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AN APPLICATION OF MATRICIAL FIBONACCI
IDENTITIES TO THE COMPUTATION

OF SPECTRAL NORMS

JOHN DIXON, BEN MATHES AND DAVID WHEELER

1. Introduction. Among the most intensively studied integer se-
quences are the Fibonacci and Lucas sequences. Both are instances of
second order recurrences [9], satisfying sk−2 + sk−1 = sk for all inte-
gers k, but where the Fibonacci sequence (fi) begins with f0 = 0 and
f1 = 1, the Lucas sequence (li) has l0 = 2 and l1 = 1. Several au-
thors have recently been interested in the singular values of Toeplitz,
circulant and Hankel matrices that are obtained from the Fibonacci
and Lucas sequences (see [1, 4, 5, 12, 13, 14]), where the authors
obtain bounds for the “spectral norms,” i.e., the largest singular value.
In [1] a formula is given for the exact value of the spectral norms of
the Lucas and Fibonacci Hankel matrices. In this paper, we present
the exact value for the spectral norms of Toeplitz matrices involving
Fibonacci and Lucas numbers.

All matrix and vector spaces will be considered as ones over the
complex numbers. If A is a complex matrix, we let A∗ denote the
adjoint of A. The singular values of a matrix A = (aij) are defined to be

the non-zero eigenvalues of |A| ≡ (A∗A)1/2, and they are traditionally
enumerated in descending order,

s1 ≥ s2 ≥ · · · ≥ sk > 0,

with k equal to the rank of the matrix A. The Schatten norms
([7, 10, 11]) are a family of norms, denoted by ∥ · ∥p (1 ≤ p ≤ ∞),
defined for matrices in terms of their singular values via

∥A∥p =

( k∑
i=1

spi

)1/p

,

for 1 ≤ p < ∞, and
∥A∥∞ = s1.
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These norms differ markedly from the ℓpn2 -norms one is tempted to
endow on n× n matrices using the formula(∑

ij

|aij |p
)1/p

,

in that the Schatten p-norms have the important property of being
unitary invariant norms, i.e., for every unitary matrix U , one has

∥A∥p = ∥AU∥p = ∥UA∥p.

Unless a matrix has some special form, it is usually very difficult to see
a correspondence between the matrix entries and the Schatten norms,
with one notable exception: when p = 2, one has

∥A∥2 =

( k∑
i=1

s2i

)1/2

=

(∑
ij

|aij |2
)1/2

.

This is because, among the ℓpn2 -norms, one can easily show that ℓ2n2

is the only unitary invariant norm, and consequently, writing A in its
polar decomposition, we see that the ℓ2n2 norm must agree with the
Schatten 2-norm.

There is a beautiful duality theory for Schatten norms that is a non-
commutative analogue of the Banach space duality of ℓp spaces. In
infinite dimensions, the Schatten norms give rise to interesting ideals of
compact operators [8]. The Schatten norms are also related to natural
norms endowed upon tensor products of Banach spaces [11].

The terminology introduced so far is standard for functional analysts
and students of operator theory, but it is common to see different
terminology describing the same norms in applied linear algebra and
matrix theory. For example, when p = 2 the Schatten norm is also
called the Frobeneous norm, and when p = ∞, where the corresponding
Schatten norm returns the maximal singular value of A, the norm
∥ · ∥∞ is called the spectral norm of A. Moreover, it is common to
see the symbol ∥A∥2 describing the Schatten-2 norm by analysts, with
the same symbol denoting the spectral norm by matrix theorists. In
this paper, we will be concerned with only two norms, and we will
attempt to strike a compromise with regard to notation: we will let ∥A∥
denote the spectral norm, i.e., the Schatten-∞ norm or Hilbert space
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operator norm, and we will let ∥A∥F denote the Frobeneous norm, i.e.,
the Schatten-2 or Hilbert-Schmidt norm (see [6, 7, 10]).

