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∗-MAXIMUM LATTICE-ORDERED GROUPS

ANTHONY W. HAGER

ABSTRACT. The category W is archimedean l-groups G
with distinguished weak order unit eG, with unit-preserving
l-group homomorphisms. For G in W , G∗ denotes the convex
sub-l-group generated by eG. If G satisfies [any isomorphism
of H∗ with G∗ extends to an embedding of H in G], then G
is called ∗-maximum. (H∗ and G∗ are isomorphic if and only
if the unit intervals [0, eH ] and [0, eG] are isomorphic MV-
algebras.) This paper analyzes the property “∗-maximum”:
Several characterizations are given. It is shown that any ∗-
maximum G has quasi-F Yosida space; this applies to prove a
conjecture of the author and J. Martinez about “rings of ω1-
quotients.” It is shown that each G in W has a ∗-maximum
hull, and this hull is described.

1. Introduction. We describe our problem with some points
of motivation, background necessary to state the main results, then
summarize these main results in subsection 1.4 below.

W is the category of archimedean l-groups G with a distinguished
positive weak order unit eG (meaning e⊥G ≡ {g : |g| ∧ eG = 0} = {0}),
and morphisms G

ϕ→ H the l-group homomorphisms with ϕ(eG) = eH .
All terms like embedding, isomorphism, etc., refer to W unless another
context is clear.

For G ∈ |W |, G∗ ≡ {g ∈ G : ∃n ∈ N � |g| ≤ neG}, the convex sub-l-
group generated by eG; G

∗ ∈ |W | also. Let W ∗ = {G ∈ |W | : G∗ = G};
this is the full subcategory of W of those G in which eG is a strong
unit. We have a functor ∗ : W →W ∗.

Definition 1.1. Let G ∈ |W |. G is ∗-maximum (abbreviated ∗-max)
if, whenever H ∈ |W |, and there is an isomorphism ϕ : H∗ ≈ G∗, then
there is an embedding ϕ : H ≤ G with ϕ|H∗ = ϕ.
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This kind of issue is natural for any functor C F→ D. Let C F→ D be any
(covariant) functor. For D ∈ |D|, let F−1(D) = {C : F (C) � D}, and
say that C is maximum in F−1(D) if [C ∈ F−1(D) and C′ ∈ F−1(D)
implies that C′ embeds into C]. Say that C is F -max if C is maximum
in F−1(FC). It is not hard to see that: if F has a right adjoint C ←

R
D,

then [C is F -max if and only if C ∈ R(D)]. When F has no right
adjoint, there still may be an operator C ←

ρ
D with ρ(D) = F -max,

representing some sort of “right pseudo-adjoint” to F . This will be
seen to be the case for ∗ : W →W ∗.

(In passing, we shall also treat the stronger property of an object C
with respect to the functor F : C is “F -unique” if [C′ ∈ F−1FC implies
C′ ≈ C]).

A somewhat different impetus for Definition 1.1 comes from the
theory of MV-categories [4]. If A is an abelian l-group with strong unit
eA, then the unit interval [0, eA] in A with natural operations is an
MV-algebra (Chang), and for every MV-algebra M there is a unique
A with [0, eA] ≈ M (Mundici). Consequently, for G ∈ |W |, [0, eG]
determines G∗. To say that G is ∗-max is to say that G∗ determines
G, and thus is to say that [0, eG] determines G.

Our analysis of ∗-max will be rooted in the Yosida representation for
W , which will be coupled with various topological ideas:

Let X be a Tychonoff space, R the reals, [−∞,+∞] = R ∪
{±∞} with the obvious topology and order, and let D(X) = {f ∈
C(X, [−∞,+∞]) : f−1R dense in X}. D(X) contains all constant
functions, is a lattice (f ≤ g defined point-wise on X), and has the
partial addition (f + g = h means f(x) + g(x) = h(x) if all three are
real). The addition is not fully defined, i.e., given f, g there may be no
h: for X = [0,+∞], let f(x) = x and g(x) = −x+ sinx.

The space X is a quasi-F space if each dense cozero-set is C∗-
embedded in X . (See [6, 7] about cozero-sets and C∗-embeddings.)
The following simple fact is important to us.

Proposition 1.2 [17]. In D(X), + is fully defined (whence D(X) is
a group, and an l-group) if and only if X is quasi-F.
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In spite of Proposition 1.2, for any X , G ⊆ D(X) is called a W -object
in D(X), and we write G ≤ D(X), if G is a sublattice, closed under +
and − in D(X), and 1 ∈ G. For example, C(X) ≤ D(X). We follow
[15] in the description of the Yosida Representation.

For G ∈ |W |, Y G denotes the set of values of eG with the hull-
kernel topology. (A value of eG is a convex sub-l-group M maximal for
eG /∈M .)

Theorem 1.3 (Objects). Let G ∈ |W |. Then Y G is compact

Hausdorff and there is an isomorphism G ≈ Ĝ ≤ D(Y G) for which:
êG = 1; if E and F are disjoint closed sets in Y G, then there is g ∈ G
with ĝ = [1 on E; 0 on F ].

If G ≈ G ≤ D(X) is another isomorphism with all these properties,

then there is a homeomorphism X
τ→ Y G for which g = ĝ ◦ τ for all

g ∈ G.

(Morphisms). Let G
ϕ→ H ∈ W . There is a unique continuous

Y G
Yϕ← Y H, for which ϕ̂(g) = ĝ ◦ Y ϕ for all g ∈ G. If ϕ is onto, then

Y ϕ is one-to-one (and not conversely); ϕ is one-to-one if and only if
Y ϕ is onto.

This defines a (contravariant) functor Y : W → Comp (compact
Hausdorff spaces).

Henceforth, we identify each G ∈ |W | with its Yosida representation
and just write G ≤ D(Y G). Now the unit eG becomes 1, and for
n ∈ Z, neG becomes n; and G∗ becomes {g ∈ G : g is bounded }. The
representation G ≤ D(Y G) restricts to G∗ ≤ D(Y G) which satisfies
Theorem 1.3, so that Y G∗ = Y G. Thus, the functor Y : W → Comp
factors as Y = ∗ ◦ (Y |W ∗). The paradigm “F -max” described in
Theorem 1.1 applies to Y (mutatis mutandis: Y is contravariant), and
evidently, if G is Y -max then G is ∗-max. Y -max will be dealt with in
Section 2, on the way to ∗-max.

The following represents a fairly complete trek through the principal
constructions and results of the paper. The proof will come in pieces,
as indicated.
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Theorem 1.4. (I) The following are equivalent about G.

(1) G is ∗-max.

(2) (Section 3). If f ∈ D(Y G)+ has the property that f ∧ k ∈ G for
all k ∈ N, then f ∈ G.

(3) (Section 4). If S is a dense cozero-set in Y G, and f ∈ C(S) is
locally in G on S, then f extends over Y G to a g ∈ G.

(4) (Section 10). Any sequence (un) in G+ for which un+1 ∧ n = un

for all n and
⋂

n(un+1 − un)
⊥⊥ = {0}, has the supremum in G.

(II) (Section 7). If G is ∗-max, then Y G is quasi-F, and if also G is
divisible, then G is uniformly dense in D(Y G).

(III) (Section 8). Each G ∈ |W | has an extension lG which is
minimum among essential ∗-max extensions of G. The Yosida space
Y lG is the minimum quasi-F cover of Y G.

(Essential extensions of l-groups, and covers of spaces, are reviewed
in Section 8.)

Condition (I) (4) above is a purely order algebraic characterization of
∗-max (as opposed to (2) and (3)). Similar characterizations of some
related classes follow (Section 10).

The proof of (II) above involves some rather delicate theorems (Sec-
tion 6) about approximating real-valued functions, in roughly the vein
of the Stone-Weierstrass theorem. This leads to (III) above, which (it
turns out) proves a conjecture about “rings of ω1-quotients” from [13,
Section 9].

2. Y -max and Y -unique. We shall prove the following two
theorems, along the way to the main objective, ∗-max.

Theorem 2.1. G is Y -max if and only if G = D(Y G) (whose last
condition entails Y G quasi-F).

Theorem 2.2. G is Y -unique if and only if G = {0}.
The proofs of Theorems 2.1 and 2.2 will employ the following lemma

(which also will find use later in the paper). Convenient notation is:
in a lattice D with subset B, mB stands for all meets in D of finite
subsets of B, and similarly, jB using joins.



