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WHEN THE UNIT, UNITARY AND TOTAL GRAPHS
ARE RING GRAPHS AND OUTERPLANAR

M. AFKHAMI, Z. BARATI AND K. KHASHYARMANESH

ABSTRACT. In this paper, we investigate when the unit,
unitary and total graphs are ring graphs, and also we study
the case that they are outerplanar.

1. Introduction. Let G be a graph with n vertices and q edges, and
let C be a cycle of G. A chord is any edge of G joining two nonadjacent
vertices in C. We say C is a primitive cycle if it has no chords. Also,
we say that a graph G has the primitive cycle property (PCP) if any
two primitive cycles intersect in at most one edge. Let frank (G) be the
number of primitive cycles of G. The number frank (G) is called the
free rank of G and the number rank (G) = q − n+ r is called the cycle
rank of G, where r is the number of connected components of G. The
cycle rank of G can be expressed as the dimension of the cycle space
of G. These two numbers satisfy rank (G) ≤ frank (G), as is seen in [6,
Proposition 2.2]. In [6], the authors studied and classified the family of
graphs where the equality occurs. This family is precisely the family of
ring graphs. The precise definition of a ring graph can be found in [6,
Section 2]. Roughly speaking, ring graphs can be obtained starting with
a cycle and subsequently attaching paths of length at least two that
meet graphs already constructed in two adjacent vertices. Also, they
showed that, for the graph G, the following conditions are equivalent:

(i) G is a ring graph,
(ii) rank (G) = frank (G),
(iii) G satisfies in PCP and G does not contain a subdivision of K4

as a subgraph.
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Clearly ring graphs are planar. In [6], the authors stated that the
blocks of graph G are important for calculating the numbers frank (G)
and rank (G). In fact, they proved the following lemma.

Lemma 1.1. [6, Lemma 2.4]. Let G be a graph, and let G1, . . . , Gr

be its blocks. Then rank (G) = frank (G) if and only if rank (Gi) =
frank (Gi), for all 1 ≤ i ≤ r.

In [6], the authors also showed that every outerplanar graph is a ring
graph. In this paper, for a graph G associated to a finite commutative
ring R, we study the situations under which G is a ring graph or an
outerplanar graph. In the second and third sections we study this
question for unit and unitary graphs, respectively. Finally, in the last
section, we provide conditions that the total graphs are ring graphs or
outerplanar.

Now, we review some background of graph theory from [5]. A vertex
v is called a cut vertex if the number of connected components in G\{v}
(a subgraph of G with removing the vertex v) is larger than that of G.
A maximal connected subgraph of G without cut vertices is called a
block. A graph G is 2-connected if n > 2, where n is the number
of vertices, and G has no cut vertices. Thus, a block of G is either
a maximal 2-connected subgraph, a bridge or an isolated vertex. By
their maximality, different blocks of G intersect in at most one vertex,
which is then a cut vertex of G. Therefore, every edge of G lies in a
unique block and G is the union of its blocks. An undirected graph is an
outerplanar graph if it can be drawn in the plane without crossings in
such a way that all of the vertices belong to the unbounded face of the
drawing. There is a characterization of outerplanar graphs that says a
graph is outerplanar if and only if it does not contain a subdivision of
the complete graph K4 or the complete bipartite graph K2,3. Clearly,
every outerplanar graph is planar. For a positive integer r, a graph
G is called r-regular if the degrees of all vertices are equal, where the
degree of a vertex v is the number of edges adjacent to v.

Throughout the paper, R is a finite commutative ring with non-zero
identity, and we denote the set of all unit elements and zero-divisor
elements of R, by U(R) and Z(R), respectively.
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2. Ring graphs and outerplanar unit graphs. The unit graph of
R, denoted by G(R), is the graph obtained by setting all the elements of
R to be the vertices and defining distinct vertices x and y to be adjacent
if and only if x + y ∈ U(R). By [3, Theorem 2.4], if 2 /∈ U(R), then
the unit graph G(R) is a |U(R)|-regular graph. Otherwise, for every
x ∈ U(R), we have deg (x) = |U(R)| − 1 and, for every x ∈ R \ U(R),
we have that deg (x) = |U(R)|.

First, we want to characterize all rings R such that G(R) is a ring
graph. Since a ring graph is planar, it is sufficient to focus on the planar
unit graphs. By [3, Theorem 5.14], we have that the unit graph G(R)
is planar if and only if R is isomorphic to one of the following rings:

(i) R ∼= Z5,
(ii) R ∼= Z3 × Z3,
(iii) R ∼= Z2 × · · · × Z2︸ ︷︷ ︸

ℓ

×S, where ℓ ≥ 0 and S ∼= Z2, S ∼= Z3,

S ∼= Z4, S ∼= F4, or S ∼=
{[

a b
0 a

]
| a, b ∈ Z2

}
.