2. Fibonacci and Lucas matrices. We are primarily concerned
with the matrices

F = (fi−j)
n−1
i,j=0 and L = (li−j)

n−1
i,j=0,

with f and l denoting the Fibonacci and Lucas sequences, and we refer
to F and L as the Fibonacci and Lucas matrices. An n × n matrix
A = (aij) is called Toeplitz when there is a sequence (αk)

2n−1
k=1 such

that aij = αi−j for all i, j. This is a precise way of saying that the
matrix A is constant along all its upper left to lower right diagonals.
Both F and L are Toeplitz.

Let U be the n × n unitary matrix, all of whose matrix entries are
zero, except those along the main cross diagonal, where the matrix
entries are one. We are describing the unitary for which UA reverses
the order of the rows of A and AU reverses the order of the columns of
A. We intend to use the following fact repeatedly, so we isolate it for
reference (the proof is trivial).

Lemma 2.1. If A is a square Toeplitz matrix with real entries, then

1. UAU = A∗ and UA∗U = A,
2. U(A∗A)U = AA∗ and U(AA∗)U = A∗A.

The spectral norm of the Fibonacci matrix is visible from the matrix
entries because the spectral norm, while not equal to the Frobeneous
norm, turns out to be a constant multiple of the Frobeneous norm. It
is well known that these matrices are all rank two, but what appears
to have been overlooked is that the two non-zero singular values are
equal. Once this is proved, then, letting α denote this common value,
we see that

∥F∥2 = α2 =
1

2
(α2 + α2) =

1

2
∥F∥2F =

1

2

n−1∑
i,j=0

f2
i−j .

Because the matrix is Toeplitz, the expression on the far right simplifies
further: we might as well only sum the squares of the lower triangular
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part of F to obtain its spectral norm, resulting in the simple expression

∥F∥2 =

n−1∑
k=0

k∑
i=0

f2
i =

n−1∑
k=0

fkfk+1,

which is the famous sequence of the sum of areas of Fibonacci rectangles
(OEIS sequence A064831). Finally, as was noted in [12], this last
formula reduces to simply f2

n when n is even and f2
n − 1 when n is

odd. We record a slight generalization of the pertinent observation for
reference.

Lemma 2.2. Assume A is a rank k matrix for which s1 = · · · = sk.
We have

∥A∥ =
1√
k
∥A∥F.

In [3], a formula is given for the spectral norms of the matrix

(αi − αj)

where αi is a non-constant real sequence. We obtain a simple proof of
this result using the previous lemma.1

Corollary 2.3 ([3]). Assume (αi)
n
i=1 is a non-constant finite sequence

of real numbers, and A = (aij) is the n× n matrix with aij = αi − αj.
We then have

∥A∥ =
1√
2
∥A∥F =

√ ∑
1≤i<j≤n

(αi − αj)2.

Proof. As noted in [3], this matrix is rank two and skew symmetric.
Since the trace is zero, the two non-zero eigenvalues have the same
moduli (they are negatives of one another), and, being skew symmetric,
the moduli of these eigenvalues are the singular values. The lemma then
applies, and we have

∥A∥ =
1√
2
∥A∥F.
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By skew symmetry, the expression above may be calculated by summing
the squares of just the lower triangular part of A, and that is what√ ∑

1≤i<j≤n

(αi − αj)2

is intended to represent. �

In [9], we are treated to an elegant exposition of generalized Fi-
bonacci and Lucas sequences. The general recurrence relation is

sn = asn−1 + bsn−2,

the Fibonacci sequence has the same initial values f0 = 0 and f1 = 1,
while the Lucas sequence begins l0 = 2 and l1 = a. Once two successive
terms of a sequence are dictated, one then uses the recurrence to
determine all other terms of a bilateral sequence that satisfy the relation
for all n ∈ Z. The set of all bilateral sequences that satisfy this relation
is denoted B(a, b), and it is observed that, for each a and non-zero b,
the set B(a, b) is a two-dimensional vector space. We might also regard
B(a, b) as a two-dimensional subspace of Cn for any n ≥ 2. We will
not attempt to distinguish between the B(a, b) for various values of n
but will rely on context. We will only be concerned with B(1, 1) and
B(−1, 1), but we have a few general comments to make.