∗-MAXIMUM LATTICE-ORDERED GROUPS 1905

Lemma 2.3. For any X :

(a) if A is a group in C∗(X), and f ∈ D(X)+, then A + Z · f is a
group in D(X).

(b) [10, Theorem 1 (D)]. If B is a group in D(X), then jmB is an
l-group in D(X).

Proof. (a) Any a+mf (a ∈ A) is real on f−1(R) (since a is bounded),
and extends over f−1(R) ∪ f−1(+∞) = X with value +∞ (since a
is bounded). So A + Z · f ⊂ D(X). And, (a + mf) + (b + nf) =
(a+ b) + (m+ n)f . So, A+ Z · f is a group in D(X).

(b) See [10]. (This is more work than (a).)

Corollary 2.4. Let G ∈ |W | and f ∈ D(Y G)+. Then, Hf ≡
jm(G∗ + Z · f) is a W -object with Y Hf = Y G and f ∈ H.

Proof. Use Lemma 2.3 (a), with X = Y G and A = G∗, then Lemma
2.3 (b) with B = G∗ + Z · f . Thus Hf is an l-group in D(Y G). Since
1 ∈ G∗ ⊆ Hf , Hf ∈ |W |, and since G∗ separates points of Y G, so does
Hf . Thus, Y Hf = Y G.

Proof of Theorem 2.1. If D(X) is an l-group (i.e., X is quasi-F), it is
obviously the largest l-group in D(X). Thus, G = D(Y G) implies G is
Y -max.

Suppose G is Y -max. If f ∈ D(Y G)+, and Hf is as in Corollary 2.4,
then f ∈ Hf ⊆ G. Thus, for any f ∈ D(Y G), f = f+ − f− and f+

and f− ∈ G, so f ∈ G.

Proof of Theorem 2.2. {0} is Y -unique, since the only G ∈ |W | with
Y G = Y {0} = ∅ is G = {0}.
Suppose G is Y -unique. First note that G = C(Y G) (since Y G =

Y G∗. Thus, G = G∗ ≤ C(Y G), and Y C(Y G) = Y G). We now show
that G �= {0} implies G is not Y -unique, by showing that C(X) is not
Y -minimum, thus not Y -unique.

Case (i). X is finite. Then C(X) = Rn, while Y Zn = X also.
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Case (ii). X is infinite. Then, X has a non-P point p, which means
there is f0 ∈ C(X) which is constant on no neighborhood of p. (See
[7].) Let CK(X − {p}) be the functions of compact support on the
locally compact space X − {p}, and let H = jm(CK(X − {p}) +Z · 1)
within C(X). By Lemma 2.3, H is an l-group in C(X). Since 1 ∈ H ,
and H evidently separates the points of X , Y H = X . Visibly, any
h ∈ H is constant on a neighborhood of p, so f0 /∈ H , so H �= C(X).

Remark 2.5. We just showed that for compact Hausdorff X �= ∅,
C(X) is not Y -minimal. On the other hand, if such X also has a base
of clopen sets (“X is Boolean”), then C(X,Z) is even Y -minimum.
(Proof. If G ∈ |W | and U is clopen in Y G, then Theorem 1.3 implies
that the characteristic function of U is in G.) We have nothing further
to say now about Y -min (or ∗-min).

3. ∗-max, I: Truncations.

For G ∈ |W |, we set TruncG = {f ∈ D(Y G)+ : f ∧ k ∈ G for all
k ∈ N}. We shall prove Theorem 3.1 below (which is Theorem 1.4 I
(1) ⇔ (2)). This is one of the principal technical tools of this paper.

Theorem 3.1. G is ∗-max if and only if TruncG ⊆ G.

The following, Proposition 3.2, stands in analogy with Corollary 2.4
and constitutes most of the proof of Theorem 3.1. We shall derive
Theorem 3.1 from Proposition 3.2, then prove Proposition 3.2 (which
is somewhat involved).

Proposition 3.2. Let G ∈ |W | and u ∈ D(Y G)+. Then, Tu ≡
jm(G∗ + Z · u) is a W -object, with Y Tu = Y G and u ∈ Tu. The
following are equivalent.

(a) u ∈ TruncG.

(b) T+
u ⊆ TruncG.

(c) T ∗u = G∗.

Proof of Theorem 3.1. Suppose G is ∗-max, and u ∈ TruncG. By
Proposition 3.2, T ∗u = G∗, so by ∗-max, Tu ⊆ G. Thus, u ∈ G. Suppose
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TruncG ⊆ G, and H has H∗ = G∗. Thus, Y H = Y G, so H ≤ D(Y G).
If h ∈ H+, then for all k h∧ k ∈ H∗ = G∗, so h ∈ TruncG ⊆ G. Thus,
H+ ⊆ G, and H ⊆ G.

The proof of Proposition 3.2 involves various technical lemmata,
which in turn involve the idea “locally in” (which will re-surface in
a serious way in Section 5). For G ∈ |W | and w ∈ D(Y G), we say “w
is locally in G∗” if, for each p ∈ Y G, there is a neighborhood Up and
gp ∈ G∗ for which g | Up = w | Up.

Lemma 3.3 [15, 5.5 (a)]. Let G ∈ |W |. If w ∈ D(Y G) is locally in
G∗, then w ∈ G∗.

Proof. It suffices to prove this for w ≥ 0. By compactness of Y G,
there is a finite open cover {Ui} of Y G and {gi} ⊆ G+ with gi = fi
on Ui for all i. So, w is bounded, say w ≤ b ∈ N. By [6, page
44], there is another open cover {Wi} on the same index set with
W i ⊆ Ui for all i. There is, for all i, ui ∈ Gi with 0 ≤ ui ≤ 1
and ui = [1 on Wi; 0 on Y G− Ui]. Then w =

∨
gi ∧ (bui).

Notation used below: For u ∈ D(X), {u ≤ k} = {p ∈ X : u(p) ≤ k}.
Similarly with <.

Lemma 3.4. Suppose G ∈ |W | and u ∈ D(Y G)+. Then, u ∈
TruncG if and only if for all k there exists g ∈ G with g = u on {u ≤
k}.
Proof. ⇒. u ∧ k = u on {u ≤ k}.
⇐. Suppose the condition, take k; we show u ∧ k ∈ G. There is

g ∈ G with g = u on {u ≤ k}. Thus, g ∧ k = u ∧ k on {u < k + 1} and
g ∧ k ∈ G∗. And, u ∧ k = k on {u > k} and k ∈ G∗. Thus, u ∧ k is
locally in G∗, so in G∗, by Lemma 3.3.

Lemma 3.5. Let G ∈ |W |.
(a) TruncG is a sublattice of D(Y G)+.

(b) Fix u ∈ D(Y G)+. Then, Lu ≡ {f ∈ D(Y G)+ : for all k ∈
N there exists g ∈ G with f = g on {u ≤ k}} is a sublattice of
D(Y G)+, closed under + and multiplication by positive integers.
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Proof. Let ∗ denote either ∧ or ∨, or in (b), +.

(a) (f1 ∗ g2) ∧ k = (f1 ∧ k) ∗ (g2 ∧ k) on {u ≤ k}.
(b) If fi = gi on {u ≤ k}, then f1 ∗ f2 = g1 ∗ g2 on {u ≤ k}, and if

gi ∈ G, then g1 ∗ g2 ∈ G.

Lemma 3.6. Let G ∈ |W |. If u ∈ TruncG, then T+
u ⊆ Lu. (Tu is

from Proposition 3.2, Lu from Lemma 3.5.)

Proof. u ∈ Lu by Lemma 3.4. Knowing that, Lemma 3.5 (b) gives
the conclusion.

Proof of Proposition 3.2. Tu is a W -object, etc., by Corollary 2.4.
For the equivalence: (b) ⇒ (c). If 0 ≤ h ∈ T ∗u , then there is k ∈ N
with h ≤ k, so h = h ∧ k. By (b), h ∈ TruncG, so h ∧ k ∈ G.

(c) ⇒ (a). u ∈ Tu, so any u ∧ k ∈ T ∗u . Apply (c).

(a) ⇒ (b). (This is the hard part, and the point of all the lemmas.)
Let h ∈ T+

u , so 0 ≤ h =
∨

i

∧
j(gij + ziju) (finite ∨ and ∧; g’s

∈ G, z’s ∈ Z). Put hi =
∧

j(gij + ziju). So, h = h ∨ 0 =
(
∨

i hi) ∨ 0 =
∨

i(hi ∨ 0). By Lemma 3.5 (a), it suffices that each
hi ∨ 0 ∈ TruncG. Consider such an expression (suppressing some
indices) h ∨ 0 = [

∧
(gj + zju)] ∨ 0 =

∧
[(gj + zju) ∨ 0]. By Lemma

3.5 (a), it suffices that each (gj + zju) ∨ 0 ∈ TruncG. We prove this
next.

