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ABSTRACT. We use polynomial Dirac spinors associated
to Euclidean Dirac-type operators and separation of variables
to investigate the spectral theory of certain spherical Dirac-
type operators. While the spectral theories of our main ex-
amples, the spherical Dirac and Laplace-Beltrami operators,
are known, this is the first time they are treated together, in a
unified manner. In particular, the multiplicities of these spec-
tra, a topic difficult to negotiate in many previous treatments,
are presented in simple closed form.

0. Introduction. The spectral theory of the geometric (Dirac and
Laplace-Beltrami) spherical operators has been addressed in the liter-
ature quite often, by a variety of methods pertaining to representation
theory, complex analysis, spin geometry, harmonic analysis, etc. Here
is a list of papers, by no means exhaustive, devoted to the topic: [5, 22,
23] for the Dirac operator, and [11, 12, 16, 17, 20] for the Laplace-
Beltrami operator.

Interestingly enough, there is no simultaneous treatment of the spec-
tral theories of spherical Dirac and Laplace-Beltrami operators, despite
the fact that they belong to the same family of Dirac-type operators.
In this paper we set out to accomplish this, by what was probably
the first method used to tackle such problems, separation of variables
in Euclidean spaces in the presence of spherical harmonics. We pay
particular attention to the multiplicity of their spectra, an aspect that
proved delicate in many of the previous references. While our paper is
mainly expository, it does strive to make a point not known or not yet
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believed: when it comes to any spherical Dirac-type spectral problem,
the oldest method of approach is still the best.

1. Euclidean Dirac operators and polynomial spinors. For
an integer n ≥ 1, consider a representation of the real Clifford algebra
Cln+1,0 on some finite-dimensional Hermitian vector space V. This is
equivalent to the prescription of n+1 skew-Hermitian endomorphisms
of V, E0, E1, . . . , En, which are Clifford in the sense that, for every i,
E2

i = −Id, and EiEj + EjEi = 0 for every i �= j. Then, in Rn+1 with
coordinates (x0, x1, . . . , xn) the Euclidean Dirac operator associated to
V is the differential operator

�D : C∞(U,V) −→ C∞(U,V), U ⊆ Rn+1 open,

defined, for spinors s ∈ C∞(U,V),

s =
dimV∑
α=1

fαsα, (sα)
dimV
α=1

some fixed basis of V, fα ∈ C∞(U,C), by

(1) �Ds =

n∑
i=0

Ei
∂s

∂xi
,

where ∂s/∂xi represents ordinary component-wise differentiation of s
with respect to xi. It is easily seen from (1) that �D is a first order
elliptic differential operator satisfying the following properties:

�D(fs) = gradf ·s+ f �Ds, f ∈ C∞(U,C), grad f ·s :=
n∑

i=0

∂f

∂xi
Eis

(2)

�D2 =−Δ, where Δ is the component-wise Laplacian on C∞(U,V).
(3)

Now denote by P k(V), k = 0, 1, 2, . . . , the subspace of C∞(Rn+1,V)
consisting in spinors with polynomial components, homogeneous of
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degree k, in some (and therefore any) basis of V, and by Hk(V) the
subspace of P k(V) consisting in polynomial Dirac spinors, i.e.,

Hk(V) := {hk ∈ P k(V) | �Dhk = 0}.

Clearly, �D(P k(V)) ⊆ P k−1(V) (P−1(V) = 0). If one denotes by x·
Clifford multiplication in V by x ∈ Rn+1, i.e.,

x·v =

n∑
i=0

xiEiv, v ∈ V,

then x·P k(V) ⊆ P k+1(V). The following splitting, known as the
Fischer decomposition [2, 10], holds true:

P k(V) = Hk(V)⊕ x·P k−1(V).

Since

dimP k(V) = dim (V)

(
n+ k

k

)
,

we conclude that

dimHk(V) = dim(V)

(
n+ k − 1

k

)
,

and, therefore, by a dimension argument, �D(P k(V)) = P k−1(V).

Also, equation (1) implies that, if pk ∈ P k(V), then

(4) �D(x·pk) + x· �Dpk = −(n+ 1 + 2k)pk.

Consequently, hk ∈ P k(V) is in Hk(V) if and only if the components
of x·hk are harmonic polynomials.

For later use, we record here the structure of homogeneous Dirac
spinors on the punctured Euclidean space Rn+1 \ {0}, that is of the
elements s ∈ C∞(Rn+1 \ {0},V) such that �Ds = 0 and for which there
is some α ∈ R such that

s(x) = |x|αs
(

x

|x|
)
, x ∈ Rn+1 \ {0}, |x| =

√√√√ n∑
i=0

x2
i .
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Proposition 1. Let s ∈ C∞(Rn+1 \ {0},V) be a non-zero homoge-
neous Dirac spinor for some Euclidean Dirac operator �D, with constant
of homogeneity α ∈ R. Then α belongs to two families, k and −n− k,
k = 0, 1, 2, . . . .

If α = k, then x = 0 is a removable singularity for s and s ∈ Hk(V).

If α = −n− k, then there is an hk ∈ Hk(V) such that

s(x) =
x·hk(x)

|x|2k+n+1
, x �= 0.

Proof. Since the components of s with respect to any basis of V are
(homogeneous) harmonic functions, we can make use of the structure
theorem for harmonic functions on punctured Euclidean spaces [4, page
209]. According to this theorem there is some non-negative integer
m and some spinor sm ∈ C∞(Rn+1,V) with harmonic components,
homogeneous of degree m, such that either α = m and s = sm|Rn+1\{0}
or α = −n−m+ 1 and s(x) = (sm(x))/|x|2m+n−1, x �= 0.

In the first case, x = 0 is a removable singularity for s, and by elliptic
regularity, sm ∈ Hm(V).

In the second case, we first represent sm(x) uniquely as hm(x) +
x·hm−1(x), hm ∈ Hm(V), hm−1 ∈ Hm−1(V). This can be accom-
plished by making use of a Fischer decomposition applied to homoge-
neous spinors with harmonic components [2, page 123]. Then a simple
calculation relying on equations (2) and (4) implies that

s(x) =
hm(x) + x·hm−1(x)

|x|2m+n−1

satisfies �Ds = 0 for x �= 0 if and only if hm = 0. Therefore,

s(x) =
x·hm−1(x)

|x|2m+n−1
, x �= 0.

Notice that m = 0 cannot accommodate non-zero spinors s since
P−1(V) = 0, and so h−1 = 0.

Proposition 1 now follows by letting k = m if α = m and k = m− 1
if α = −n−m+ 1, m ≥ 1.
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Of interest to us will be the Euclidean Dirac operators associated to
a particular type of graded actions of Cln+1,0 on V, in the sense that
there is a vector space direct sum decomposition (Z-grading)

(5)

V = ⊕p+1
q=0Vq, p ≥ 0, such that

Vq �= 0, Ei(Vq) ⊂ Vq−1 ⊕Vq+1,

i = 0, 1, . . . , n, q = 0, 1, . . . , p+ 1, (V−1 = Vp+2 = 0),

and such that the summands Vq are mutually orthogonal with respect
to the Hermitian product of V.

The spaces Hk(Vq) := C∞(Rn+1,Vq)∩Hk(V) of Vq-valued polyno-
mial Dirac spinors of degree k will play a key role in our development.
H0(Vq) 
 Vq, however, in general it is a non-trivial task to figure out
even the dimensions of these vector spaces (in terms of n, k, and the
dimension of Vq). We will indicate here a derivation of these dimen-
sions under additional hypotheses, satisfied by the two basic examples
we have in mind.