If A is an n×m matrix whose columns all belong to B(a, b), and B
is any m× k matrix (n,m, k ≥ 2), then the columns of AB also belong
to B(a, b). This follows from that fact that B(a, b) is a vector space.
Dually, if the rows of A belong to B(a, b) and B is k×n, then the rows
of BA also belong to B(a, b). We will say that two matrices of the same
size, A and B, have the same recursion pattern if the columns of both
matrices lie in B(a, b) and the rows of both matrices all lie in B(c, d),
for some a, b, c, d. If A and B have the same recursion pattern, and if(

aij ai(j+1)

a(i+1)j a(i+1)(j+1)

)
= α

(
bij bi(j+1)

b(i+1)j b(i+1)(j+1)

)
for some 2 × 2 sub-matrix of A and B, then A = αB. This follows
from the fact that the recursion formulas will generate the rest of the
matrices, once the values of such a 2 × 2 sub-matrix with adjacent
entries are known. We record this observation for reference.
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Lemma 2.4. If A and B enjoy the same recursion pattern and(
aij ai(j+1)

a(i+1)j a(i+1)(j+1)

)
= α

(
bij bi(j+1)

b(i+1)j b(i+1)(j+1)

)
for some 2× 2 sub-matrix of A and B, then A = αB.

In [12], the author works with the Fibonacci and Lucas sequences in
B(k, 1), where many of the scalar identities look quite similar to the ones
seen in B(1, 1) (see [9]). As it happens, the k-Fibonacci and k-Lucas
matrices, obtained by generating the corresponding Toeplitz matrices
from the Fibonacci and Lucas sequences of B(k, 1), enjoy the same
fundamental property mentioned above: all, except the Lucas matrices
of odd dimension, have both equal non-zero singular values. Thus, the
spectral norms of these matrices can be computed as in Lemma 2.2.
The generality does not enhance the exposition, however, which is on
the verge of becoming burdensome enough, with an onslaught of scalar
identities. We choose now to return to B(1, 1) and B(−1, 1), where we
remain until the end of the paper.

3. Scalar Fibonacci identities. In the process of obtaining ma-
tricial Fibonacci identities, dozens of scalar identities are generated.
Many of them are well known, but the literature is so vast, and the
quantity of identities so large, finding and referencing a particular one
is like finding a needle in a haystack. On the other hand, once an
identity is written down, it is almost always quite easy to prove, using
induction. We intend to list the identities we intend to use, and leave
all but one of the elementary induction exercises to the reader.

Our list begins with standard identities that can be found in [15]
and quickly progress to the ones we need to compute matrix products.
A proof of identity (4) can be found in [12]. Often the identities bounce
between a form for even n and a second expression for odd n, and for
this reason it is useful to incorporate the characteristic function of the
even integers, which we will denote with δ, so δn = 1 if n is even, and
otherwise δn = 0. We also include some simple identities that we found
useful for proving more complicated ones to follow.

(1)
∑n

i=0 f
2
i = fnfn+1;

(2) fn+1fn−1 − f2
n = (−1)n;

(3) fnfn−3 − fn−2fn−1 = (−1)n;
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(4)
∑n−1

i=1 fifi+1 = f2
n − δn+1;

(5) fn = (αn − βn)/(α− β) and ln = αn + βn (α > β the roots of
x2 − x− 1);

(6) l2i + l2i+1 = 5(f2
i + f2

i+1);

(7) l2i = 5f2
i + 4(−1)i;

(8)
∑n−1

i=0 l2i = 5
∑n−1

i=0 f2
i + 4δn−1;

(9)
∑n−1

i=0 li−1li = 5fnfn−2 − 7δn−1;

(10)
∑n−1

i=0 f−ifn−i−1 =
∑n−2

i=1 (−1)i+1fifn−i−1 = δn−1fn−1 (equals
fn−1 for odd n and it equals 0 for even n);