Consider an expression (suppressing indices) g + zu, fix k ∈ N, and
let w = [(g+zu)∨0]∧k. If z = 0, then obviously w ∈ G. For z �= 0, we
show w is locally in G∗, and apply Lemma 3.3. Suppose z < 0. There is
n0 such that, on the set {n0 < u}, we have successively, g + zu < 0, so
(g+zu)∨0 = 0, so [(g+zu)∨0]∧k = 0. On the other hand, Lemma 3.6
applied to w says: there is g′ ∈ G for which w = g′ on {u ≤ n0 + 1}.
Thus, w is locally in G∗ (via the cover {{u < n0 + 1}, {n0 < u}}), so
w ∈ G∗ by Lemma 3.3. The case z > 0 is similar.

(It is not the case that u ∈ TruncG implies Lu ⊆ TruncG. If it were,
the computation in (a) ⇒ (b) above could be avoided. An example of
Lu �⊆ TruncG is: Let αN be the one-point compactification of discrete
N, G = {g ∈ C(αN) : range g is finite}, and let u ∈ D(αN) be
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defined by u(n) = n. So u ∈ TruncG. Then f(n) = 1/n has f ∈ Lu,
f /∈ TruncG.)

See [14] for a discussion of the following. G ∈ |W | is called uniformly
complete if, whenever f ∈ D(Y G) and there is (gn) in G with gn → f
uniformly over Y G, then f ∈ G. (This is easily translated into an
intrinsic order-algebraic statement about G of the form “Every Cauchy
sequence has a limit.”) Using the Stone-Weierstrass theorem (see
Section 6 here, if needed), one sees: Divisible G is uniformly complete
if and only if G∗ = C(Y G). Thus,

Corollary 3.7. G is divisible, uniformly complete, and ∗-max if
and only if G = D(Y G) (whose last condition entails Y G quasi-F, by
Proposition 1.2).

Proof. If G = D(Y G), then obviously: G is divisible; G is uniformly
complete since G∗ = C(Y G); G is ∗-max since TruncG ⊆ G.

If G∗ = C(Y G) and Trunc ⊆ G, then obviously G = D(Y G).

In Section 9, we will convert Corollary 3.7 to a purely order-algebraic
characterization of the W -objects of the form D(Y ).

4. Ubiquitous truncations; ∗-unique. Our principal observation
here is Theorem 4.2, which illustrates how large TruncG is, and which
is essential to subsequent sections. An immediate corollary is the
characterizations of ∗-uniqueness in Corollary 4.3.

Lemma 4.1. Let S be a cozero-set in the (arbitrary) space X. Then,
there are closed sets K1,K2, . . . with Kn ⊆ intKn+1 for all n and
S =

⋃
n Kn.

Proof. For S = coz f with 0 ≤ f ≤ 1, let Kn = f−1[(1/n), 1].

Theorem 4.2. Let G ∈ |W |. If S is any dense cozero-set in Y G,
then: whenever S =

⋃
n Kn as in Lemma 4.1, there is u ∈ TruncG

with u ≥ n on YG −Kn and u−1R = S.

(Thus, if G is ∗-max, the family G−1R ≡ {g−1R : g ∈ G ≤ D(Y G)}
consists of all dense cozero-sets of Y G).
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Proof. G∗ 0-1 separates the closed sets of Y G. So, for all n ≥ 2, there
exists gn ∈ G with 0 ≤ gn ≤ 1 and gn = [0 on Kn−1; 1 on X− intKn].
Define u ∈ D(X) as:

u(x) =

[∨
n

ngn(x) if x ∈ S; +∞ if x /∈ S

]
.

We have (+) On any Kn, only g2, . . . , gn are non-zero, so on Kn,
u = 2g2 ∨ · · · ∨ ngn. This implies u−1R = S, and continuity of u on
S =

⋃
n intKn. Also, u ≥ ngn for all n, so u ≥ n on Y G − Kn, and

u is continuous at points x /∈ S. So we have u ∈ D(Y G). Finally, (+)
implies that on {x : u(x) ≤ x}, u = 2g2 ∨ · · · ∨ (k + 1)gk+1 ∈ G. By
Lemma 3.4, u ∈ TruncG.

Recall that a space is called “almost P” if it has no proper dense
cozero-sets [21]. (A space is P if all cozero-sets are closed [7].)

Corollary 4.3. For G ∈ |W |, the following are equivalent.

(1) G is ∗-unique.
(2) G is ∗-max and G = G∗.

(3) Every function in TruncG is bounded.

(4) Y G is almost P .

Proof. (1) ⇔ (2). Clear.

(2) ⇒ (3). Use Theorem 3.1.

(3) ⇔ (4). Use Theorem 4.2.

(4) ⇒ (1). Suppose (4). Then G = G∗ (since g ∈ G−G∗ would have
g−1R proper dense cozero). Suppose H∗ = G∗. Then, Y H = Y G,
which is almost P , so H = H∗, and then H∗ = G∗ = G.

In Section 9, we add an order-algebraic condition to the list in
Corollary 4.3.

5. ∗-max, II: local on dense cozeros. The result of this section
is Theorem 5.3 (which is Theorem 1.4 I ((1) ⇔ (3))). This is crucial
to the proof in Section 7 that G ∗-max implies Y G quasi-F and to the
construction in Section 8 of ∗-max hulls.
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We formalize some notation.

Definition 5.1. Let G ∈ |W |, and let dcozY G stand for the family
of all dense cozero-sets of Y G. Let S ∈ dcozY G.

f ∈ loc (G,S) means: f ∈ C(S) and f is locally in G on S, i.e., for all
p ∈ S there exists an open Up � p and there exists gp ∈ G with gp = f
on Up.

loc (G,S) ⊆ G means: for all f ∈ loc (G,S) there exists g ∈ G with
g = f on S, i.e., f extends over Y G to a function g ∈ G.

Proposition 5.2. Let G ∈ |W | and S ∈ dcozY G. These are
equivalent.

(a) f ∈ loc (G,S).

(b) There are u1, u2 ∈ TruncG, with each u−1i R ⊇ S, and f(x) =
u1(x)− u2(x) for all x ∈ S.

We shall prove Proposition 5.2 below. It quickly implies our theorem.

Theorem 5.3. G is ∗-max if and only if loc (G,S) ⊆ G for each
S ∈ dcozY G.

Proof. We use Theorem 3.1, of course.

Suppose TruncG ⊆ G, S ∈ dcozY G, and f ∈ loc (G,S). Choose
u1, u2 ∈ TruncG by Proposition 5.2. Then u1, u2 ∈ G, so u1 − u2 ∈ G,
and f extends from S over Y G to u1 − u2.

Suppose loc (G,S) ⊆ G for all S, and u ∈ TruncG. Then, f ≡
u|u−1R ∈ loc (G, u−1R) by Proposition 5.2 (using S = u−1R, u1 = u
and u2 = 0), so f extends over Y G to a function in G and that function
is obviously u: u ∈ G.

We now prove Proposition 5.2.

Lemma 5.4. Let G ∈ |W |.
(a) loc (G,S) is a sub-W -object of C(S) for all S ∈ dcozY G.
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(b) If S1, S2 ∈ dcozY G, S1 ⊇ S2 and f ∈ loc (G,S1), then f | S2 ∈
loc (G,S2).

(c) If u ∈ TruncG, then u | u−1R ∈ loc (G, u−1R).

Proof. (a) Suppose for i = 1, 2, fi ∈ loc (G,S) witnessed by
{U i

p}, {gip}. Then, {U1
p ∩ U2

p}, {g1p ⊗ g2p} witnesses f1 ⊗ f2 ∈ loc (G,S),
for ⊗ = +,−,∨,∧. Clearly, 1 is a weak unit in loc (G,S).

(b) If f ∈ loc (G,S1) is witnessed by {Up}, {gp}, then {Up ∩S2}, {gp}
witnesses f |S2 ∈ loc (G,S2).

(c) If u ∈ TruncG, then the cover {u−1[0, k) : k = 1, 2, . . .}, with the
functions {u ∧ k} witness the conclusion of (c).

