

′ W∗

⊗ (N ′
w)

′) �D⊗̃E in L†(D⊗̃E), which

coincides with ((M′
w

W∗

⊗ N ′
w)|D⊗̃E)

′
c (see Section 2).

Proof. By the very definitions it is easily checked that the assump-

tions M′
wD ⊂ D and N ′

wE ⊂ E imply that (M′
w

W∗

⊗ N ′
w)(D⊗̃E) ⊂ D⊗̃E .

Hence, M⊗̃N andM′
w

W∗

⊗N ′
w have the same domain. From this and the

definitions involved, it follows readily that M⊗̃N ⊂ (M′
w)

′ GW∗

⊗ (N ′
w)

′,

which since M⊗̃N is closed implies that (M′
w)

′ GW∗

⊗ (N ′
w)

′ is closed
too. The assertion now follows from [13, Proposition 1.7.5], (4.1) and
the discussion after it. �

Thus, we may state

Definition 4.3. (M′
w)

′GW∗

⊗ (N ′
w)

′ is said to be a GW ∗-tensor product
defined by (M′

w)
′ and (N ′

w)
′.
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Furthermore, we may proceed to a more general definition of a
GW ∗-tensor product, as follows: Let M0 and N0 be von Neumann
algebras on the Hilbert spaces H and K, respectively. Suppose that
there exists a dense subspace F of the Hilbert space H⊗̄K such that

(M0

W∗

⊗ N0)
′F ⊂ F . Then

A := {x ∈ L†(F) : xηM0

W∗

⊗ N0}

is an O∗-algebra on F in H⊗̄K. The closure of the O∗-algebra A is a

GW ∗-algebra on F̃ =
∩

x∈A D(x) in H⊗̄K over M0

W∗

⊗ N0, and it is

denoted by M0

GW∗

⊗
F

N0. So, we are led to

Definition 4.4. M0

GW∗

⊗
F

N0 is said to be a GW ∗-tensor product

defined by M0, N0 and F .

It is natural now to try to find out the connection among the three
GW ∗-tensor products given by Definitions 4.1, 4.3 and 4.4. We can
see that, under suitable conditions, all three GW ∗-tensor products
coincide. Indeed, let M and N be closed O∗-algebras on D and E ,
respectively, such that M′

wD ⊂ D and N ′
wE ⊂ E . Then, taking in

place of M0 and N0 the von Neumann algebras (M′
w)

′ and (N ′
w)

′,
respectively, and in the place of F , D⊗̃E , Definitions 4.3 and 4.4 imply

(M′
w)

′ GW∗

⊗ (N ′
w)

′ = (M′
w)

′ GW∗

⊗
D⊗̃E

(N ′
w)

′.

Furthermore, if we assume (M⊗̃N )′w = M′
w

W∗

⊗ N ′
w, then using again

the commutation theorem for W ∗-tensor products, as well as (4.2) and
(4.3), we obtain

(M′
w)

′ GW∗

⊗ (N ′
w)

′ = (M′
w)

′ GW∗

⊗
D⊗̃E

(N ′
w)

′.

Summing up, from Definition 4.1, Proposition 3.1 and Corollary 3.2,
we conclude:

Proposition 4.5. Let M and N be closed O∗-algebras on D and E,
respectively. If Mb

′
= M′

w and Nb
′
= N ′

w, in particular if M and N
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are EW ∗-algebras, then

M
GW∗

⊗ N = (M′
w)

′ GW∗

⊗ (N ′
w)

′ = (M′
w)

′ GW∗

⊗
D⊗̃E

(N ′
w)

′.

So we may say that, in the class of EW ∗-algebras, as well as in the
context of closed O∗-algebras described in Proposition 4.5, the GW ∗-
tensor product exists and it is unique.