(11)
∑n−2

i=0 f−ifn−i−3 = δn−1fn−1 − δnfn−2 (equals fn−1 for odd n
and it equals −fn−2 for even n);

(12) for n > 2,
∑n−2

i=0 (−1)ififn−i−2 = −fn−2δn (equals 0 for odd
n > 2);

(13)
∑n

i=1 f−ifn−i = fnδn (equals 0 for odd n);
(14)

∑n
i=1 f−ifn−i−1 = fn+1δn+1−fnδn (equals fn+1 for odd n and

−fn for even n);

(15)
∑n−2

i=−1 f−ifn−i−2 = fn−1δn−1 + fnδn (equals fn−1 for odd n
and fn for even n);

(16)
∑n−1

i=0 f−ifn−i−2 = fnδn − fn−1δn−1 (equals −fn−1 for odd n
and fn for even n);

(17)
∑k

i=−k fili = 0;

(18)
∑k

i=−k fili+1 = 5fkfk+1;

(19)
∑k

i=−k l
2
i = 2

∑k
i=−k li+1li;

(20)
∑k

i=−k li+1li = lklk+1;

(21) lklk+1 − 5fkfk+1 = 2(−1)k;

(22)
∑n−1

i=0 l−ifn−1−i = 2fnδn + fn−1δn−1;

(23)
∑n−2

i=0 l−ifn−3−i + fn−2 = 2fnδn − fn−3δn−1;

(24) fn−1 +
∑n−2

i=0 l−ifn−2−i = fnδn + 3fn−1δn−1;

(25) −
∑n−1

i=0 l−ifn−2−i = fnδn − fn+2δn−1.

Proof of Identity (10). The first equality follows from f−i = (−1)i+1fi.
When n = 3, 4, and 5 the second equality reads f1 = f2, f1f2− f2f1 =
0, and

f1f3 − f2
2 + f3f1 = f4,

all true statements. Assume that
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n−2∑
i=1

(−1)i+1fifn−i−1 = fn−1

for some odd n and

n−1∑
i=1

(−1)i+1fifn−i = 0.

Adding the two equations, we obtain

n−2∑
i=1

(−1)i+1fifn−i−1 +
n−1∑
i=1

(−1)i+1fifn−i

=
n−2∑
i=1

(−1)i+1fi(fn−i−1 + fn−i)− fn−1

=
n−2∑
i=1

(−1)i+1fifn−i+1 − fn−1

= fn−1.

The last equality implies
∑n−2

i=1 (−1)i+1fifn−i+1 = 2fn−1; hence,

n∑
i=1

(−1)i+1fifn−i+1 = 2fn−1 − fn−1f2 + fnf1 = fn+1.

Next, assume that

n−2∑
i=1

(−1)i+1fifn−i−1 = 0

with n even, and
n−1∑
i=1

(−1)i+1fifn−i = fn.
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Adding the equations gives us

n−2∑
i=1

(−1)i+1fifn−i−1 +
n−1∑
i=1

(−1)i+1fifn−i

=
n−2∑
i=1

(−1)i+1fi(fn−i−1 + fn−i) + fn−1

=

n−2∑
i=1

(−1)i+1fifn−i+1 + fn−1

= fn.

This time we have
∑n−2

i=1 (−1)i+1fifn−i+1 = fn − fn−1, and

n∑
i=1

(−1)i+1fifn−i+1 = (fn − fn−1) + fn−1f2 − fnf1 = 0.

4. Even dimensions. In all that follows, we let U denote the
unitary in Lemma 2.1.

Theorem 4.1. Let F denote the n× n Fibonacci matrix with n even.
Then

FUF = fnF.