Proof of Proposition 5.2. ((b)⇒ (a)). If ui ∈ TruncG and u−1i R ⊇ S,
then fi | S ∈ loc (G,S) by Lemma 5.4 (b) and (c). By Lemma 5.4 (a),
f1 | S − f2 | S ∈ loc (G,S), which is the conclusion.

More lemmas are needed for Proposition 5.2 ((a) ⇒ (b)).

Lemma 5.5. Let G ∈ |W |. If u1, u2 ∈ TruncG, then u1 + u2 ∈
TruncG.

Proof. Use Lemma 3.4: Let k ∈ N. There are g1, g2 ∈ G with ui = gi
on {ui ≤ k} since ui ≥ 0, {u1 + u2 ≤ k} ⊂ {u1 ≤ k} ∩ {u2 ≤ k} and,
on the latter, u1 + u2 = g1 + g2.

Lemma 5.6. Let G ∈ |W |, S ∈ dcozY G, and f ∈ RS. The following
are equivalent.

(a) f ∈ loc (G,S).

(b) There is a countable open cover {Un} of S, and {gn} ⊆ G∗ with
f = gn on Un for all n.

(c) For each compact K ⊆ S, there is open U ⊇ K and g ∈ G∗ with
f = g on U .

Proof. (c) ⇒ (b). For each p ∈ S, apply (c) to K = {p}, creating
{Up} and {gp}, and take a countable subcover of {Up}. (S is σ-compact,
thus Lindelöf.)
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(b) ⇒ (a). Obvious.

(a) ⇒ (c). Suppose f ∈ loc (G,S), witnessed by {Up} and gp. Since
f is continuous with f(p) ∈ R, there is open Vp with p ∈ Vp and
compact V p ⊆ Up, and n(p) ∈ N with |f | ≤ n(p) on Vp. Thus
hp ≡ gp ∧ n(p) ∈ G∗ and f = hp on Vp. Now take compact K ⊆ S.
Then, K ⊆ ⋃

Vp(i) for finite {Vp(i)}. Let L =
⋃
V p(i) (which is

compact), and consider H ≡ the set of restrictions G∗ | K : H ∈ |W |,
H = H∗ and Y H = K. We have f = hp(i) on Vp(i) ∩K for all i.

This shows f | L is, per Lemma 3.3, locally in H , and thus in H ,
which means there exists g ∈ G∗ with f = g on L. So, U =

⋃
Vp(i) has

f = g on U .

Lemma 5.7. Let G ∈ |W |, S ∈ dcozY G, and f ∈ loc (G,S)∗. There
is u ∈ TruncG with u−1R = S and u+ f ∈ TruncG.

Proof. We apply Proposition 5.2: As there, write S =
⋃
Kn and

take u ∈ TruncG with u−1R = S and u ≥ n on Y G −Kn. We claim
u+ f ∈ TruncG.

Let n ∈ N. We show that there is open Un ⊇ Kn and gn ∈ G∗ for
which (u+ f)∧n = [gn on Un; n on Y G−Kn]. Then (u+ f)∧n ∈ G∗

will follow by Lemma 3.3. Note that u ∈ loc (G,S) by Lemma 5.4 (c).
Apply Lemma 5.6 (c) to each of f and u: there are open Un ⊇ Kn, and
g′n, g′′n ∈ G∗ with g′n = f , and g′′n = u on Un; let gn = g′n + g′′n. Now, on
Y G−Kn, we have un ≥ n, so u+ f ≥ n, and (u+ f) ∧ n = n.

Proof of Proposition 5.2. ((a) ⇒ (b)). Let f ∈ loc (G,S), write
f = f+ − f− (f+ = f ∨ 0, f− = (−f) ∨ 0), so f+, f− ∈ loc (G,S)+

by Lemma 5.4 (a). By Lemma 5.7, there are u, v ∈ TruncG with
u−1R = v−1R = S and each of u + f+ ≡ u0, v + f− ≡ v0 are in
TruncG. So, u0+ v, v0+u ∈ TruncG by Lemma 5.5. Note that u−10 R,
v−10 R ⊇ S. So, on S,

f = f+ − f− = (u0 − u)− (v0 − v) = (u0 + v)− (v0 + u).

6. Local/global approximations of real-valued functions. The
purpose for this paper of the material in this section is to prove: if G
is ∗-max, then Y G is quasi-F. We get to that in the next section; the
approach seems sufficiently interesting to isolate it here in Section 6.
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For h ∈ C∗(S), βh ∈ C(βS) is the unique continuous extension of
h. For H ⊆ C∗(S), βH = {βh : h ∈ H}. Let H ≤ C∗(S). We
repeat part of Lemma 5.6: f ∈ loc (H,S) means f ∈ C(S) and, there
is a countable open cover {Un} of S and countable {hn} ⊆ H with
[hn = f on Un for all n]. Then by Lemma 5.4, loc (H,S) ≤ C(S), and
loc (H,S)∗ ≤ C∗(S). We emphasize “countable” here.

We shall state the results, then prove them. Various remarks follow
the proofs.

Theorem 6.1. Suppose S is locally compact and σ-compact. If
H ≤ C∗(S) separates points and closed sets in S, then βloc (H,S)∗

separates points in βS.

Theorem 6.2. For any S: If H ≤ C∗(S), and H is uniformly dense
in C∗(S), then loc (H,S) is uniformly dense in C(S).

Theorem 6.3 (Stone-Weierstrass [24]). Suppose S is compact. If
K ≤ C(S) separates points of S and K is divisible, then K is uniformly
dense in C(S).

Corollary 6.4. Suppose S is locally compact and σ-compact. If
H ≤ C∗(S) separates points and closed sets of S, and H is divisible,
then loc (H,S) is uniformly dense in C(S).

Proof of Theorem 6.1. Write S = u−1R for u ∈ D(βS). (Since S is
locally compact, S is open in βS, and since S is σ-compact, S is Fσ in
βS. Thus, S is cozero in βS, since βS is normal. Write S = coz f for
f ∈ C(βS)

+, and let u = [1/f on S; +∞ on βS − S]. (See [6].)

For n ∈ N, let Un = {x ∈ S : n − 4 < u(x) < n} and En = {x ∈
S : n − 3 ≤ u(x) ≤ n − 1}. So En ⊆ Un, En is compact, Un is open,
S =

⋃
n En =

⋃
n Un, and |m− n| ≥ 4 implies Um ∩ Un = ∅.

Thus, suppose {wn}n ⊆ C(S)+ has cozwn ⊆ Un, and we define
w(x) =

∨
n wn(x) for all x ∈ S. Then, for all n, we have [for x ∈

Un, w(x) =
∨n+3

n−3 wi(x)]. Thus,

(1) w ∈ C(S), and

(2) whenever H ≤ C(S) and {wn} ⊆ H , then w ∈ loc (H,S), and if
0 ≤ wn ≤ 1 for each n, then 0 ≤ w ≤ 1 so w ∈ loc (H,S)∗.

For the proof proper: First suppose p �= q in βS. Let A and B be
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open in βS with p ∈ A ⊆ A ⊆ B and q /∈ B (closures in βS). We then
have

A ∩ S = A ∩
(⋃

n

En

)
=

⋃
n

(
A ∩ En

)
,

and for all n, (A∩En)∩(S−Un) = ∅, and (A∩En)∩((βS−S)∩S) = ∅.
Set Fn = (S−Un)∪((βS−B)∩S), so [A∩En]∩Fn = ∅ for all n. Note
that A∩En is compact and Fn is closed in S. Now suppose H ≤ C∗(S)
separates points and closed sets of S thus separates compact sets and
closed sets in S. Then, for all n, choose wn ∈ H with 0 ≤ wn ≤ 1
and un = [1 on A ∩ En; 0 on Fn]. As noted above, it follows that
w(x) =

∨
n wn(x) for all x ∈ S defines w ∈ loc (H,S)∗.

βw(p) = 1: w = 1 on
⋃

n(A ∩ En) = A ∩ S, so by continuity,

βw = 1 on A ∩ S. But A ∩ S = A, since in βS A is open and S
is dense. βw(q) = 0: w = 0 on (βS − B) ∩ S (since for all n,
wn = 0 on Fn), so by continuity, βw = 0 on (βS − B) ∩ S. But

(βS −B) ∩ S ⊇ (βS −B) ∩ S = βS −B ⊇ βS−B (since in βS, βS−B
is open and S is dense).