To this end, we restrict the Dirac operator �D to P (V) := ⊕∞
k=0P

k(V).
The Z-grading of V allows one to further write

(6) P (V) = ⊕k,qP
k(Vq) = ⊕k,q(P

k ⊗Vq),

where, by P k, we denote now the space of ordinary complex poly-
nomials in variables x0, x1, . . . , xn, homogeneous of degree k. If
Ei = E+

i + E−
i is the natural splitting of Clifford endomorphisms

Ei, E±
i (V∗) ⊂ V∗±1 (the signs correspond, here and further be-

low), then clearly (E±
i )∗ = −E∓

i and, for any s ∈ P (V), we have
�Ds = �D+s + �D−s, where

�D±s :=
n∑

i=0

E±
i

∂s

∂xi
.

Also, for x ∈ Rn+1 and v ∈ V, we can define x±·v :=
∑n

i=0 xiE
±
i v,

and so x·v = x+·v + x−·v.
P (V) carries a useful positive definite Hermitian product 〈〈·, ·〉〉, under

which the decomposition (6) is orthogonal and which on P k(Vq) =
P k⊗Vq equals the tensor product Hermitian product induced by those
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of P k and V. On P k, we decree monomials corresponding to different
multi-indices orthogonal, and for any multi-index I = (i0, i1, . . . in),
|I| := i0 + i1 + · · · + in = k, and xI := xi0

0 xi1
1 · · ·xin

n , we set
〈〈xI , xI〉〉 = i0!i1! · · · in!. For instance, in this Hermitian product,

(7)

〈〈
∂p1
∂xi

, p2

〉〉
= 〈〈p1, xip2〉〉, p1, p2 ∈ P (V), i = 0, 1, . . . , n.

The following pairs of relations involving �D± and x±· are easily
verified on P (V):

(8)
( �D±)2 = 0,

(
x±·)2 = 0, �D±x±·+ x±· �D± = 0.

Clearly, with respect to the Hermitian product 〈〈·, ·〉〉 of P (V), we have

(9)
〈〈 �D±p1, p2

〉〉
= −〈〈p1, x∓·p2

〉〉
, p1, p2 ∈ P (V).

With the notation Hk±(Vq) := ker(P k(Vq)
�D±
→ P k−1(Vq±1)), we now

have the following

Proposition 2. If, for any fixed k = 0, 1, 2, . . . and q = 0, 1, 2, . . . ,
p+ 1, the two complexes
(10)

0→ Hk
±(Vq) ↪→ P k(Vq)

�D±
→ P k−1(Vq±1)

�D±
→ · · · �D

±
→ P 0(Vq±k)→ 0

are exact (ker(P k−j(Vq±j)
�D±
→ P k−j−1(Vq±j±1))= im(P k−j+1(Vq±j∓1)

�D±
→ P k−j(Vq±j)), j = 1, 2, . . . , k, where Vl = 0 for l �= 0, 1, . . . , p+1),
then

(11) dimHk(Vq) =

k∑
j=−k

(−1)jdim (Vq+j)

(
n+ k − |j|
k − |j|

)
.

Proof. Obviously, Hk(Vq) = Hk
+(Vq) ∩ Hk−(Vq). The exactness of

the complexes (10) implies that

(12) dimHk
±(Vq) =

k∑
j=0

(−1)jdim (Vq±j)

(
n+ k − j

k − j

)
.
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From equation (9), we also have Hk
±(Vq) = im (P k−1(Vq±1)

x∓·→ P k

(Vq))
⊥, where the orthogonal complements are taken inside P k(Vq),

so

(13) Hk
±(Vq)

⊥ = im (P k−1(Vq±1)
x∓·→ P k(Vq)).

Consequently,

Hk(Vq)
⊥ =

(
Hk

+(Vq) ∩Hk
−(Vq)

)⊥
= Hk

+(Vq)
⊥ +Hk

−(Vq)
⊥

= im (P k−1(Vq+1)
x−·→ P k(Vq))

+ im (P k−1(Vq−1)
x+·→ P k(Vq)).

We want to show that the sum im (P k−1(Vq+1)
x−·→ P k(Vq)) +

im (P k−1(Vq−1)
x+·→ P k(Vq)) is in fact direct. Indeed, if sq ∈

im (P k−1(Vq+1)
x−·→ P k(Vq)) ∩ im (P k−1(Vq−1)

x+·→ P k(Vq)), then
sq = x−·sq+1 = x+·sq−1, where sq±1 ∈ P k−1(Vq±1), and so x·sq =
x+·sq + x−·sq = (x+·)2sq−1 + (x−·)2sq+1 = 0, which implies sq = 0.
Therefore,

(14)
P k(Vq) = Hk(Vq)⊕ im (P k−1(Vq+1)

x−·→ P k(Vq))

⊕ im (P k−1(Vq−1)
x+·→ P k(Vq)).

Equations (13) and (14) finally give dimHk(Vq) = dimHk
+(Vq) +

dimHk
−(Vq)− dimP k(Vq), and from equation (12),

dimHk(Vq) = dim (Vq)

(
n+ k

k

)

+

k∑
j=1

(−1)j (dim (Vq+j) + dim (Vq−j))

(
n+ k − j

k − j

)
,

which is the same as equation (11).

Example 1. The classical Dirac-type operators. Hypothesis
(10) of Proposition 2 holds for any Euclidean Dirac operator associated
to a Z2-grading representation V, that is, a Z-grading such that p = 0.
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Indeed, if p = 0, V = V0 ⊕V1, and so Ei(V0) = V1 and Ei(V1) =
V0, i = 0, 1, . . . , n. Consequently, for k = 0, 1, . . . , �D(P k(V0)) =
P k−1(V1), �D(P k(V1)) = P k−1(V0), H

k
+(V0) = Hk(V0), H

k
+(V1) =

P k(V1), Hk−(V0) = P k(V0), Hk−(V1) = Hk(V1) and Hk(V) =
Hk(V0) ⊕ Hk(V1). Obviously, this is equivalent to the exactness of
the complexes (10), and then Proposition 2 gives

dimHk(V0) = dimHk(V1) =
1

2
dim (V)

(
n+ k − 1

k

)
.

Notice that any ungraded representation V can be viewed as a Z2-
graded representation onV⊕V by setting Ei(v1⊕v2) = Ei(v2)⊕Ei(v1),
(V ⊕V)0 = V ⊕ 0, and (V ⊕V)1 = 0⊕V.

The most prominent specialization of Example 1 is the classical Dirac
operator, corresponding to an irreducible ungraded representation V
of Cln+1,0. Here

V = C2[n/2]+1

, V0 
 C2[n/2] × 0, V1 
 0×C2[n/2]

,

and the relevant Clifford endomorphisms E0, E1, . . . , En are square
matrices of size 2[n/2]+1 constructed [7, page 52] out of appropriate
tensor products involving the basic complex 2× 2 matrices

U =

[
0 1
−1 0

]
, V =

[
0

√−1√−1 0

]
,

W =

[
1 0
0 −1

]
, and I =

[
1 0
0 1

]
.

This construction is naturally Z2-graded if n is odd and ungraded but
viewed as Z2-graded as explained above, if n is even.

Therefore, for the classical Euclidean Dirac operator, we have

(15) dimHk(V0) = dimHk(V1) = 2[n/2]
(
n+ k − 1

k

)
.

Another specialization is the signature operator d + d∗ defined on
differential forms on Rn+1, viewed as the Dirac operator associated to
the Clifford representation on the exterior algebra V = Λ(Rn+1) [8]
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with grading V0 = Λeven(Rn+1) and V1 = Λodd(Rn+1). However, a
finer grading associated to this representation, taking into account the
actual degree of a form, is more useful and will be specialized in the
next example under the name of Gauss-Bonnet operator.