5. Structure of properly W ∗-infinite GW ∗-algebras. If M0 is
a properly infinite von Neumann algebra on a Hilbert space H, it is

known that M0
∼= M0

W∗

⊗ B(K) (with respect to a ∗-isomorphism), for
every separable Hilbert space K [20, Appendix C, Theorem]. In this
section, we try to extend this W ∗-tensor product result to the context
of GW ∗-tensor product algebras.

Let M be a closed O∗-algebra on D in H such that M′
wD ⊂ D,

and K a separable Hilbert space with an orthonormal basis {ωn}. The
mapping

∞⊕
n=1

Hn ∋ (ξn) 7−→
∞∑

n=1

ξn ⊗ ωn ∈ H⊗̄K

establishes a canonical identification between the Hilbert space direct
sum

⊕∞
n=1 Hn and the Hilbert space tensor product H⊗̄K, where

Hn = H, for all n ∈ N. In what follows, we denote by 1H, 1K the
identity operators on H and K respectively. Then, for every x ∈ M,
we have

D((x⊗1K)
∗) =

{ ∞∑
n=1

ξn⊗ωn : ξn ∈ D(x∗), n ∈ N,
∞∑

n=1

∥x∗ξn∥2 < ∞
}
,

with

(x⊗ 1K)
∗
( ∞∑

n=1

ξn ⊗ ωn

)
=

∞∑
n=1

x∗ξn ⊗ ωn.

Also, for every x ∈ M, we have

D(x⊗ 1K) =

{ ∞∑
n=1

ξn ⊗ ωn : ξn ∈ D(x), n ∈ N,
∞∑

n=1

∥xξn∥2 < ∞
}
,
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with

(x⊗ 1K)

( ∞∑
n=1

ξn ⊗ ωn

)
=

∞∑
n=1

xξn ⊗ ωn.

Therefore, we obtain

D⊗̃K =
∩

x∈M
D(x⊗ 1K)

=

{ ∞∑
n=1

ξn ⊗ ωn : ξn ∈ D, n ∈ N,
∞∑

n=1

∥xξn∥2 < ∞, ∀ x ∈ M
}
.

(5.1)

Furthermore, by the properties of the weak commutant we see that
since any c ∈ (M⊗̃B(K))′w commutes with 1H ⊗ ϵi,j , i, j ∈ N, where

{ϵi,j} is a matrix unit in B(K), it follows that c ∈ M′
w

W∗

⊗ C1K. Hence,
we are led to the following

Lemma 5.1. With M and K as before, we have that (M⊗̃B(K))′w =

M′
w

W∗

⊗ C1K.

By Lemma 5.1, (M⊗̃B(K))′w(D⊗̃K) ⊂ D⊗̃K. Thus, Section 4

implies that M
GW∗

⊗ B(K) is well defined and it is a GW ∗-algebra on

D⊗̃K over (M′
w)

′ W
∗

⊗ B(K) = ((M⊗̃B(K))′w)
′ (again from Lemma 5.1).

Now let M be a GW ∗-algebra on D in H. Suppose that the
von Neumann algebra (M′

w)
′ is properly infinite, that is, there exists

a sequence {en} of mutually orthogonal projections in (M′
w)

′ with
en ∼ 1H, for all n ∈ N and

∑∞
n=1 en = 1H. Since en ∼ 1H, for

all n ∈ N, there exists a sequence {vn} of partial isometries in (M′
w)

′

such that

en = v∗nvn and 1H = vnv
∗
n, ∀ n ∈ N.(5.2)

We may now ask the following

Question 5.2. Is M ∗-isomorphic to M
GW∗

⊗ B(K), for every separable
Hilbert space K?
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In this regard, we set

Definition 5.2. A GW ∗-algebra M is called properly W ∗-infinite if
the von Neumann algebra (M′

w)
′ is properly infinite.

According to the comments after Definition 2.2, whenever D with
the graph topology is complete, the GW ∗-algebra L†(D) is properly
W ∗-infinite, when dimH = ∞.