Proof. We compute (using identities (1)–(4)) the 2 × 2 lower left
corner of the matrix F (UF ), understanding that the matrix of UF
is obtained from the matrix of F by reversing the order of its rows,
obtaining

n−2∑
i=0

fifi+1

n−2∑
i=0

f2
i + 1

n−1∑
i=0

f2
i

n−2∑
i=0

fifi+1

 =

(
f2
n−1 − 1 fn−2fn−1 + 1
fn−1fn f2

n−1 − 1

)

= fn

(
fn−2 fn−3

fn−1 fn−2

)
Since FUF has the same recursion pattern as F , we obtain the
conclusion from Lemma 2.4. �
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Theorem 4.2. Let F denote the n× n Fibonacci matrix with n even.
Then

(F ∗F )2 = f2
n(F

∗F ).

Proof. Assume the hypothesis of the theorem. Since UA∗AU = AA∗

is true whenever A is Toeplitz, and F ∗UF ∗ = fnF
∗ follows from the

previous theorem, we have

(F ∗F )2 = F ∗(FF ∗)F = (F ∗UF ∗)(FUF ) = f2
nF

∗F. �

Theorem 4.3. Let F denote the n× n Fibonacci matrix with n even.
Then

∥F∥ =
1√
2
∥F∥F =

√√√√n−1∑
i=0

fifi+1 = fn.

Proof. It follows from Theorem 4.2 that F ∗F is a non-zero multiple
of a rank two orthogonal projection, so the two non-zero singular values
of F are equal. We then draw upon Lemma 2.2 to justify the first
equality of our conclusion, equate that to the Hilbert norm of the lower
triangular part of F to justify the second equality, and point out that
the third equality is identity (4) in Section 3. �

Theorem 4.4. Let F denote the n× n Fibonacci matrix, L the n× n
Lucas matrix, and assume that n is even. Then

LUL = 5fnF and L∗UL∗ = 5fnF
∗.

Proof. We compute (using identities (3) and (7)–(9)) the 2×2 lower
left corner of the matrix L(UL), obtaining:


n−1∑
i=0

li−1li

n−2∑
i=0

l2i + l2−1

n−1∑
i=0

l2i

n−1∑
i=0

li−1li

 =


5fnfn−2 5

n−2∑
i=0

f2
i + 4 + 1

5
n−1∑
i=0

f2
i 5fnfn−2


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=

 5fnfn−2 5

( n−2∑
i=0

f2
i + 1

)
5fnfn−1 5fnfn−2


= 5fn

(
fn−2 fn−3

fn−1 fn−2

)
.

Since LUL has the same recursion pattern as F , Lemma 2.4 applies and
LUL = 5fnF . The second equality is obtained by taking adjoints. �

Theorem 4.5. Let F denote the n× n Fibonacci matrix, L the n× n
Lucas matrix, and assume that n is even. Then

L∗L = 5F ∗F.

Proof. By Lemma 2.2, Theorem 4.2 and Theorem 4.4, we have

(L∗L)2 = L∗(LL∗)L = L∗UL∗LUL = 25f2
nF

∗F = 25(F ∗F )2.

Taking square roots of both sides finishes the proof. �

Corollary 4.6. If L is the n× n Lucas matrix with n even, then

∥L∥ =
√
5∥F∥ =

√
5fn.

5. Odd dimensions. It is not true that FUF = fnF when n is
odd. When n is even, we also have the identity

FUFUF = fnFUF = f2
nF,

and, as it happens, this identity almost holds for odd n too.

Theorem 5.1. Assume F is a Fibonacci matrix. Then F satisfies

FUFUF = αF.

If F is n× n with n even, then α = f2
n, otherwise α = f2

n − 1.

Proof. When n is even, the statement follows immediately from
Theorem 4.1, so assume that n is odd. We compute the 2×2 northwest
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corner of F (UF ), obtaining
n−1∑
i=0

f−ifn−i−1

n−1∑
i=0

f−ifn−i−2

fn−1 +
n−2∑
i=0

f−ifn−i−2

n−2∑
i=0

f−ifn−i−3 + fn−2

 ,

which, using identities (10)–(12), equals(
fn−1 −fn−1

fn−1 fn

)
.