Proof of Theorem 6.2. In C(S), a locally finite partition of unity
is a family {gα} ⊆ C(S, [0, 1]) with {coz gα} locally finite, and for
all x ∈ S,

∑
α gα(x) = 1. Each x ∈ S has a neighborhood U for

which F (U) ≡ {α : coz gα ∩ U �= ∅} is finite, so on U ,
∑

α gα =
the finite sum

∑{gα : α ∈ F (U)}. Thus, whenever {rα} ⊆ R,∑
α rαgα =

∑{rαgα : α ∈ F (U)} on U and
∑

α rαgα ∈ C(S) (and
locally belongs to any group for which the rαgα’s belong).

We shall use (∗) [3, 2.1]. If {Cn} is a countable cover of S by cozero-
sets, then there is a (countable) locally finite partition of unity {gn}
with coz gn ⊂ Cn for all n.

Now suppose H ≤ C∗(S) is uniformly dense, f ∈ C(S), and ε > 0.
For n ∈ Z, let Cn = {x : n − 1 < (1/ε)f(x) < n + 1}. These
are cozero sets, and (∗) applies to produce {gn}. Note that, for
each x ∈ S, there is n(x) such that x ∈ Cn implies n = n(x) or
n(x) + 1; thus, gn(x) > 0 implies n = n(x) or n(x) + 1. Thus,
1 =

∑
gn(x) = gn(z)(x) + gn(x)+1(x).

(i) Define g =
∑

nεgn ∈ C(S). In the sum, we can suppose n �= 0
(since 0 · ε · g0 = 0 contributes 0). A short calculation ([3, page 43])
shows |f(x) − g(x)| < ε for all x ∈ S.
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(ii) Now we approximate the gn’s by functions hn ∈ H , as follows.
For each n �= 0, choose hn ∈ H with 0 ≤ hn ≤ gn and |gn − hn| ≤ 1/n.
Then, cozhn ⊆ coz gn for all n, so, for all x ∈ S, hn(x) > 0 implies
n = n(x) or n(x) + 1.

Let h =
∑

nεhn (n �= 0). On cozhn, h coincides with (n− 1)εhn−1+
nεhn + (n + 1)εhn+1, so h ∈ loc (G,S). Now take, with sets index
n(x) = k, g(x) =

∑{nεgn(x) : n = k, k + 1} and h(x) =
∑{nεhn(x) :

n = k, k+1}, so |g(x)−h(x)| = |∑{nε(gn(x)−hn(x)) : n = k, k+1}| ≤∑{nε|gn(x)−hn(x)| : n = k, k+1} ≤∑{nε(1/n) : n = k, k+1} = 2ε.

(iii) For each x ∈ S, |f(x) − h(x)| = |f(x) − g(x) + g(x) − h(x)| ≤
|f(x)− g(x)|+ |g(x)− h(x)| ≤ ε+ 2ε = 3ε.

Proof of Corollary 6.4. Assume the hypotheses. By Theorem 6.1,
K = βloc (H,S)∗ separates points of βS. Since H is divisible, so is
K. By Theorem 6.3, K is uniformly dense in C(βS), which means
K|S = loc (H,S)∗ is uniformly dense in C∗(S). By Theorem 6.2,
loc (H,S) is uniformly dense in C(S).

Remarks 6.5. (a) Corollary 6.4 includes the Stone-Weierstrass The-
orem 6.3: If S is compact and K ≤ C(S) separating points, then
loc (K,S) = K by Theorem 1.3 and Lemma 3.3.

(b) While Theorems 6.1, 6.2 and 6.3 imply Corollary 6.4, and Corol-
lary 6.4 implies Theorem 6.3 ((a) above), I am unable to see that (or
if) Corollary 6.4 implies Theorem 6.1. We need Theorem 6.1 here.

(c) In [9] (written subsequent to the present paper), a more direct
proof of Corollary 6.4 is given (avoiding Theorems 6.1 and 6.2), and
further, the conclusion of Corollary 6.4 is shown to hold for Lindelöf S.
It seems inappropriate to go into all that here.

7. Quasi-F Yosida space. The present point of Section 6 is the
following.

Theorem 7.1. Suppose G is ∗-max. Then,

(a) Y G is quasi-F, and

(b) if also G is divisible, then G is uniformly dense in D(Y G).
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Proof. (a) (This will use Theorem 6.1.) For any S dense in Y G, Y G
is a compactification of S so the inclusion S ↪→ Y G has a continuous

extension βS
π� Y G. For each g ∈ G∗ ≤ C(Y G), we have g|S ∈ C∗(S)

and its extension β(g|S) ∈ C(βS) for which β(g|S) = g ◦ π. Then,
S is C∗-embedded in Y G if and only if π is one-to-one if and only if
{β(g|S) | g ∈ G∗} separates points of βS.
Now suppose G is ∗-max and S ∈ dcozY G, so that H = loc (G,S)∗ ⊆

G (meaning, h ∈ H extends to g ∈ G∗ ⊆ C(Y G)). Theorem 6.1
says βH separates points of βS, so S is C∗-embedded by the previous
paragraph.

(b) (This will use Corollary 6.4.) Let u ∈ D(Y G) and ε > 0. Let
S = u−1R ∈ dcozY G and f = u | S ∈ C(S). Let H = G∗ | S ≤ C∗(S).
Since G∗ separates points and closed sets of Y G, H does so also in S,
i.e., H does. Assuming G divisible, it is too, so loc (H,S) is uniformly
dense in C(S) by Corollary 6.4, so there is h ∈ loc (H,S) with |f−h| ≤ ε
on S. Assuming G is ∗-max, loc (H,S) ⊆ G, which means h extends to
g ∈ G ≤ D(Y G). By density of S, |f − h| ≤ ε on S implies |u− g| ≤ ε
on Y G.

Remark 7.2. I do not know if (a) G ∗-max implies the divisible hull
dG is uniformly dense in D(Y G). (A model of dG is {rg : r ∈ Q, g ∈
G} ≤ D(Y G).) It is not true that (b) G ∗-max implies dG ∗-max.
(If (b) were true, applying Corollary 6.4 would give (a).) A trivial
example showing (b) false is G = C(N,Z). Here Y G = βN, dcozY G
has minimum member N, and loc (G,N) = G obviously; this shows G
is ∗-max. But dG = {rg : r ∈ Q, g ∈ G}, while loc (dG,N) contains
f(n) = 1/n, and f /∈ dG.

8. ∗-max hulls. An extension G ≤ H is essential if a morphism

H
φ→ K is one-to-one whenever φ | G is one-to-one. Let C ⊆ |W |. A

C-hull of G ∈ |W | is an essential extension cG : G ≤ cG in W , with
cG ∈ C, for which, whenever G ≤ C is an essential extension in W with
C ∈ C, then cG W -embeds in C over G. Such (cG, cG) is essentially
unique. If every G ∈ |W | has a C-hull, then C is called a hull class, and

the resulting function |W | c→ C is the hull operator. (See the survey
[22].)

A function γ : Y → X between compact spaces is irreducible if γ is
a continuous surjection and [F proper closed in Y implies γ(F ) �= X ].
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For such γ, S dense open in X implies γ−1S dense in Y . In this case,
(Y, γ) is called a cover of X . For two covers of X , (Y2, γ2) ≥ (Y1, γ1)
means there is irreducible δ : Y2 → Y1 with γ1δ = γ2; such δ is unique.
If (Y2, γ2) ≥ (Y1, γ1) and (Y1, γ1) ≥ (Y2, γ2), the two δ’s are inverse,
each is a homeomorphism, and the two covers are viewed as the same.
(See the surveys [8, 23].)

The Yosida representation yields the close connection between hulls
in W , and covers in compact spaces:

Proposition 8.1 [16, 4.1]. Suppose φ : G ≤ K is a W -embedding.
φ is essential if and only if Y φ : Y K → Y G is irreducible.

Of particular present importance is the (minimum) quasi-F cover of

X , which is QF (X) ≡ lim← {βS : S ∈ dcozX} π→ X . (lim
←
S

βS is a subset

of
∏

S βS, so there is the projection onto each βS, in particular the
projection π onto X .) (See [5, 25].)

The class {D(Y ) : Y quasi-F} is a hull class in W : for G ∈ |W |, the
hull is G ≤ D(QFY G), with embedding given from QFY G

π→ Y G,
as g �→ g ◦ π (which is in D(QFY G) because π is irreducible). The
Y -image of G ≤ D(QFY G) is π.