Example 2. The Gauss-Bonnet-type operators. Hypothesis
(10) of Proposition 2 holds for an Euclidean Dirac operator associated
to a Z-graded representationV such that E+

i E−
j +E−

j E+
i = 0 for every

i �= j.

Indeed, these extra anti-commutation relations imposed on the ±-
Clifford matrices E±

i allow us to add to the relations (8) another pair:

(16) �D±x∓·+ x∓· �D± = −(Λ + L±),

where Λ :=
∑n

i=0 xi(∂/∂xi) is the ‘polynomial degree operator,’ i.e.,
Λ = k on P k(V), and L± are ‘Z-grading compatible positive V-
operators’ induced by the (same name) endomorphisms of V

L±v = −
n∑

i=0

E±
i E∓

i v, v ∈ V.

Notice that L± are Hermitian and positive with respect to the Her-
mitian product of V, and leave the summands Vq invariant. As
such, all eigenvalues of L± are non-negative and all the correspond-
ing eigenspaces are subordinated to the decomposition (5). Since
L+L− = L−L+, L+ and L− are simultaneously diagonalizable. In
fact, the identity L+ +L− = (n+1)Id shows that they carry identical
information.

Notice also that, since �D±L± = (L± − Id) �D± it suffices to test
the exactness of the complexes (10) on polynomial spinors which are
eigensections for Λ+L±. Equations (16) then prove this exactness, with
the possible exception of the slots P k(Vq) where Λ + L± would have
the eigenvalue 0. These slots could only be P 0(V0) in a �D+-complex or
P 0(Vq+1) in a �D−-complex; however, the range of index j appearing
in equation (10) excludes them. This proves that a representation as
is Example 2 satisfies the conclusions of Proposition 2.
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The notable specialization of Example 2 involves the Gauss-Bonnet
operator, i.e., the Euclidean Dirac operator associated to the represen-
tation of Cln+1,0 on itself (V = Cln+1,0 ⊗C) by left multiplication. If
ε0, ε1, . . . , εn, are generators of Cln+1,0 such that εiεj + εjεi = −2δij ,
then an orthonormal basis of Vq, q = 0, 1, 2, . . . , n+ 1, is

{εi1εi2 · · · εiq | 0 ≤ i1 < i2 < · · · < iq ≤ n}, dim (Vq) =

(
n+ 1

q

)
,

Ei(εi1εi2 · · · εiq ) = εiεi1εi2 · · · εiq ,

E+
i (εi1εi2 · · · εiq ) =

{
εiεi1εi2 · · · εiq if i /∈ {i1, i2, . . . , iq},
0 otherwise,

E−
i (εi1εi2 · · · εiq ) =

{
εiεi1εi2 · · · εiq if i ∈ {i1, i2, . . . , iq},
0 otherwise,

and L+
|Vq

= q. (By default, V0 = C, with basis {1}).
Clearly, E+

i E−
j + E−

j E+
i = 0 for every i �= j. By Proposition 2,

dimHk(Vq) =

k∑
j=−k

(−1)j
(
n+ 1

q + j

)(
n+ k − |j|
k − |j|

)
,

where
(
n+1
r

)
= 0, if r < 0 or r > n+ 1.

By induction on k, we can show now that, for q = 0 and q = n+ 1,

dimHk(V0) = dimHk(Vn+1) =

{
1 if k = 0,

0 if k �= 0
,

a result that is obvious also without relying on Proposition 2, and by
induction on q, we conclude [15] that

(17)
dimHk(Vq) =

q

q + k

n+ 1 + 2k

n+ 1− q + k

(
n+ k

k

)(
n

q

)
,

k = 0, 1, 2, . . . , q = 1, 2, . . . , n.

2. Spherical Dirac-type operators and separation of vari-
ables. We will now direct our attention to a class of generalized Dirac



SPECTRUM OF SPHERICAL DIRAC OPERATORS 1835

operators (in the sense of Gromov and Lawson, [13, page 103]), nat-
urally induced on the unit sphere Sn = {x ∈ Rn+1| |x|2 = 1} by
any Z-graded representation V of Cln+1,0. For the convenience of the
reader, and in order to emphasize that the Euclidean Dirac operators
considered in Section 1 are in fact the simplest instances of such oper-
ators, we review here the concept of generalized Dirac bundle and its
associated Dirac operator.

Let (M, g) be a complete Riemannian manifold of dimension d, and
let Cl (M) be the real Clifford bundle of algebras induced by the
tangent bundle TM and the Riemannian metric g. There is a canonical
embedding TM ⊂ Cl (M), and then the Riemannian metric and Levi-
Cività connection extends from TM to Cl (M) in such a way that the
connection ∇LC of Cl(M) preserves the metric and acts as a derivation.

A complex bundle of left modules over the bundle of algebras Cl(M),
say S →M , will be called a (generalized) Dirac bundle if S is furnished
with a Hermitian metric 〈·, ·〉 and a metric connection ∇S such that

i) The action on S by unit vectors in TM ⊂ Cl (M) is a pointwise
isometry.

ii) The connection ∇S is compatible with the Clifford multiplication,
in the sense that for local sections e in TM , φ in Cl (M), and s in S,
we have

∇S
e (φ·s) =

(∇LC
e φ

) ·s+ φ· (∇S
e s

)
.

Above, the “·” indicates the action of Cl (M) on S, while the multi-
plication in Cl (M) will be simply represented by juxtaposition.

There are two fundamental examples of Dirac bundles associated to
M :

a) S = Cl (M) ⊗ C. In this case Cl (M) acts on S by left algebra
multiplication and ∇S is the complexification of ∇LC .

b) If M is a spin manifold [18, page 85], then S can be taken to
be the spinor bundle Σ(M) of M . To be more specific, for a spin
manifold the principal SO (d)-bundle PSO(M) of oriented frames in TM
lifts to a principal Spin-bundle PSpin(M), equivariantly with respect
to the 2-cover map Spin (d) → SO (d). The spinor bundle Σ(M)
is then the fiber product Σ(M) := PSpin(M) ×μ Δ, where Δ is an
irreducible representation of the algebra Cl d,0⊗C and μ is the unitary
representation μ : Spin (d) → U(Δ) induced by the left multiplication
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with elements of Spin (d) ⊂ Cld,0 ⊗ C. We then get the compatible
connection ∇Spin of Σ(M) by lifting the Riemannian connection on
PSO(M) to PSpin(M), via the Lie algebra isomorphism so (d) 
 spin (d)
[18, page 108].

Any Dirac bundle S generates a distinguished differential operator
D : C∞(M,S) → C∞(M,S), the generalized Dirac operator, defined
as follows: If m : TM ⊗ S → S denotes the restriction to TM of the
Clifford action · of Cl (M) on S, then D = m ◦ ∇S . Locally, D admits
the representation

D =

d∑
i=1

vi·∇S
vi ,

where (v1, v2, . . . , vd) is a local orthonormal frame in TM .

Since M is complete, D with domain C∞
cpt(M,S) is an essentially self-

adjoint first order elliptic differential operator in L2(M,S) [13, page
106]. In fact, the principal symbol σξ(D), ξ ∈ T ∗(M) is the Clifford
multiplication by the tangent vector field metric equivalent to ξ. This
can be seen from the following obvious symbol formula:

D(fs) = grad f ·s+ fDs, f ∈ C∞(M), s ∈ C∞(M,S).