Now, for the case where D is a Fréchet domain (i.e., D, with the
graph topology, is a Fréchet locally convex space), we have

Theorem 5.3. Let M be a properly W ∗-infinite GW ∗-algebra on D in
H. Suppose that the graph topology tM on D is defined by a sequence
{∥·∥tn : tn ∈ M} of seminorms such that vntk ⊂ tkvn, for all k, n ∈ N,
where the family {vn} is as in (5.2). Then,

M = M
GW∗

⊗ B(K),

with respect to a ∗-isomorphism, for every separable Hilbert space K.

Proof. From our assumption, it follows that, for all x ∈ M and for
all m ∈ N, there exists γ > 0 such that

∥xξ∥ ≤ γ
m∑

k=1

∥ξ∥tk , ∀ ξ ∈ D.(5.3)

We clearly have that D =
∩

x∈M D(x) ⊂
∩∞

k=1 D(tk), where the
equality is due to the fact that M is closed (see Section 2). Moreover,
from the condition vntk ⊂ tkvn, for all k, n ∈ N, we conclude that
vnξ ∈

∩∞
k=1 D(tk), for all n ∈ N and ξ ∈ D. Hence (see Section 2),

vn �D∈ M, for all n ∈ N. Now let K be a separable Hilbert space with
an orthonormal basis {ωn}, and let {ϵij} be a matrix unit in B(K). Put

uk =
k∑

i=1

vi ⊗ ϵi1, ∀ k ∈ N.

Then, using (5.1) and (5.3), we have that, for all x ∈ M, ξ =
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∑∞
j=1 ξj ⊗ ωj ∈ D⊗̃K and k > l

∥(x⊗ 1K)(ukξ − ulξ)∥2 =

∥∥∥∥ ∞∑
j=1

k∑
i=l+1

xviξj ⊗ ϵi1ωj

∥∥∥∥2

=

∥∥∥∥ k∑
i=l+1

xviξ1 ⊗ ω1

∥∥∥∥2

(since εi1ωj = ω1 for j = 1, and 0 for j ̸= 1)

=

∥∥∥∥ k∑
i=l+1

xviξ1

∥∥∥∥2 ≤
k∑

i=l+1

∥xviξ1∥2

≤ (by (5.3))
k∑

i=l+1

γ2
m∑
j=1

(∥viξ1∥+ ∥tjviξ1∥)2

≤ 2γ2
m∑
j=1

k∑
i=l+1

(∥viξ1∥2 + ∥vitjξ1∥2)

= 2γ2
m∑
j=1

k∑
i=l+1

(∥eiξ1∥2 + ∥eitjξ1∥2) −→ 0,

as l → ∞.

By similar calculations, we have that for all x ∈ M

∥(x⊗ 1K)(u
∗
kξ − u∗

l ξ)∥2 =

∥∥∥∥ ∞∑
j=1

k∑
i=l+1

xv†i ξj ⊗ ϵ1iωj

∥∥∥∥2

=

∥∥∥∥ k∑
i=l+1

xv†i ξi

∥∥∥∥2

(since ε1iωj = ωi for j = i, and 0 for j ̸= i)

≤ 2γ2
m∑
j=1

k∑
i=l+1

(∥ξi∥2 + ∥tjξi∥2) −→ 0,

as l → ∞.
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Therefore, there exists u ∈ (M′
w)

′ W∗

⊗ B(K) such that limk→∞ uk = u
with respect to the strong∗ topology τ∗s . It follows easily from (5.1)
that u(D⊗̃K) ⊂ D⊗̃K, and u∗(D⊗̃K) ⊂ D⊗̃K. Hence, u �D⊗̃K∈

M
GW∗

⊗ B(K). We shall just use the symbol u for the restriction of
u to D⊗̃K. It is now easy to see that

(5.4) u∗u = 1H ⊗ ϵ11 and uu∗ = 1H ⊗ 1K.