We now exhibit the ∗-max hulls.

Let G ∈ |W |. By Corollary 6.4, {loc (G,S) : S ∈ dcozY G} is a direct
system in W . (For S2 ⊆ S1, the bonding map loc (G,S1)→ loc (G,S2)
is restriction; this is one-to-one.) We consider the direct limit in W ,

�G = lim→ loc (G,S) (over S ∈ dcozY G).

�G is ∪S loc (G,S) modulo the equivalence of point-wise equality of
functions on intersections of domains. G embeds into �G as: g �→
g|g−1R ∈ loc (G, g−1R). We label this embedding �G : G ≤ �G.
Obviously, G is ∗-max if and only if G = �G (Theorem 5.3).

Lemma 8.2. Suppose φ : G ≤ K is essential in W , with Y -image
Y φ : Y K → Y G.

(a) Let S ∈ dcozY G. Then, loc (G,S) embeds into loc (K, (Y φ)−1S)
via f �→ f ◦ φ.
(b) If K is ∗-max, then �G embeds into K over G.
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Proof. (a) By Proposition 8.1, Y φ is irreducible, so (Y φ)−1 is dense,
and obviously cozero. If f ∈ loc (G,S), and, for example, g ∈ G
has f = g on open U ⊂ S, then f ◦ Y φ − g ◦ Y φ = φ(g) on
(Y φ)−1U ⊆ (Y φ)−1S.

(b) By (a) and the condition Theorem 5.3 that K is ∗-max.

Theorem 8.3. For G ∈ |W |,
(a) The Y -image of �G is the quasi-F cover of Y G; Y �G = QFY G.

(b) (�G, �G) is the ∗-max hull of G.

Proof. For brevity, let (Y, π) denote the quasi-F cover of Y G. We
have the embeddings of G and �G into D(Y ) discussed above via
compositions with π.

(a) D(Y ) is ∗-max (by Theorem 2.1 and a remark after Theorem 1.3),
so �G ≤ D(Y ) by Lemma 8.2. It suffices to see that �G separates points
of Y . As noted above, Y = lim← βS (S ∈ dcozY G). If p �= q in lim← βS,

there is S with πβS(p) �= πβS(q) in βS. But βloc (G,S) separates the
points of βS by Theorem 6.1.

(b) In view of Lemma 8.2 (b), we need only show that �G is ∗-max.
It seems easiest to show that Trunc �G ⊆ �G and apply Theorem 3.1.
(We could show �(�G) = �G and apply Theorem 5.3. This seems a bit
more tedious.)

By (a), Y �G = Y . For f ∈ D(Y ), the meaning of “f ∈ �G” is: there
is S ∈ dcozY G with f ∈ loc (G ◦ π, π−1S). So, suppose f ∈ D(Y )+

with f ∧ k ∈ �G for all k ∈ N. Then for all k, there is Sk ∈ dcozY G
with f ∧ k ∈ loc (G ◦ π, π−1Sk). We have a cover {V k

n }n of Sk, and
{gkn} ⊆ G, with f ∧k = gkn ◦π on V k

n . Let Uk = {y ∈ Y : f(y) < k+1},
so f−1R = ∪nUk, and f = f ∧ k on Uk. Since Sk is dense, Uk ∩ Sk

is dense in Uk, so S ≡ ∪k(Uk ∩ Sk) is dense in ∪kUk = f−1R, while
∪k(Uk ∩ Sk) = ∪k(Uk ∩ ∪nV k

n ) = ∪k,n(Uk ∩ V k
n ). Thus, {Uk ∩ V k

n } is a
cover of S, and on Uk ∩ V k

n , f = f ∧ k = gnk .

9. The ring of ω1-quotients. We now show how a conjecture in
[13] is resolved by the present development.

Let Φ be the category of archimedean f -rings with identity, with the
natural morphisms. For A ∈ |Φ|, the identity of A is a weak unit, so
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forgetting the multiplication creates a W object. We abuse notation
by writing Φ ⊆W . The Henriksen-Johnson representation [17] says A
is a Φ-object of extended functions on the space of maximal �-ideals.
That space can be identified with Y A as explained in [14], so we have
A ≤ D(Y A) as a Φ-object.

For S ∈ dcozY G, we have the W -object �(A,S) as before; it’s easy
to see that �(A,S) ∈ |Φ|. We say that f is a local quotient from A on S
if there is a countable open cover {Un} of S, and {(an, bn)} ∈ A× A+

for which, for each n, Un ⊆ {x ∈ Y G : 0 < bn(x) < +∞} and
[f = an/bn on Un]. Let �q(A,S) consist of all such f . It’s easy to
see that �q(A,S) ∈ |Φ| and �(A,S) ≤ �q(A,S) (in Φ).

Let Qω1A ≡ lim→ {�q(A,S) : S ∈ dcozY G} ∈ |Φ|. In [13], this is

called the ring of ω1-quotients of A, for reasons explained there, and it
is shown that Qω1 is a hull operator in Φ. We have A ≤ �A ≤ Qω1A
(in Φ). The following is conjectured in [13, subsection 8.1].

Corollary 9.1. Y Qω1A is the quasi-F cover of Y A.

Proof. As in Section 8, let Y A
π← Y denote the quasi-F cover of Y A,

so that Y = Y �A, and in the Yosida representation the embedding
A ≤ �A is a �→ a ◦ π. But it’s obvious that Qω1A ≤ lim→ {C(S) : S ∈
dcozY G} ≤ D(Y ) (with the latter embedding realized as C(S) � f �→
β(f ◦ π) ∈ D(Y )). So the inclusions A ≤ �A ≤ Qω1A ≤ D(Y ) have
Yosida “duals,”

Y A Y = Y �A�
π Y �qA�

α Y.�

β
�

π

Since α and β are irreducible, they are homeomorphisms (as noted
before Proposition 8.1).

Let b denote the “bounded inversion” hull operator in Φ : bA is
the ring of quotients of A obtained by inverting all elements ≥ 1. A
quotient a/d, with d ≥ 1, can be identified with f(x) = a(x)/d(x) for
x ∈ S = a−1R ∩ d−1R. Thus, bA ≤ Qω1A. It is noted in [13] that
always bQω1A = Qω1A, and thus Qω1bA = Qω1A.
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Theorem 9.2. For A ∈ |Φ|, Qω1A = �bA (as hull operators,
Qω1 = �b).

Proof. 1. �bA ≤ Qω1A: We have �A ≤ Qω1A for all A; thus
�bA ≤ Qω1bA (for all A). But Qω1bA = Qω1A (noted above).

2. Qω1A ≤ �bA: In fact, for all S ∈ dcozY A, �q(A,S) ≤ �(bA, S):
if f ∈ �q(A,S), witnessed by {Un} and {(an, bn)} as described before
Corollary 9.1, let Unk

= Un∩{x : a/k < bn(x) < +∞}, so Un = ∪kUnk
.

Let ank
= kan and bnk

= (kbn) ∨ 1, so ank
/bnk

∈ bA and f = ank
/bnk

on Un. Thus, Qω1A = lim→ �q(A,S) ≤ lim→ �(bA, S) = �bA.

Corollary 9.3. Let A ∈ |Φ|, and let Y be the quasi-F cover of Y A.
Then, Qω1A is ∗-max, and is uniformly dense in D(Y ).

Proof. By Corollary 9.1, Y = Y Qω1A. By Theorems 5.3 and 9.2,
Qω1A is ∗-max. Obviously, Qω1A is divisible. Apply Theorem 7.1 (b).

There is a question here: call A (∈ |Φ|) ∗-max in Φ if [B ∈ |Φ| and B∗

Φ-isomorphic to A∗ imply B Φ-embeds in A]. Evidently, A is ∗-max in
W implies A ∗-max in Φ (just because Φ ⊆ W ). I do not know if the
converse holds.

10. ∗-max, III: Expanding sequences. The two previous char-
acterizations of ∗-max (TruncG ⊂ G; �G = G) are in terms of the
representation G ≤ D(Y G). We now provide a purely order-algebraic
description, Theorem 10.2. At the end of this section, we indicate some
consequences. We formalize as a definition a condition in Theorem 1.4.

Definition 10.1. Let G ∈ |W |. A sequence (un) in G+ (indexed by
N) is called an expanding sequence in G, written (un) ∈ ExG, if

(e1) un+1 ∧ n = un for all n, and

(e2) ∩n(un+1 − un)
⊥⊥ = {0}.