If W ⊂⊂M is a relatively compact open subset of M with piecewise
smooth boundary ∂W , and if n denotes the outward unit normal vector
field to ∂W , then the following integration by parts formula holds for
the Dirac operator D,

(Ds1, s2)W = (s1, Ds2)W + (n·s1, s2)∂W , s1, s2 ∈ C∞(W,S),

where (·, ·)W denotes the usual global (integrated) inner product in
C∞(W,S) and the integration on ∂W is carried out with respect to
the measure induced from W . The above equation proves therefore the
formal self-adjointness of D.

Finally, for the square of D, the following Bochner-Witzenböck for-
mula holds true [13, page 111],

D2 =
(∇S

)∗∇S +R,
where R is the Hermitian curvature bundle morphism acting on S
according to the formula

R =
∑
i<j

vi·vj·Rvi,vj , Rvi,vj = [∇S
vi ,∇S

vj ]−∇S
[vi,vj ]

.
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The Dirac operator associated to a spin manifold M as in b) will be
called the classical Dirac operator.

Generalized Dirac operators are used in this paper in conjunction
with only two types of manifolds: The Euclidean space M = Rn+1 and
the n-dimensional unit sphere Sn ⊂ Rn+1.

The ones on Rn+1, which have already appeared in Section 1, are
restricted to Dirac bundles of type Rn+1 ×V, on which Cl(Rn+1) =
Rn+1 × Cln+1,0 acts in the obvious way if V is a representation of
Cln+1,0. So, in the terminology of Section 1, (∂/∂xi)· ≡ Ei. Then
the trivial connection on Rn+1 × V is clearly compatible with Clif-
ford multiplication, and the associated Dirac operator takes the form
of equation (1) while the symbol formula, respectively the Bochner-
Weitzenböck formula, becomes equation (2), respectively equation (3).

Sometimes, as in the proof of the separation of variables theorems
below, the Euclidean Dirac operators will be restricted to Rn+1 \ {0}
and then locally represented in frames adapted to the polar coordinate
representation Rn+1 \ {0} ≡ (0,∞)× Sn.

The case M = Sn will only involve generalized Dirac operators
induced, via a separation of variables, from Euclidean Dirac operators.
There is a lot of work [6, 9, 14, 23] devoted to classical Dirac operators
on hypersurfaces of spin manifolds. Typically, the hypersurface inherits
in a canonical way a spin structure from the surrounding manifold, and
with it the whole Dirac spinor bundle package. In this respect, the
inclusion Sn ⊂ Rn+1 does not present problems for n ≥ 2, since the
only (trivial) spin structure of Rn+1 induces the only spin structure on
Sn. As for n = 1, it is elementary to see that the spin structure on R2

induces the nontrivial (of the two) spin structure on S1.

By contrast, there is no work on hypersurface generalized Dirac
operators, and this will force us to present certain proofs below in
more detail.

The Clifford bundle of algebras Cl (Sn), associated to the tangent
bundle T (Sn) equipped with the induced Euclidean metric 〈·, ·〉, acts
naturally by restriction on the trivial bundle Sn × V ⊂ Rn+1 × V.
However, the trivial connection on Sn × V is not compatible with
the natural Levi-Cività connection ∇LC of Cl (Sn). This prevents
us from directly constructing generalized Dirac operators on Sn ×V.
Nonetheless, such operators do exist. We could invoke [1, page 88] to
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prove their existence, but prefer an explicit construction here, via the
following lemma.

Lemma 1. For any (ungraded) representation V of Cl n+1,0 there
are metric connections ∇0 on the trivial bundle Sn×V compatible with
the Levi-Cività connection ∇LC of Cl (Sn), that is, if e, φ, and σ are,
respectively, local sections in T (Sn), Cl (Sn) and Sn ×V, then

(18) ∇0
e(φ·σ) =

(∇LC
e φ

) ·σ + φ· (∇0
eσ

)
.

Proof. We will construct a concrete connection ∇0 satisfying equa-
tion (18). To this end, for e, σ local sections in T (Sn), respectively
Sn ×V, define

(19) ∇0
eσ := e(σ) +

1

2
e·n·σ,

where e(σ) represents ordinary component-wise differentiation of σ
in the direction of e and n· = n(ω)· represents (pointwise) Clifford
multiplication in {ω} ×V ≡ V by the position vector ω ∈ Sn, i.e., if
ω = (ω0, ω1, . . . , ωn) ∈ Sn ⊂ Rn+1, then n(ω)· = ∑n

i=0 ωiEi, Ei as in
Section 1.

To show that the assignment (19) satisfies equation (18), it suffices
to verify (18) for local sections φ belonging to T (Sn).

Recall that, in polar coordinates,Rn+1\{0} ≡ (0,∞)×Sn, x ≡ (r, ω),
r = |x|, ω = x/|x|, the Euclidean metric ds2 on Rn+1 \ {0} and the
induced metric dσ2 on Sn relate by ds2 = dr2+r2dσ2. Consequently, if
{e1, e2, . . . , en} is an (oriented) local orthonormal frame in T (Sn), then
{(∂/∂r), (e1/r), . . . , (en/r)} is a local orthonormal frame in T (Rn+1 \
{0}) and [19, page 206] the Levi-Cività connection ∇ in T (Rn+1 \{0})
and the standard lift of the Levi-Cività connection ∇LC in T (Sn) to
T (Rn+1 \ {0}) are related by the equations
(20)

∇∂/∂r
∂

∂r
= 0, ∇∂/∂rei = ∇ei

∂

∂r
=

ei
r
, ∇eiej = −rδij

∂

∂r
+∇LC

ei ej .

Since, obviously, (∂/∂r) =
∑n

i=0 ωi(∂/∂xi) at x = rω, Clifford multipli-
cation by (∂/∂r) in {rω}×V ≡ V equals precisely n·. As a result, for
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e, φ local sections in T (Sn), σ local section in Sn×V, n·φ·+φ·n· = 0,
and

∇0
e(φ·σ) = e(φ·σ) + 1

2
e·n·φ·σ

= (∇eφ) ·σ + φ·e(σ)− 1

2
(eφ)·n·σ

= −〈e, φ〉n·σ +
(∇LC

e φ
) ·σ + φ·e(σ)− 1

2
(eφ)·n·σ

=
(∇LC

e φ
) ·σ + φ·∇0

eσ −
1

2
(eφ+ φe)·n·σ − 〈e, φ〉n·σ

=
(∇LC

e φ
) ·σ + φ·∇0

eσ,

since Clifford multiplication in Cl (Sn) satisfies eφ+ φe = −2〈e, φ〉.

Remark. The metric connection ∇0 on Sn × V constructed in the
Lemma 1 also satisfies the commutation relation
(21)
∇0

e(n·σ) = n·∇0
eσ, e, σ local sections in T (Sn), respectively, Sn×V.

The remark is an immediate consequence of one of equations (20) and
the very definition of ∇0.

The following theorem now gives a standard separation of variables
for Euclidean Dirac operators on Rn+1 associated to (ungraded) rep-
resentations V of Cln+1,0 and their Cl (Sn)-compatible connections.