Then the map

σ : M
GW∗

⊗ B(K) −→ M⊗̃Cϵ11 : x̃ 7→ u†x̃u,

as seen by (5.4), is a bijective ∗-homomorphism. Therefore, σ is a ∗-

isomorphism. Since M⊗̃Cϵ11 ∼= M, it follows that M ∼= M
GW∗

⊗ B(K),
for every separable Hilbert space K. �

Corollary 5.4. Let M be a properly W ∗-infinite GW ∗-algebra on
D∞(h) =

∩∞
n=1 D(h

n
) in H, where h ∈ M and h is a positive self-

adjoint operator on H such that vnh ⊂ hvn for all n ∈ N, where the

family {vn} is as in (5.2). Then M is ∗-isomorphic to M
GW∗

⊗ B(K),
for every separable Hilbert space K.

Proof. It is easily shown that D∞(h) is a Fréchet space under the
locally convex topology τ defined by the sequence {∥ · ∥hn : n ∈ N} of

seminorms, where ∥ξ∥hn = ∥ξ∥+ ∥hn
ξ∥, ξ ∈ D∞(h), n ∈ N. By using

the spectral decomposition of h, we have that h
n �D∞(h)= hn ∈ M,

for all n ∈ N. This implies that the topology τ is weaker than the
graph topology tM. On the other hand, since every element x of M
is a closed linear map from the Fréchet space D∞(h)[τ ] to the Hilbert
space H, x is continuous by the closed graph theorem. This means
that tM is weaker than τ . Hence, tM = τ , and so the graph topology
tM is induced by the sequence {∥ · ∥hn : n ∈ N} of seminorms defined
above. Furthermore, the assumption vnh ⊂ hvn for all n ∈ N implies

that vnhk ⊂ hkvn for all k, n ∈ N. Thus the assertion of Corollary 5.4
now follows from Theorem 5.3. �

Corollary 5.4 gives assumptions under which the condition vntk ⊂
tkvn, for all k, n ∈ N, of Theorem 5.3 is fulfilled. An example satisfying
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the assumptions of Corollary 5.4 is exhibited next.

Example 5.5. Let H be a Hilbert space. Then the algebra B(H) is a
properly infinite von Neumann algebra, so that (see discussion before
(5.2)) there exists a sequence {en} of mutually orthogonal projections
on H and a sequence of partial isometries vn in B(H) such that
en = v∗nvn and 1H = vnv

∗
n, for all n ∈ N. Let h be a positive self-

adjoint unbounded operator in H affiliated with {vn;n ∈ N}′. Then
(see Corollary 5.4, for the notation), vnD∞(h) ⊂ D∞(h), n ∈ N. We
retain the symbol vn for the restriction vn �D∞(h). Let h =

∫
λdeh(λ)

be the spectral resolution of h and M0 a von Neumann algebra on H
containing {vn, eh(λ); n ∈ N, λ ∈ [0,∞)}. Now put

GW ∗(M0,D∞(h)) ≡ {x ∈ L†(D∞(h)); xηM0}.

Since ch ⊂ hc, for each c ∈ M′
0, we have that M′

0D∞(h) ⊂
D∞(h). Furthermore, retaining the symbol h for the restriction
h �D∞(h), we have that h ∈ GW ∗(M0,D∞(h)), whence it follows that
GW ∗(M0,D∞(h)) is a self-adjoint, properly W ∗-infinite GW ∗-algebra
on D∞(h), over M0, satisfying the condition vnh ⊂ hvn, for all n ∈ N.

In particular, GW ∗({vn, eh(λ)}′′,D∞(h)) is a properly W ∗-infinite
GW ∗-algebra onD∞(h) over {vn, eh(λ)}′′, and L†(D∞(h)) is a properly
W ∗-infinite GW ∗-algebra on D∞(h) over B(H).

Remark 1. In a forthcoming paper [7], GW ∗-tensor products are used
for the definition and study of crossed products of unbounded operator
algebras.
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