Next, we use the recursion pattern to determine the entire first two
rows. Note that the rows are elements of B(−1, 1), so knowing ri−2

and ri−1, we obtain ri as ri = ri−2 − ri−1. Thus, the first row becomes

fn−1(f−1, f−2, f−3, . . . , f−n),

and the second row equals

fn(f0, f−1, . . . , f−n+1) + fn−1(f1, f0, f−1, . . . , f−n+2).

The last step is to use these two rows to compute the 2× 2 northwest
corner of (FUF )(UF ): the first row comes as(

fn−1

∑n
i=1 f−ifn−i fn−1

∑n
i=1 f−ifn−i−1

)
,

which, using identities (2), (13) and (14) equals(
0 f2

n − 1
)
.

The (2, 1) entry is

fn

n−1∑
i=0

f−ifn−i−1 + fn−1

( n−2∑
i=−1

f−ifn−i−2

)
which, using identities (14) and (15), equals

fnfn−1 + f2
n−1 = fn+1fn−1 = f2

n − 1.

Finally, the (2, 2) entry is

fn

n−1∑
i=0

f−ifn−i−2 + fn−1

n−2∑
i=−1

f−ifn−i−3
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which, using identities (13) and (16), equals

fn(−fn) + fn−1(fn−1 + fn−2) = fn−1(−fn + fn−1 + fn−2) = 0.

It follows that this 2× 2 corner is f2
n − 1 times the corresponding 2× 2

of F , and by Lemma 2.4, the theorem follows. �

Theorem 5.2. Assume F is an n×n Fibonacci matrix. Then we have

(F ∗F )3 = βF ∗F.

If n is even, then β = f4
n, otherwise β = (f2

n − 1)2.

Proof. Using the facts that UFU = F ∗ and UF ∗U = F , we have

(F ∗F )3 = F ∗(F )F ∗F (F ∗)F = F ∗UF ∗UF ∗FUFUF = α2F ∗F. �

Theorem 5.3. Assume F is a Fibonacci matrix. Then

∥F∥ =
1√
2
∥F∥F =

√√√√n−1∑
i=0

fifi+1.

In the case where F is n× n with n odd, this expression simplifies to

∥F∥ =
√

f2
n − 1.

Proof. Letting α1 and α2 denote the two positive eigenvalues of F
∗F ,

we have by Theorem 5.2 that

α3
1

α1
= β =

α3
2

α2
,

and hence α1 = α2, and Lemma 2.2 applies again. �

We now turn to the Lucas matrices of odd dimension, and here we
must abandon our strategy of proving the two non-zero singular values
equal, and then appealing to Lemma 2.4 because the sobering fact is
these singular values are not equal.

Theorem 5.4. Assume L is the n × n Lucas matrix, n = 2k + 1.
The two non-zero singular values of L are 5fkfk+1 and lklk+1. We
have lklk+1 ≥ 5fkfk+1 if and only if k is even, from which we conclude
∥L∥ = lklk+1 for even k, and ∥L∥ = 5fkfk+1 when k is odd.
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Proof. Assume the hypothesis of the theorem. If s is a bilateral
sequence, let vs be the element of Cn defined by

vs = (sk, sk−1, . . . , s1, s0, s−1, . . . , s−k+1, s−k)
∗.

Let H = UL, so ∥H∥ = ∥L∥, and H, being a real Hankel matrix,
is symmetric. We will prove that vf and vl are two eigenvectors
corresponding to the two distinct positive eigenvalues ofH. Computing
the middle (k + 1) coordinate of Hvf we have

k∑
i=−k

lifi,

which equals 0 by identity (17). We use identity (18) to find that
coordinate k of Hvf is 5fkfk+1. Since the vector Hvf is an element of
B(−1, 1), the recursion rule determines the remaining coordinates and
we see that

Hvf = 5fkfk+1vf .

In exactly the same manner, we see from identity (19) that the k + 1
coordinate of Hvl is twice the k- coordinate, and identity (20) says the
k coordinate of Hvl is lklk+1. With these two coordinates established,
and equal to lklk+1 times the corresponding coordinates of vl, the
recursion rule then implies Hvl = lklk+1vl. Concerning when lklk+1 ≥
5fkfk+1, this is the content of identity (21). �

When the two non-zero singular values are equal, the general Schat-
ten p-norm is again some constant multiple of the Frobenous norm,
but with n odd, our Lucas matrix, with its distinct non-zero singular
values, has more interesting Schatten norms.