Separation of variables Ungraded version. Let �D be an Eu-
clidean Dirac operator on C∞(Rn+1,V), where V is an ungraded rep-
resentation of Cln+1,0. Assume that Sn×V, viewed as a Cl(Sn)-bundle
in the obvious way, admits a Cl(Sn)-compatible metric connection ∇0

(cf. equation (18)) which also satisfies equation (21). Then, via the
identification C∞(Rn+1 \ {0},V) ≡ C∞((0,∞), C∞(Sn,V)), the fol-
lowing separation of variables formula holds

(22) �D|Rn+1\{0} ≡ n· ∂
∂r

+
1

r
�∂ +

1

r
A,

where �∂ is the generalized Dirac operator on C∞(Sn,V), associated
to the connection ∇0 and the Clifford multiplication on Sn ×V, i.e.,
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if {e1, e2, . . . , en} is a local orthonormal frame in Sn and σ is a local
section of Sn ×V, then

(23) �∂σ =

n∑
i=1

ei·∇0
eiσ,

and where A ∈ End (Sn×V) is a suitable bundle morphism. Moreover,
�∂,n· and A satisfy the following commutation relations:

�∂n·+ n·�∂ = 0(24)

An· + n·A = −nIdSn×V.(25)

Proof. Representing �D in the local orthonormal frame

{
∂

∂r
,
e1
r
, . . . ,

en
r

}
in T (Rn+1 \ {0})

associated to a local orthonormal frame {e1, e2, . . . , en} in T (Sn) yields,
for s ∈ C∞(Rn+1 \ {0},V) ≡ C∞((0,∞), C∞(Sn,V)),

(26) �Ds =

(
∂

∂r

)
·∂s
∂r

+

n∑
i=1

(
ei
r

)
·ei
r
(s).

As before, (∂/∂r)· = n·. Also,

ei
r

=
1

r

n∑
j=0

ei(rωj)
∂

∂xj
=

n∑
j=0

ei(ωj)
∂

∂xj

implies that (
ei
r

)
· =

n∑
j=0

ei(ωj)Ej = ei·,

and so (ei/r)· does not depend on r. Consequently, the representation
(26) becomes

(27) �Ds = n·∂s
∂r

+
1

r

n∑
i=1

ei·ei(s).
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Since the differential operator appearing in equation (27),

(28) δσ :=

n∑
i=1

ei·ei(σ), σ ∈ C∞(Sn,V),

does not engage the radial dependence of s, the separation of variables
formula (22) follows now if we set, for σ ∈ C∞(Sn,V),

(29) Aσ :=

n∑
i=1

ei·
(
ei(σ) −∇0

eiσ
)
.

Clearly, A is C∞(Sn)-linear so it belongs to End (Sn ×V).

The commutation relation (24) then follows immediately by applying
the remark (equation (21)) to equation (23), given that n·e·+e·n· = 0,
for local sections e in T (Sn).

Since A = δ−�∂, equation (25) is equivalent to δn·+n·δ = −nIdSn×V,
which in turn, follows from equation (28), giving δ, by using that
∇ei(∂/∂r) = (ei/r) (cf. (20)).

The chief purpose of this paper is the investigation of the spectrum of
the Dirac-type operator �∂ on C∞(Sn,V). Namely, we seek a relation-
ship between the eigenvalues and eigensections of �∂, on one hand, and
the polynomial Dirac spinor spaces associated to �D, on the other hand.
The main vehicle in this analysis, inspired by Shubin’s derivation of the
spectral decomposition of the ordinary Laplace operator on Euclidean
spheres [21, page 160], is of course the separation of variables formula
(22). Such a task would be hopeless if one did not know more about the
bundle morphism A appearing in (22). Guided by what happens in the
case of our motivating examples, the classical Dirac and Gauss-Bonnet
operators on Sn, we will refine the separation of variables formula (22)
by making use of graded representations V of Cln+1,0.

To this end let, V be a Z-graded representation of Cln+1,0, satisfying
the requirements of equation (5). It is then reasonable to request
that a Cl(Sn)-compatible connection ∇0 on Sn×V leave invariant the
subbundles Sn×Vq, in the sense that if σq is a Vq-valued local section
of Sn ×V and e is a local section of T (Sn), then ∇0

e(σq) is Vq-valued.
This is not the case for the connection constructed in Lemma 1, unless
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the representation is, as in Example 1, Z2-graded. Nor is it obvious
how to prove their existence, in general; however, since they exist in
the case of the main examples we have in mind we will always require
them.

The following lemma takes a different look at the Cl(Sn)-compatible
connections with respect to the Z-grading of V. This look will be
relevant for the spectral analysis of �∂.

Lemma 2. Let V = ⊕p+1
q=0Vq be a Z-graded representation of

Cln+1,0, satisfying the requirements of equation (5), and let ∇0 be
a Cl (Sn)-compatible connection on Sn × V which also satisfies the
provisions of equation (21). Then there is a subbundle Ω0 of Sn ×V
and an orthogonal bundle decomposition

Ω0 =

p∑
q=0

Ω0
q,

such that

(30) Sn×Vq = Ω0
q⊕n·Ω0

q−1, q = 0, 1, . . . , p+1, (Ω0
−1 = Ω0

p+1 = 0).

Moreover, Sn ×Vq, q = 0, 1, . . . , p+1, are ∇0-invariant if and only if
Ω0

q, q = 0, 1, . . . , p, are ∇0-invariant.

Proof. For any q = 0, 1, . . . , p and any ω ∈ Sn, define

(31) Ω0
q,ω := {(ω, v)|v ∈ Vq and n(ω)·v ∈ Vq+1}.

Ω0
q,ω has a natural structure of Hermitian vector spaces, induced by

that of V. Since n·V0 ⊂ V1, we have that Ω0
0 = Sn ×V0 and so Ω0

0 is
a (trivial) subbundle of Sn ×V.

If we prove (30), then an induction on q shows that Ω0
q will be

a subbundle of Sn × V, since Sn × Vq and n·Ω0
q−1 are subbundles,

assuming that Ω0
q−1 is a subbundle. Clearly, Ω0

q,ω ⊥ n(ω)·Ω0
q−1,ω, since

n(ω)· is a skew-Hermitian operator on V and Vq−1 ⊥ Vq+1. As a
result, Ω0

q ⊕ n·Ω0
q−1 ⊆ Sn ×Vq.

Consider now (ω, vq) ∈ Sn × Vq. Then the Z-grading property of
V implies that n(ω)·vq = σq−1(ω) + σq+1(ω), where σq∓1 ∈ Vq∓1.
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Thus, −vq = n(ω)·σq−1(ω) + n(ω)·σq+1(ω). This last equation shows
that both n(ω)·σq∓1 belong to Vq, i.e., (ω, σq−1(ω)) ∈ Ω0

q−1,ω and
(ω,n(ω)·σq+1(ω)) ∈ Ω0

q,ω. This proves that S
n ×Vq ⊆ Ω0

q ⊕ n·Ω0
q−1.

It is worth noting that equations (30) uniquely determine the sub-
bundles Ω0

q . Formally, Ω0
p+1 is also defined, but Ω0

p+1 = 0. Equations
(30) also make it clear that

(32) Sn ×V = Ω0 ⊕ n·Ω0.

Since dimVq = rankΩ0
q + rankΩ0

q−1 and dimV0 = rankΩ0
0 we see

that

(33) rankΩ0
q = dimVq − dimVq−1 + dimVq−2 − · · · .

Finally, the simultaneous∇0-invariance of Sn×Vq, q = 0, 1, . . . , p+1,
and Ω0

q, q = 0, 1, . . . , p, follows immediately from the definition (31) of
Ω0

q and equation (21).

Yet again motivated by what happens in the case of the spherical
classical Dirac and Gauss-Bonnet operators and in order to get more
accurate results later we make one last assumption. The set-up being
that described in the ungraded version of the separation of variables
theorem and in Lemma 2 we assume that, for q = 0, 1, . . . , p, there is
λq ∈ R, 0 ≤ λq ≤ n, such that

(34) A|Ω0
q
= λqn·.

Then A is completely determined on Sn ×V since, by equation (25),

(35) A|n·Ω0
q
= (n− λq)n·, q = 0, 1, . . . , p.