G is Ex-complete if each (un) ∈ ExG has the supremum u =
∨G

un

in G.

Theorem 10.2. G is ∗-max if and only if G is Ex-complete.
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The condition Ex-complete is a translation of the condition TruncG ⊆
G. The process of translation is the content of the next several lemmas,
after which we prove Theorem 10.2.

Lemma 10.3. Suppose X is a set

(a) Let u : X → [0,+∞] be a function. Set un = u∧ n for all n ∈ N.
Then, un+1 ∧ n = un for all n, and u(x) =

∨
n un(x) for all x ∈ X.

(b) Suppose that un : X → [0,+∞] (n ∈ N) are functions, with
un+1 ∧ n = un for all n. Then:

(i) If x ∈ X, and un0(x) < n0, then n ≥ n0 implies un(x) = un0(x).

(ii) Define u : X → [0,+∞] as u(x) ≡ ∨
n un(x) for all x ∈ X.

Then, u ∧ n = un for all n; u−1(+∞) =
⋂

n{x : un(x) = n}.
(c) Suppose the situation of (b), assuming further that X is a space,

and the un are continuous. Then, u is continuous, and u−1(+∞) =⋂
n{x : un(x) = n} = ⋂

n coz (un+1 − un).

Proof. (a) is obvious.

(b) (i) For n ≥ n0, un0 = un∧n0. For a, b, c ∈ R, a < b and a = c∧ b
implies a = c.

(ii) For any x ∈ X , and k ∈ N:

u(x) ∧ k =

(∨
n

un(x)

)
∧ k =

∨
n

(un(x) ∧ k)

=
∨
n≤k

(un(x) ∧ k) ∨
∨
k<n

(un(x) ∧ k) .

But
∨

n≤k(un(x) ∧ k) is its largest term, which is uk(x) ∧ k = uk(x),
and for k < n, un(x) ∧ k = uk(x). So u ∧ k = uk.

If un(x) = n for all n, then u(x) =
∨

n n = +∞. If there is n0 with
un0(x) < n0, then, using (i),

u(x) =
∨
n

un(x) =
∨

n≥n0

un(x) = un0(x) < n0 < +∞.

(c) We show u is continuous at each x ∈ X . First, if u(x) ∈ R,
then u(x) < some n0, so un0(x) < n0. Thus, x ∈ {y : un0(y) <
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n0} ≡ U , which is open because un0 is continuous. If y ∈ U , then
u(y) =

∨
n≥n0

un(y) = un0(y) (using (i)). So, on open U , u agrees
with the continuous un0 , and u is continuous at x. Next, suppose
u(x) = +∞, and let m ∈ N. By (ii), um+1(x) = m + 1 > m. There
is a neighborhood U of x with [y ∈ U implying m < um+1(y) ≤ u(y)]
(since um+1 is continuous). So u is continuous at x.

Now, if un(x) = n for all n, then un+1(x) − un(x) = 1 for all n,
and x ∈ coz (un+1 − un) ⊆ coz (un+1 − un) for all n. If n is such that
un(x) < n, then x has a neighborhood U with un(y) < n for y ∈ U (by
continuity of un). Thus, for y ∈ U , un+1(y) = un(y) (by (b) (i)), and
U ∩ coz (un + 1− un) = ∅. So x /∈ coz (un+1 − un).

Lemma 10.4. Let G ∈ |W |.
(a) For d ∈ G, d⊥ ≡ {g ∈ G : |g| ∧ d = 0} is, viewed in D(Y G),

d⊥ = {g ∈ G : coz g ∩ coz d = ∅}, and d⊥⊥ = {g ∈ G : coz g ⊆ coz d}.
(b) For {dα} ⊆ G,

⋂
α d⊥⊥α = {0} if and only if

⋂
α coz dα is a

nowhere dense subset of Y G.

Proof. (a) is easy (and true in any representation G ⊆ D(X)).

(b) By (a),
⋂

α d⊥⊥α =
⋂

α{g : coz g ⊆ ⋂
α coz dα}. For any closed

set K in Y G, we have {g : coz g ⊆ K} = {0} if and only if K is
nowhere dense: if K is nowhere dense, then [coz g ⊆ K implies g = 0]
by continuity. If K is not nowhere dense, there is non-void open U ⊆ K
with p ∈ U and g ∈ G such that g(p) = 1 and g = 0 on Y G − U ; so
coz g ⊆ K.

Corollary 10.5. Let G ∈ |W |.
(a) If u ∈ TruncG, then u ∧ n ∈ ExG.

(b) If (un) ∈ ExG, then [u(x) ≡ ∨
n un(x) for all x ∈ X ] defines

u ∈ TruncG.

Proof. (a) Let u ∈ TruncG. Set un = u ∧ n. Lemma 10.3 (a)
gives (e1). Now, u ∈ D(Y G) so that u−1(+∞) is nowhere dense, so,
combining Lemma 10.3 (c) and Lemma 10.4 gives (e2).

(b) Let (un) ∈ ExG. Then u, as defined above, has u ∧ n = un ∈ G
for all n by Lemma 10.3 (b). We require just u ∈ D(Y G). This follows
by (e2), Lemma 10.3 (c) and Lemma 10.4.
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We now convert Corollary 10.5 to a proof of Theorem 10.2. The
following is needed because, in a lattice D(X), or in a G ≤ D(X),
finite suprema are pointwise, but not infinite suprema. The symbol∨D

denotes supremum in the appropriate D(X).

Lemma 10.6. (a) For any X, suppose f and the fα’s ∈ D(X). If

f(x) =
∨

α fα(x) for all x ∈ X, then f =
∨D

α fα.

(b) Suppose G ∈ |W |, {gα} ⊆ G and f ∈ D(Y G). If f =
∨D

α gα and

f ∈ G, then f =
∨G

α fα.

(c) [2, 4.1 (c)]. Suppose G ∈ |W |, g and the gα’s ∈ G. Then,

g =
∨G

α gα if and only if {x ∈ Y G : g(x) =
∨

α gα(x)} is dense in
Y G.

Here (a) and (b) are obvious. The relevant part of (c) is the
implication (⇒), which is not so hard but uses the Baire Category
theorem in compact Y G.

Finally:

Proof of Theorem 10.2. We show G Ex-complete if and only if
G ⊇ TruncG, and apply Theorem 3.1.

Suppose G is Ex-complete, and u ∈ TruncG. By Corollary 10.5 (a),

(u ∧ n) ∈ ExG, so there exists g =
∨G

n (u ∧ n) since G is Ex-complete.
Then, {x : g(x) =

∨
n(u ∧ n)(x)} is dense in Y G by Lemma 10.3 (a).

So, g and u agree on a dense set, so by continuity, u = g ∈ G.

Suppose G ⊇ TruncG, and (un) ∈ ExG. By Corollary 10.5 (b)
[u(x) ≡ ∨

n un(x) for all x ∈ Y G] defines u ∈ TruncG, so u ∈ G. Then

u =
∨D

un by Lemma 10.6 (a), so u =
∨G

n un by Lemma 10.6 (b).

The following order-algebraic characterizations now become available.

Corollary 10.7. G is divisible, uniformly complete, and Ex-complete
if and only if G = D(Y G) (whose last condition entails Y G quasi-F).

Proof. Theorems 2.1, 10.2 and a remark after Theorem 1.3.
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Corollary 10.8. The following are equivalent.

(1) G is Ex-complete and G = G∗.

(2) If (un) ∈ ExG, there is n0 with un ≤ n0 for all n.

(3) If (un) ∈ ExG, there is n0 with un = un0 for all n ≥ n0.

(4) Y G is almost P .

Proof. (1) ⇔ (4) just combines Lemma 4.1 and Theorem 10.2.

(2) and (3) are easily seen to be equivalent.

(1) ⇒ (2). If (un) ∈ ExG and
∨G

un ∈ G∗, then (2) holds.

(3) ⇒ (1). If (un) satisfies (3), then un0 =
∨G un: (3) implies Ex-

complete. Also, (3) implies G = G∗: if g ∈ G⊥, then (g ∧ n) ∈ ExG so
with (3), g = g ∧ n0 for some n0.

Corollary 10.9. Let X be compact. C(X) is Ex-complete if and
only if X is almost P .

Proof. For G = C(X), Y G = X . Apply Corollary 10.8 ((1)⇔ (4)).

Remarks 10.10. (a) Our definitions of expanding sequence, and
Ex-complete, resemble those from [25] of tower, and tower-complete,
respectively, and a result similar to Corollary 10.7 is implicit there
(combine Theorems 1, 2 and Proposition 1).