Corollary 5.5. Let n = 2k+1 be an odd integer, and let L denote our
n× n Lucas matrix. Then for all 1 ≤ p < ∞ we have

∥L∥p = (lpkl
p
k+1 + 5pfp

kf
p
k+1)

1/p.

6. The Fibonacci algebra. When n is even, the matricial identi-
ties obtained in Theorems 4.1 and 4.4 hint that, when a multiplication
is defined appropriately, there is an algebra structure on the set of
Toeplitz matrices generated by elements of B(1, 1) in which F is the
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identity and L2 = 5F . This is indeed the case, which we will be able
to exhibit after producing one more matrix identity.

Theorem 6.1. Assume n is even and F and L denote the n × n
Fibonacci and Lucas matrices. We have

LUF = FUL = fnL.

Proof. Calculating the upper left 2× 2 corner of L(UF ), we see the
equality of LUF = fnL from identities 22 and 24. These same identities
can be used to compute the lower right 2× 2 corner of F (UL). �

We are now able to assemble all of our matricial identities for even
n into one statement. Given two n × n matrices A and B, define a
multiplication ◦ by

A ◦B ≡ 1

fn
AUB.

Let A denote the two-dimensional linear span of F and L. If, instead
of usual matrix multiplication, we endow upon A the newly defined
multiplication ◦, then we have that

F ◦ (aF + bL) = (aF + bL) ◦ F = (aF + bL),

for all a, b ∈ C, and

(aF + bL) ◦ (cF + dL) = (ac+ 5bd)F + (ad+ bc)L,

which proves:

Theorem 6.2. The space A with the multiplication ◦ is a commutative
algebra with involutive element (1/

√
5)L and unit F , isomorphic to the

set of all complex matrices of the form(
a 5b
b a

)
.

7. Notes and remarks. Recently, the spectral norms for Hankel
Fibonacci and Lucas matrices were obtained in [1]. Their proof can
be used to infer that, unlike F and L, there are elements of A whose
non-zero singular values are not equal for any n. For example, their
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method reveals that the matrix

H = (fi+j)
n−1
i,j=0

has two distinct eigenvalues for all n, from which we see that

HU =

(
fn − fn−1

2

)
F +

fn−1

2
L

has distinct non-zero singular values for every n. Working in the other
direction, we find Hankel matrices whose singular norms equal those of
F and L by considering UF , FU , LU and UL.

In [14], the author obtains bounds for the spectral norms of circulant
matrices constructed from the Fibonacci and Lucas sequences. Today,
the exact values of the spectral norms are a consequence of a nice
theorem of Bani-Domi and Kittaneh [2].

Theorem 7.1 ([2]). If A1, A2, . . . , An are n × n matrices and M is
the n2 × n2 circulant matrix built with these operators, then

∥M∥ =
n−1
max
t=0

∥∥∥∥ n∑
j=1

ωk(1−j)Aj

∥∥∥∥,
with ω a primitive nth root of unity.

Corollary 7.2. If C is an n× n circulant matrix built upon the non-
negative real numbers a1, . . . an, then

∥C∥ =
n∑

i=1

ai.

Corollary 7.3. If Cf and Cl are the n × n circulant matrices built
upon the Fibonacci and Lucas sequences, then

∥Cf∥ =

n−1∑
i=0

fi = fn+1 − 1 and ∥Cl∥ =

n−1∑
i=0

li = ln+1 − 1.

In [13], the authors obtain loose bounds for spectral norms of r-
circulant matrices built with Fibonacci and Lucas numbers. Tight
bounds are likely to involve the growth of the “triangular truncation”
operator [7].
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ENDNOTES

1. In our version of [3] there is a typo: the square root seems to be
missing.
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