Separation of variables Graded version. Let �D be an Euclidean
Dirac operator on C∞(Rn+1,V), where V = ⊕p+1

q=0Vq is a graded
representation of Cln+1,0 (cf. equation (5)). Assume that Sn×V admits
a Cl (Sn)-compatible metric connection ∇0 (cf. equation (18)) which
leaves Sn ×Vq, q = 0, 1, . . . , p+ 1, invariant, and in addition satisfies
equation (21). Then, via the identification C∞(Rn+1 \ {0},V) ≡
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C∞((0,∞), C∞(Sn,V)) the following separation of variables formula
holds:

(36) �D|Rn+1\{0} ≡ n· ∂
∂r

+
1

r
�∂ +

1

r
A,

where �∂ is the generalized Dirac operator on C∞(Sn,V), associated to
the connection ∇0 and the induced Clifford multiplication on Sn ×V,
and where A ∈ End (Sn ×V) is a suitable bundle morphism.

There is also a subbundle Ω0 of Sn×V, and a ∇0-invariant orthogonal
bundle decomposition Ω0 = ⊕p

q=0Ω
0
q, where Sn ×Vq = Ω0

q ⊕ n·Ω0
q−1,

q = 0, 1, . . . , p + 1, such that, if Γq := C∞(Sn,Ω0
q), q = 0, 1, . . . , p,

then

(37) �∂(Γq) ⊂ Γq−1 ⊕ Γq+1 ⊕ n·Γq.

If, in addition, there is a λq ∈ R such that A|Ω0
q
= λqn·, q = 0, 1, . . . , p,

then

(38) �∂2(Γq) ⊂ Γq.

Proof. A good portion of the theorem is embedded in the ungraded
version of it or in Lemma 2. The only things that need to be addressed
are the contents of equations (37) and (38).

If σq ∈ Γq, then �∂σq ∈ C∞(Sn,Vq−1) ⊕ C∞(Sn,Vq+1), given
the definition (23) of �∂, the ∇0-invariance of σq ∈ C∞(Sn,Vq) and
the Z-grading property (5) of the Clifford multiplication. If �∂σq =
sq−1 + sq+1, sq∓1 ∈ C∞(Sn,Vq∓1), we claim that sq−1 ∈ Γq−1 and
sq+1 ∈ Γq+1 ⊕ n·Γq, which claim proves equation (37).

sq−1 ∈ Γq−1 is equivalent to n·sq−1 ∈ C∞(Sn,Vq), i.e., n·sq−1 has no
Vq−2-valued component. Now, n·sq−1 = n·�∂σq−n·sq+1 = −�∂(n·σq)−
n·sq+1. Since, by definition, n·σq ∈ C∞(Sn,Vq+1), −�∂(n·σq) ∈
C∞(Sn,Vq) ⊕ C∞(Sn,Vq+2). Also, −n·sq+1 ∈ C∞(Sn,Vq) ⊕ C∞

(Sn,Vq+2), and so sq−1 ∈ Γq−1.

Obviously, sq+1 ∈ Γq+1 ⊕ n·Γq, since C∞(Sn,Vq+1) = Γq+1 ⊕ n·Γq.
This completes the proof of statement (37).

Towards the proof of equation (38), we will show first that �∂2 leaves
invariant C∞(Sn,Vq), q = 0, 1, . . . , p + 1. Since Sn ×Vq is a trivial
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bundle there are constant sections εα : Sn → Vq, α = 1, 2, . . . , Nq,
Nq = dimVq, such that every element of C∞(Sn,Vq) is representable

as
∑Nq

α=1 fαεα, fα ∈ C∞(Sn). Consequently, it suffices to show that
�∂2(fαεα) ∈ C∞(Sn,Vq) for any α = 1, 2, . . . , Nq.

Since εα is a constant section, equation (29) gives δεα = 0 and since
�∂ = δ − A, we have �∂εα = −Aεα. Now εα ∈ C∞(Sn,Vq) is uniquely
representable as εα = σq + n·σq−1, σq ∈ Γq, σq−1 ∈ Γq−1. As a result,
hypotheses (25) and (34) yield

�∂εα = λqn·σq − (n− λq−1)σq−1 = λqn·εα + (λq + λq−1 − n)σq−1.

Consequently,
(39)
�∂2εα = −λqn·�∂εα + (λq + λq−1 − n)�∂σq−1

= λ2
qεα − λq(λq + λq−1 − n)n·σq−1 + (λq + λq−1 − n)�∂σq−1.

Equations (37) and (39) imply that

(40) �∂2εα ∈ C∞(Sn,Vq)⊕ Γq−2.

Similar algebraic manipulations also yield

�∂2εα=(n−λq−1)
2εα+(n−λq−1)(λq+λq−1−n)σq−(λq+λq−1−n)n·�∂σq,

which amounts to

(41) �∂2εα ∈ C∞(Sn,Vq)⊕ n·Γq+1.

It is now clear from equations (40) and (41) that �∂2εα ∈ C∞(Sn,Vq).

An iteration of the symbol formula for the Dirac operator �∂ gives

(42) �∂2(fαεα) = −
(
Δ0fα

)
εα + 2∇0

grad fαεα + fα�∂2εα,

where Δ0 is the Laplace operator on Sn. Since ∇0 leaves Sn × Vq

invariant and �∂2εα ∈ C∞(Sn,Vq), we conclude that �∂2(fαεα) ∈
C∞(Sn,Vq), as stated.

We will prove that �∂2(Γq) ⊂ Γq by induction on q. For q = 0, the
statement follows from the above discussion, since Γ0 = C∞(Sn,V0).



1846 N. ANGHEL

Assume �∂2(Γq−1) ⊂ Γq−1, and let σq ∈ Γq. Since Γq ⊂ C∞(Sn,Vq), we
have �∂2σq ∈ C∞(Sn,Vq), or �∂2σq = sq+n·sq−1, sq ∈ Γq, sq−1 ∈ Γq−1.
Using the global (integrated) product (·, ·) and the associated norm
|| · || on L2(Sn,V), we have

||n·sq−1||2 = (�∂2σq,n·sq−1) = (σq, �∂2(n·σq−1)) = (σq ,n·�∂2σq−1) = 0,

since by the inductive hypothesis n·�∂2σq−1 ∈ n·Γq−1, and Γq ⊥ n·Γq−1.
Consequently, n·sq−1 = 0, or �∂2σq ∈ Γq. The proof of the theorem is
complete.

Equations (37) and (38) of the previous theorem suggest that looking
at the spectrum of �∂2 rather than �∂ might be a simpler endeavor.
It is easy to relate the spectra of the two operators, as the following
proposition shows.

Proposition 3. Let �∂ be the Dirac operator which appears in the
separation of variables theorems and �∂2 its square, both with domains
C∞(Sn,V).

a) λ = 0 is an eigenvalue of �∂ if and only if it is an eigenvalue of
�∂2, with the same multiplicity. In fact, the 0-eigenspaces of the two
operators are equal.

b) A real number λ �= 0 is an eigenvalue of �∂ with multiplicity mλ if
and only if λ2 is an eigenvalue of �∂2 with multiplicity 2mλ.

Therefore, if �∂2(Γq) ⊂ Γq, for the spectral analysis of �∂, it suffices
to study the spectral decomposition of the restrictions of �∂2 to Γq,
q = 0, 1, . . . , p.