Theorem 2.1. The unit graph G(R) is a ring graph if and only if R
is isomorphic to one of the following rings:

(i) R ∼= Z5,
(ii) R ∼= Z2 × . . .× Z2︸ ︷︷ ︸

ℓ

×S, where ℓ ≥ 0 and S ∼= Z2, S ∼= Z3,

S ∼= Z4, S ∼= F4 or S ∼=
{[

a b
0 a

]
| a, b ∈ Z2

}
.

Proof. First, we assume that G(R) is a ring graph. Since every
ring graph is planar, we have that G(R) is planar. Thus we have the
following cases:

Case 1. R ∼= Z5. The unit graph G(R) is pictured in Figure 1. One
can easily see that rank (G(R)) = frank (G(R)) = 4, so G(R) is a ring
graph.

Case 2. R ∼= Z3×Z3. In this case, by considering two cycles (1,0)-(1,2)-
(0,0)-(1,1)-(1,0) and (1,0)-(1,2)-(0,2)-(2,2)-(2,0)-(2,1)-(0,1)-(1,1)-(1,0),
we see that G(R) doesn’t satisfy PCP, so it is not a ring graph.
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Figure 1

Case 3. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ

×Z2, where ℓ ≥ 0. If ℓ = 0, then there

is nothing to prove. So we may assume that ℓ > 0. We have that
U(R) = {(1, 1, . . . , 1︸ ︷︷ ︸

ℓ

, 1)}. Since 2 /∈ U(R), G(R) is a 1-regular graph,

and so it is a perfect match. Thus q = r and n = 2q. Therefore,
rank (G(R)) = frank (G(R)) = 0, so in this situation, G(R) is a ring
graph.

Case 4. R ∼= Z2 × · · ·Z2︸ ︷︷ ︸
ℓ

×Z3, where ℓ ≥ 0. The case ℓ = 0 is clear.

Now, suppose that ℓ > 0. Since U(R) = {(1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, 1), (1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, 2)},

G(R) is a 2-regular graph. So G(R) is the union of primitive cycles. In
fact, every connected component of G(R) is a primitive cycle. There-
fore, we have that frank (G(R)) = r. Since q = n, one can conclude
that rank (G(R)) = r. So G(R) is again a ring graph.

Case 5. R ∼= Z2 × . . .Z2︸ ︷︷ ︸
ℓ

×Z4. We know that

U(R) = {(1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, 1), (1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, 3)}.

Since 2 /∈ U(R), G(R) is a 2-regular graph. Now, similar to Case 4, it
is easy to see that G(R) is a ring graph.

Case 6. R ∼= Z2 × · · ·Z2︸ ︷︷ ︸
ℓ

×F4. Consider the field F4 = {0, f1, f2, f3}.
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Figure 2

Since U(R) = {(1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, f1), (1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, f2), (1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, f3)}, G(R)

is a 3-regular graph. We also have char (F4) = 2. Thus, the sum of
each pair of distinct non-zero elements in F4 is non-zero. Therefore,
the vertex (a1, a2, . . . , aℓ, fi) is adjacent to (1−a1, 1−a2, . . . , 1−aℓ, fj)
for all ak ∈ Z2 and fi, fj ∈ F4, where 1 ≤ k ≤ ℓ and 1 ≤ i ̸= j ≤ 3.
So every component of G(R) has a form similar to that we show in the
following figure.

Also it is easy to see that every component of this graph is a block.
Now, by [6, Lemma 2.4], we must show that rank and free rank of
every component of G(R) are equal. In view of Figure 2, we have that
rank (Gi) = frank (Gi) = 5 for every component Gi of G(R). So in this
situation, G(R) is a ring graph.

Case 7. R ∼= Z2 × · · ·Z2︸ ︷︷ ︸
ℓ

×
{[

a b
0 a

]
| a, b ∈ Z2

}
. In this case, we have

that

U(R) =

{(
1, 1, . . . , 1︸ ︷︷ ︸

ℓ

,

[
1 0
0 1

])
,

(
1, 1, . . . , 1︸ ︷︷ ︸

ℓ

,

[
1 1
0 1

])}
.

Since 2 /∈ U(R), G(R) is a 2-regular graph. Similar to Case 3, G(R) is
a ring graph.

The converse statement follows easily. �
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Figure 3

Theorem 2.2. The unit graph G(R) is outerplanar if and only if R is
one of the following rings:

R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ

×S, where ℓ ≥ 0 and

S ∼= Z2, S ∼= Z3, S ∼= Z4 or S ∼=
{[

a b
0 a

]
| a, b ∈ Z2

}
.