(b) Corollary 10.8 has the form: An order-algebraic property of G is
equivalent to a topological property of Y G. Of course, for G a priori
of the form C(X), there are many such theorems, e.g., Corollary 10.9,
but abundantly in [7].

11. ∗-max and lateral σ-completeness. The characterization of ∗-
max as Ex-complete suggests comparison with other “σ-completeness”
properties. The results are Theorems 11.2 and 11.6.

Definitions 11.1. Let G ∈ |W |.
G is laterally σ-complete (L(ω1)) if for all countable disjoint {gn} ∈

G+,
∨G

gn exists. (See [13], et al.)
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G is densely laterally σ-complete (δL(ω1)) if for all countable disjoint

{gn} ⊆ G⊥ with
⋂
g⊥n = {0}, ∨G

gn exists. (
⋂

g⊥n = {0} means⋃
coz gn is dense in Y G.)

(δL(ω1) seems to be a new definition. Of course, one may make these
definitions for arbitrary �-groups. This won’t concern us here.)

A space is called zero-dimensional if it has a base of clopen sets.

Theorem 11.2. (a) If G is ∗-max, then G is δL(ω1). The converse
fails.

(b) If G is δL(ω1) and Y G is zero-dimensional, then G is ∗-max.

Proof. (a) Suppose G is ∗-max and {gn} ⊆ G⊥ is disjoint. with⋃
coz gn dense in Y G. Then, S ≡ ⋃

n coz gn ∩ g−1n R ∈ dcozY G and
f = [gn on coz gn ∩ g−1n R] is in loc (G,S); this extends to g ∈ G since

G is ∗-max. By Lemma 10.6 (c), g =
∨G gn.

Here is an example of G which is δL(ω1), not ∗-max. In [18, 3.13],
we find a space X which is quasi-F, connected, locally compact, σ-
compact, not compact, and [S ∈ dcozβX ⇒ S ⊇ X ]. Let G = C(βX),
so Y G = βX . Now, βX is quasi-F (since X is), X ∈ dcozβX
(since X is locally compact and σ-compact), D(βX) ≈ C(X) �=
C∗(X) (since X is not compact)), and C∗(X) ≈ C(βX). So, G is
not ∗-max (e.g., since TruncG = D(βX)+). But G is δL(ω1): if
{gn} ⊆ G⊥ is disjoint with S ≡ ⋃

coz gn dense, then S ⊇ X and
X = X ∩ S =

⋃
(X ∩ coz gn), so there is n0 with X ∩ coz gn0 �= ∅.

Then, (X ∩ coz gn0)∩ (
⋃

n	=n0
(X ∩ coz gn)) = ∅ (since {gn} is disjoint).

Since X is connected,
⋃

n	=n0
(X ∩ coz gn) = ∅, so gn = 0 for n �= n0.

Thus, gn0 =
∨G

gn.

(b) Suppose the hypotheses. We show ∗-max using Theorem 5.3.
Let S ∈ dcozY G, and let f ∈ loc (G,S)+. We can suppose f ≥ 1.
Write S =

⋃
n Un for disjoint {Un} ⊆ clopY G. (Cover S by clopen

sets contained in S, take a countable subcover, then disjointify by
induction). Let cn be the characteristic function of Un; cn ∈ G by
Theorem 1.3. For each n, there is m(n) ∈ N with [f ≤ m(n) on Un].
Let gn = f ∧ (m(n)cn), so gn = [f on Un; 0 off Un]. We have
coz gn = Un (since f ≥ 1), so {gn} is disjoint with

⋃
n coz gn = S.

Thus, there is
∨G gn = g, and obviously g | S = f .
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Discussion of L(ω1) requires further ideas.

Definitions 11.3. (I) Let G ∈ |W |.
G is complemented if for all g1 ∈ G+ there exists g2 ∈ G+ with

g1 ∧ g2 = 0 and {g1 ∨ g2} = {0} (which means coz g1 ∪ coz g2 is dense
in Y G). (See [11, and its bibliography].)

G is σ-complemented if for all countable G1 ⊆ G+ there exists
countable G2 ⊆ G+ with g1 ∧ g2 = 0 for all g1 ∈ G1 and g2 ∈ G2,
and (G1 ∪ G2)⊥ = {0}.

(II) Let Y be compact Hausdorff (or, more generally).

Y is basically disconnected (BD) if each cozero-set has open closure
(see [7]).

Y is cozero-complemented if for all cozero-set U there exists a cozero-
set V with U ∪ V dense, i.e., if C(Y ) is complemented. (See [11].)

(“σ-complemented” seems to be a new definition. Of course, one may
make these definitions for arbitrary l-groups, where, in fact, one could
define for infinite cardinals α, β, (α, β)-complemented: for all G1 ⊆ G+

with |G1| ≤ α ∃ disjoint G2 ⊆ G+ with |G2| < β with (G1 ∪G2)⊥ = {0}.
This won’t concern us here.)

We have several facts, some easy and some known.

Proposition 11.4. [18, 2.13]. (1) Y is BD if and only if Y is
quasi-F and cozero-complemented.

(2) Let G ∈ |W |. (a) U is a cozero-set of Y G if and only if there
exists countable G ⊆ G∗+ with U =

⋃{coz g : g ∈ G}.
(b) Y G is cozero-complemented if and only if G is σ-complemented.

(c) Y G is BD if and only if Y G is quasi-F and G is σ-complemented.

Proof. (1) See [18].

(2) (a) {coz g : g ∈ G∗} is an open base in Y G (by Theorem 1.3), the
family {cozf : f ∈ C(Y G)} is closed under countable union [7], and
every member is Lindelöf since Y G is compact.
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(b) Use (a).

(c) Use (b) and (1).

Proposition 11.5. Let G ∈ |W |. Then (n)⇒ (n+1) for n = 1, 2, 3.

(1) G is L(ω1).

(2) Y G is BD.

(3) Y G is zero-dimensional, and G is complemented and σ-comple-
mented.

(4) Y G is zero dimensional and cozero-complemented.

Proof. (1) ⇒ (2). [12, 2.4 and 3.2].

(2)⇒ (3). Suppose Y G is BD. [7] shows zero-dimensional. If G1 ⊆ G+
is countable,

⋃{coz g : G1} is cozero in Y G (as noted above), so has
open closure U . Then V = Y G − U is clopen, and its characteristic
function, say g2, has g2 ∈ G (by Theorem 1.3). This shows G is both
complemented (use G1 = {g1}) and σ-complemented (even “(ω1, ω)-
complemented”).

(3) ⇒ (4). Use Proposition 11.4 (2) (b).

Assembling all this creates the following (perhaps excessive) list.

Theorem 11.6. For G ∈ |W |, the following are equivalent.

(1) G is L(ω1).

(2) G is ∗-max and Y G is BD.

(3) G is ∗-max, complemented and σ-complemented.

(4) G is ∗-max and σ-complemented.

(5) G is δL(ω1) and Y G is BD.

(6) G is δL(ω1), complemented and σ-complemented, and Y G is zero-
dimensional.

(7) G is δL(ω1) and σ-complemented, and Y G is zero-dimensional.

Proof. We show [1 ⇒ 5 ⇒ 2 ⇒ 1], [2 ⇒ 3 ⇒ 4 ⇒ 2], [5 ⇒ 6 ⇒ 7 ⇒
4].

1⇒ 5. Obvious.
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5⇒ 2. By Theorem 11.2.

2 ⇒ 1. Suppose {gn} ⊆ G+ is disjoint, Let rcoz gn = {x : 0 <
gn(x) < +∞}. Then, U =

⋃
rcoz gn is clopen, S =

⋃
rcoz gn ∪ (Y G−

U) ∈ dcozY G, and f ≡ [gn on rcoz gn; 0 on Y G− U ] ∈ loc (G,S). So,

there is g ∈ G with g = f on S. Obviously, g =
∨G

gn.

2⇒ 3. Proposition 11.5 (2⇒ 3).

3⇒ 4. Obvious.

4 ⇒ 2. Y G is quasi-F (Theorem 7.1) and cozero-complemented
(Proposition 11.4 (2)). Apply Proposition 11.4 (1).

5⇒ 6. Apply Proposition 11.4 (1).

6⇒ 7. Obvious.

7⇒ 4. Theorem 11.2.

The situation, especially δL(ω1), probably deserves further study. We
leave the subject for now.
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