Proof. a) Denote by Eλ(�∂) the λ-eigenspace of �∂ and similarly by
Eλ(�∂2) the λ2-eigenspace of �∂2. Clearly, E0(�∂) ⊆ E0(�∂2). If �∂2σ = 0,
σ ∈ C∞(Sn,V), then 0 = (�∂2σ, σ) = (�∂σ, �∂σ), i.e., �∂σ = 0. Thus,
E0(�∂2) ⊆ E0(�∂).
b) For λ �= 0 real, the mapping σ → n·σ is a linear isomorphism from

Eλ(�∂) onto E−λ(�∂). Moreover, Eλ(�∂) and E−λ(�∂) are orthogonal and

Eλ(�∂)⊕ E−λ(�∂) ⊆ Eλ2(�∂2).
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Now define the linear map L : Eλ2(�∂2)→ Eλ(�∂) by

Lσ =
1

2

(
σ +

1

λ
�∂σ

)
.

Since the restriction of L to the subspace Eλ(�∂) of Eλ2(�∂2) is the
identity, we see that L is an onto mapping. Thus, dim (Eλ2 (�∂2)) −
dim (kerL) = dim (Eλ(�∂)). However, kerL = E−λ(�∂).
The last statement in Proposition 3 follows from (24) and the graded

version of the separation of variables theorem.

We now define two important classes of spherical Dirac operators �∂
on which our main result, a complete spectral decomposition theorem,
will rest.

Definition. Assume that (V, �D,∇0, �∂,A,Ω0) satisfies all the hy-
potheses set forth in the graded version of the separation of variables
theorem, including equation (34).

a) �∂ is said to be a spherical classical Dirac-type operator if

�∂(Γq) ⊂ n·Γq, q = 0, 1, 2, . . . , p.

b) �∂ is said to be a spherical Gauss-Bonnet-type operator if

�∂(Γq) ⊂ Γq−1 ⊕ Γq+1, q = 0, 1, 2, . . . , p.

In case b), �∂2
|Ω0 , which has the property �∂2(Γq) ⊂ Γq, is said to be a

spherical Laplace-Beltrami-type operator, by analogy with the Laplace-
Beltrami operator on differential forms.

Notice that, in the case of a spherical classical Dirac-type operator,
Ω0 becomes a Cl (Sn)-module when Clifford multiplication by e, e local
section in T (Sn) is replaced by n·e·. Therefore, n·�∂ is also a Dirac-
type operator, (n·�∂)2 = �∂2, (n·�∂)(Γq) ⊂ Γq, and so all the spectral
information of �∂ is captured by (n·�∂)|Ω0 . For this reason, it is more
appropriate to call (n·�∂)|Ω0

a spherical classical Dirac-type operator.
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The separation of variables formula (36) now becomes

(43)
�D|Rn+1\{0}s ≡ n·

(
∂

∂r
+

1

r
(−n·�∂) + 1

r
λq

)
s,

s ∈ C∞((0,∞),Γq) ⊂ C∞(Rn+1 \ {0},Vq).

For an example of a spherical classical Dirac-type operator, take �D
to be the classical Euclidean Dirac operator (dimV = 2[n/2]+1, cf.,
Example 1), with the connection ∇0 given by equation (19). Then
Ω0 = Ω0

0 
 C[n/2] and A|Ω0
0
= (n/2)n·. n·�∂ is then associated to

a Dirac bundle isomorphic to that generating the spherical classical
Dirac operator. In such a case, Ω0 identifies naturally with the spinor
bundle Σ(Sn) associated to the spin manifold Sn inheriting its spin
structure from Rn+1.

Indeed, PSpin(S
n) is the reduction of PSpin(R

n+1) via the inclusion
maps

Spin (n+ 1) −→ SO (n+ 1)

∪ ∪
Spin (n) −→ SO (n)

and taking into consideration the structure of the irreducible represen-
tations of Cln,0 ⊗ C and Cln+1,0 ⊗ C, [3, page 12], we conclude that
Σ(Rn+1) |Sn≡ Σ(Sn), when n is even, and more generally Σ(Sn) ≡ Ω0.
For the identification of the ∇0

|Ω0 with the spinor connection ∇Spin of

Σ(Sn), see [9, page 10].

Naturally, an example of spherical Gauss-Bonnet-type operator is
linked to Example 2. We elaborate here on the spherical Gauss-
Bonnet operator, associated to the Euclidean Gauss-Bonnet operator
specialized in Example 2. When V = Cln+1,0×C, it follows that a local
basis of Ω0

q, q = 0, 1, . . . , n, is given by {ei1ei2 · · · eiq}1≤i1<i2<···<iq≤n,
where {e1, e2, . . . , en} is as usual a local orthonormal frame in T (Sn),
and juxtaposition means multiplication in Cln+1,0⊗C via the pointwise
identification

Tω(S
n) � ei =

n∑
j=0

cij
∂

∂xj
←→

n∑
j=0

cijεj ∈ Cln+1,0 ⊗C.

This can be seen by induction on q, as in the proof of Lemma 2.
Obviously,

(44) T (Sn)·Ω0
q ⊂ Ω0

q−1 ⊕ Ω0
q+1, q = 0, 1, . . . , n.
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There is at most one Cl(Sn)-compatible connection ∇0 on Ω0 which
on Ω0

q would clearly satisfy
(45)

∇0
ei(ei1ei2 · · ·eiq )=

q∑
k=1

ei1ei2 · · · eik−1

(∇LC
ei eik

)
eik+1

· · · eiq , (∇0
ei(1)=0).

Since, for any point of Sn, there are local orthonormal frames {e1, e2,
. . . , en} in T (Sn) such that ∇LC

ei ej = 0 at that point, one can see that
equation (45) indeed defines a connection which, moreover, leaves Ω0

q

invariant. Also, equations (20) and (29) prove that

(46) A|Ω0
q
= qn·, q = 0, 1, 2, . . . , n.

For a different way of defining the connection ∇0, based on Lie algebra
representations, see [18, page 107].

Finally, equations (23) and (44) show that

(47) �∂(Γq) ⊂ Γq−1 ⊕ Γq+1, q = 0, 1, 2, . . . , n.

We are now in a position to state and prove the main result of this
paper.

The spectral decomposition for spherical Dirac-type opera-
tors. Assume that �D is an Euclidean Dirac operator on C∞(Rn+1,V),
where V = ⊕p+1

q=0Vq is a graded representation of Cln+1,0 (cf. equation
(5)). Assume that Sn ×V admits a Cl(Sn)-compatible metric connec-
tion ∇0 (cf. equation (18)) which leaves Sn ×Vq, q = 0, 1, . . . , p + 1,
and therefore the subbundles Ω0

q of Sn × Vq, q = 0, 1, . . . , p (cf.
Lemma 2), invariant, and in addition, satisfies equation (21). Assume
that the bundle morphism A appearing in the separation of variables
formula (36) satisfies the provisions of equation (34), for 0 ≤ λq ≤ n,
q = 0, 1, . . . , p. Then, for the spherical Dirac operator �∂ of equation
(36), we have the following spectral decomposition (see also Proposi-
tion 3):

a) If �∂ is a spherical classical Dirac-type operator (cf. Definition, a)),
then for any q = 0, 1, . . . , p, the spectrum of n·�∂|Ω0

q
, belongs to two

disjoint families, λq + k, and λq − n− k, k = 0, 1, 2, . . . . Moreover, if
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Eλ(n·�∂q) is the eigenspace of n · �∂|Ω0
q
corresponding to the eigenvalue λ,

and mq
λ is the associated multiplicity, then Eλ(n·�∂q) embeds naturally

in Hk(Vq) if λ = λq + k, and in Hk(Vq+1) if λ = λq − n− k, and

(48) mq
λq+k +mq−1

λq−1−n−k = dimHk(Vq), k = 0, 1, 2, . . . .

In particular,

m0
λ0+k = dimHk(V0) and mp

λp−n−k = dimHk(Vp+1),

k = 0, 1, 2, . . . .