Proof. Suppose that G(R) is outerplanar. Since an outerplanar
graph is a ring graph, we consider the unit graphs which are ring graphs.
By Theorem 2.1, we have the following cases.

Case 1. R ∼= Z5. In view of Figure 3, G(R) contains a subgraph
isomorphic to K2,3. Thus, it is not outerplanar.

Case 2. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ

×Z2, where ℓ ≥ 0. The case ℓ = 0 is clear.

If ℓ > 0, then G(R) is a perfect matching, so clearly it is outerplanar.

Case 3. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ

×S, where ℓ ≥ 0 and S ∼= Z3, S ∼= Z4 or

S ∼=
{[

a b
0 a

]
| a, b ∈ Z2

}
. In these cases, G(R) is a union of primitive

cycles, so G(R) is an outerplanar graph.

Case 4. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ

×F4. In view of Figure 4, one can find a

subdivision of K2,3 in G(R), and so G(R) is not outerplanar.
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Figure 4

Conversely, if

R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ

×S, where ℓ ≥ 0 and

S ∼= Z2, S ∼= Z3, S ∼= Z4 or S ∼=
{[

a b
0 a

]
| a, b ∈ Z2

}
,

then one can easily check that G(R) is outerplanar. �

3. Ring graphs and outerplanar unitary graphs. The unitary
graph GR = Cay (R,U(R)) is defined to be the graph whose vertex-
set is R, with an edge between x and y if x − y ∈ U(R). It is easy
to see that GR is a |U(R)|-regular graph. In this section, we provide
a characterization of all finite rings whose GR are ring graphs and
outerplanar. By [1, Theorem 8.2], GR is planar if and only if R is one
of the following rings:

Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

, Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z3, Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z4

and
Z2 × · · · × Z2︸ ︷︷ ︸

ℓ≥0

×F4.

Theorem 3.1. Let R be a finite ring. Then GR is a ring graph if and
only if GR is a planar graph.
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Proof. Since a ring graph is planar, it is sufficient to show that every
planar unitary graph is a ring graph. We have the following cases:

Case 1. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

. The case ℓ = 0 is clear. So we may assume

that ℓ > 0. Since U(R) = {(1, 1, . . . , 1︸ ︷︷ ︸
ℓ

)}, GR is a perfect matching.

So we have that frank (GR) = rank (GR) = 0. Therefore, GR is a ring
graph.

Case 2. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z3. We have that

U(R) = {(1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, 1), (1, 1, . . . , 1︸ ︷︷ ︸
ℓ

, 2)}.

Hence, GR is a 2-regular graph, and thus every connected component
of GR is a primitive cycle. Thus frank (GR) = r and we have that
q = n. Therefore, frank (GR) = rank (GR) = r, so GR is a ring graph.

Case 3. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z4. Similar to Case 2, one can see that

GR is a ring graph.

Case 4. R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×F4. Let F4 = {0, f1, f2, f3}. Since

fi − fj ̸= 0 for all 1 ≤ i ̸= j ≤ 3, we have that (a1, a2, . . . , aℓ, fi)
and (1 − a1, 1 − a2, . . . , 1 − aℓ, fj) are adjacent in GR, where ak ∈ Z2

and 1 ≤ k ≤ ℓ. So every connected component of the graph GR has a
similar form to that we show in the following figure.

It is easy to check that every component of this graph is a block of
graph. In view of Figure 5, we have that rank (Gi) = frank (Gi) = 5.
So in this case, GR is a ring graph. �

Theorem 3.2. The unitary graph GR is outerplanar if and only if R
is isomorphic to one of the following rings:

Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

, Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z3 and Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z4.

Proof. Since every outerplanar graph is a ring graph, we need to
check the outerplanarity of GR, whenever GR is a ring graph. By [1,
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Figure 5

Theorem 8.2] in conjunction with Theorem 3.1, we may assume that R
is isomorphic to one of the rings

Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

, Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z3, Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z4 or

Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×F4.

If R is one of the rings

Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

,Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×Z3 or Z2 × . . .× Z2︸ ︷︷ ︸
ℓ≥0

×Z4,

then GR is a 1-regular or a 2-regular graph. Thus GR is an outerplanar
graph.

If R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
ℓ≥0

×F4, then we can find a subdivision of K2,3

(see Figure 4). So GR is not outerplanar.

The converse statement follows easily. �

4. Ring graphs and outerplanar total graphs. The total graph
T (Γ(R)) is a graph with vertex-set R, and two distinct vertices a and b
are adjacent if and only if a+ b ∈ Z(R). In this section, we investigate
all finite commutative rings R such that their total graphs T (Γ(R)) are
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ring graphs and also outerplanar. If T (Γ(R)) is planar, then, by [7,
Theorem 1.5], we have the following cases:

(i) If R is a local ring, then R is a field or isomorphic to one of the
following rings:

Z4,
Z2[X]

(X2)
,
Z2[X]

(X3)
,
Z2[X,Y ]

(X,Y )2
,

Z4[X]

(2X,X2)
,

Z4[X]

(2X,X2 − 2)
, Z8,

F4[X]

(X2)
,

Z4[X]

(X2 +X + 1)
.

(ii) If R is non-local, then R is isomorphic to the ring Z2 × Z2 or
Z6.

Theorem 4.1. The total graph T (Γ(R)) is a ring graph if and only if
one of the following statements hold :

(i) If R is a local ring, then R is a field or isomorphic to one of
the rings Z4 or Z2[X]/(X2).

(ii) If R is non-local, then R is isomorphic to Z2 × Z2.

Proof. First suppose that T (Γ(R)) is a ring graph. Therefore, it is
planar. Now we have the following cases:

Case 1. R is local. Then, by [7, Theorem 1.5(a)], R is a field or it is
isomorphic to one of the following rings:

Z4,
Z2[X]

(X2)
,
Z2[X]

(X3)
,
Z2[X,Y ]

(X,Y )2
,

Z4[X]

(2X,X2)
,

Z4[X]

(2X,X2 − 2)
, Z8,

F4[X]

(X2)
,

Z4[X]

(X2 +X + 1)
.

Since R is finite, every non-unit element is a zero-divisor. Moreover,
Z(R) is the maximal ideal of R. Now, if 2 /∈ Z(R), then since T (Γ(R))
is planar, by [2, Theorem 2.2 (2)], we have that |Z(R)| 6 2. Since
|R| ≤ |Z(R)|2, R is either a ring of order 4 or is a field, so T (Γ(R)) is
a ring graph.

Suppose that 2 ∈ Z(R). If |Z(R)| = 1, then R is a field. Hence
T (Γ(R)) is totally disconnected, so it is a ring graph. Otherwise
|Z(R)| > 1. Since T (Γ(R)) is planar, by [2, Theorem 2.2 (1)], we
have that |Z(R)| 6 4. Also, since 2 ∈ Z(R), |R| = 2k. Thus,
|R| = 2, 4, 8 or 16. According to [4], there are two non-isomorphic
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rings of order 16 with maximal ideals of order 4, namely, F4[X]/(X2)
and Z4[X]/(X2 +X + 1). In these rings we have T (Γ(R)) ∼= 4K4 and
every block of T (Γ(R)) is K4. Since rank (K4) ̸= frank (K4), we have
that the numbers rank and frank of these graphs are not equal, which
means that they are not ring graphs.

In [4] it is also shown that the local rings of order 8 with |Z(R)| = 4
are isomorphic to one of the following rings

Z2[X]

(X3)
,
Z2[X,Y ]

(X,Y )2
,

Z4[X]

(2X,X2)
,

Z4[X]

(2X,X2 − 2)
, Z8.

In these rings we have that T (Γ(R)) ∼= 2K4, and so their ranks and
free ranks are not equal. Hence, they are not ring graphs.

In the remaining two rings Z4 and Z2[X]/(X2), we have T (Γ(R)) ∼=
2K2, and therefore they are ring graphs.

Case 2. R is non-local. Then, since T (Γ(R)) is planar and R is finite, by
[7, Theorem 1.5(b)], we have that R is isomorphic to the ring Z2 ×Z2

or Z6. If R ∼= Z6, then T (Γ(R)) contains a subdivision of K4, so it is
not a ring graph. In the case that R ∼= Z2×Z2, we have T (Γ(R)) ∼= C4,
which is a ring graph.

Conversely, it is easy to see that if one of the parts (i) or (ii) holds,
then T (Γ(R)) is a ring graph. �

Theorem 4.2. T (Γ(R)) is outerplanar if and only if R is a field or
isomorphic to one of the rings Z4, Z2[X]/(X2) or Z2 × Z2.

Proof. Assume that T (Γ(R)) is outerplanar. Since outerplanar
graphs are ring graphs, by Theorem 4.1, R is isomorphic to one of
the rings Z4, Z2[X]/(X2), Z2 × Z2 or R is a field. For two rings
Z4 and Z2[X]/(X2), we have T (Γ(R)) ∼= 2K2, and therefore they are
outerplanar. Also, T (Γ(Z2 ×Z2)) ∼= C4 which is outerplanar. If R is a
field, then T (Γ(R)) is the union of a totally disconnected graph and a
perfect matching, which is outerplanar.

The converse statement follows easily. �
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