Therefore, if p = 0, the spherical classical Dirac-type operator n·�∂ has
only one component, n·�∂ : Γ0 → Γ0 whose spectrum is precisely λ0+k,
λ0 − n− k, k = 0, 1, 2, . . . , with multiplicities

m0
λ0+k = m0

λ0−n−k =
1

2
dimHk(V).

b) If �∂ is a spherical Gauss-Bonnet-type operator (cf. Definition, b)),
then for any q = 0, 1, . . . , p, the positive spectrum of the q-Laplace-
Beltrami-type operator �∂2

|Ω0
q
, belongs to the non-zero elements of two

families, (λq+1+k)(n+k−λq) and (λq+k)(n+k−λq−1), k = 0, 1, 2, . . . .
Moreover, if mq

λ is the multiplicity of λ > 0 as an eigenvalue of �∂2
|Ω0

q
,

then

(49)
mq

(λq+1+k)(n+k−λq)
= dimHk(Vq+1),

mq
(λq+k)(n+k−λq−1)

= dimHk(Vq), k = 0, 1, 2, . . . ,

unless there are non-negative integers k and l such that (λq+1 + k)(n+
k − λq) = (λq + l)(n+ l− λq−1), in which case
(50)
mq

(λq+1+k)(n+k−λq)
= mq

(λq+l)(n+l−λq−1)
= dimHk(Vq+1)+dimH l(Vq).

λ = 0 may be an eigenvalue of �∂2
|Ω0

q
only if either λq = 0 or λq = n. If

λq = 0, then the corresponding eigenspace embeds naturally in H0(Vq),
while if λq = n, it embeds in H0(Vq+1). If q = 0 and λ0 = 0,
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then m0
0 = dimH0(Vq) = dimVq, and if q = p and λp = n, then

mp
0 = dimH0(Vp+1) = dimVp+1. These two last cases also fit the

description provided by equation (49), for the zero values of the families
of eigenvalues indicated there.

Proof. a) For a fixed q = 0, 1, . . . , p, let λ ∈ R be an eigenvalue
of n·�∂|Ω0

q
, with non-zero eigensection σq ∈ Γq. Then equation (43)

shows that rλ−λqσq(ω) ∈ C∞((0,∞),Γq) ⊂ C∞(Rn+1 \ {0},Vq) is a
0-eigenspinor for �D|Rn+1\{0}. By Proposition 1, there is a non-negative
integer k such that either λ−λq = k or λ−λq = −n−k. If λ = λq+k,
x = 0 is a removable singularity of rλ−λqσq(ω) = rkσq(ω), which then
belongs to Hk(Vq). If λ = λq − n − k, then, again by Proposition 1,
there is an hk ∈ Hk(V) such that

rλ−λqσq(ω) = r−n−kσq(ω) =
x·hk(x)

|x|2k+n+1
, x = rω, |x| = r, x �= 0.

Since x·hk(x) = rk+1n·hk(ω), we conclude that hk(ω) = −n·σq(ω) ∈
Vq+1, and so hk ∈ Hk(Vq+1).

Conversely, if pk ∈ Hk(Vq) for some k = 0, 1, 2, . . . , then pk(x) =
rk(σq(ω) + n·σq−1(ω)), σq ∈ Γq, σq−1 ∈ Γq−1, and then �D(pk) = 0 is
equivalent to n·�∂σq = (λq + k)σq and n·�∂σq−1 = (λq−1 − n− k)σq−1.
The rest of the claims in a) are then obvious.

b) Assume now that �∂ is a spherical Gauss-Bonnet-type operator,
and for λ ≥ 0 and q = 0, 1, . . . , p, define

�∂2
q := �∂2

|Ω0
q
, Eλ(�∂2

q) := {σq ∈ Γq | �∂2σq = λσq},
E±

λ (�∂2
q) := {σq ∈ Γq | �∂2σq = λσq, �∂σq ∈ Γq±1}.

In preparation for proving b), we first show that, if λ > 0 is an
eigenvalue of �∂2

q, then there is an isomorphism

Eλ(�∂2
q) 
 E+

λ (�∂2
q−1)⊕ E−

λ (�∂2
q+1),

implemented by the mapping

Eλ(�∂2
q) � σq �−→ �∂σq = σq−1 + σq+1 ∈ Γq−1 ⊕ Γq+1.
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This mapping is well defined in the sense that, if σq ∈ Eλ(�∂2
q) then

σq∓1 ∈ E±
λ (�∂2

q∓1). Indeed, �∂2σq = λσq implies that �∂σq−1 + �∂σq+1 =
λσq , and since �∂σq∓1 ∈ Γq∓2 ⊕ Γq, we have �∂σq∓1 ∈ Γq. Also, from
�∂3σq = λ�∂σq, we see that �∂2σq−1 + �∂2σq+1 = λ(σq−1 + σq+1), and
since �∂2(Γq∓1) ⊂ Γq∓1, we have �∂2σq∓1 = λσq∓1. Consequently, if
σq ∈ Eλ(�∂2

q), then �∂σq = σq−1 + σq+1 ∈ E+
λ (�∂2

q−1)⊕ E−
λ (�∂2

q+1).

The mapping σq �→ �∂σq = σq−1 + σq+1 is also one-to-one. Indeed, if
�∂σq = 0, then λσq = �∂2σq = 0, and since λ �= 0, σq = 0.

Finally, to the end of proving that the mapping σq �→ �∂σq =
σq−1 + σq+1 is onto, we infer that the mapping �∂|Ω0 : C∞(Sn,Ω0) →
C∞(Sn,Ω0) splits C∞(Sn,Ω0) as C∞(Sn,Ω0) = ker �∂|Ω0 ⊕ (ker �∂|Ω0)⊥

and (ker �∂|Ω0)⊥ = im �∂|Ω0 . This is a general property of elliptic self-
adjoint differential operators on compact manifolds. Here the orthogo-
nal complement is taken with respect to the global inner product (·, ·)
of C∞(Sn,Ω0) ⊂ L2(Sn,V). We claim that

E+
λ (�∂2

q−1)⊕ E−
λ (�∂2

q+1) ⊂
(
ker �∂|Ω0

)⊥
.

Indeed, if τq−1+τq+1 ∈ E+
λ (�∂2

q−1)⊕E−
λ (�∂2

q+1) and if α ∈ ker �∂|Ω0 , then

λ(τq−1 + τq+1, α) = (λτq−1 + λτq+1, α)

= (�∂2τq−1 + �∂2τq+1, α)

= (�∂τq−1 + �∂τq+1, �∂α) = 0,

and so τq−1+ τq+1 ⊥ α. There is then α ∈ C∞(Sn,Ω0) such that �∂α =
τq−1 + τq+1. If α =

∑p
r=0 αr, αr ∈ Γr, then �∂2α = �∂τq−1 + �∂τq+1 ∈ Γq

implies
∑p

r=0 �∂2αr ∈ Γq, and so we have �∂2αr = 0 if r �= q, since
�∂2αr ∈ Γr. Thus, �∂2αq = �∂τq−1 + �∂τq+1 ∈ Γq implies

�∂3αq = �∂2τq−1 + �∂2τq+1 = λ(τq−1 + τq+1),

which also gives �∂(�∂2αq/λ) = τq−1 + τq+1. We just proved that
there is a βq ∈ Γq such that �∂βq = τq−1 + τq+1. Without loss of
generality, we can choose this βq such that βq ⊥ (ker �∂|Ω0) ∩ Γq.

Indeed, Γq = ker �∂2
q ⊕ (ker �∂2

q)
⊥; however, ker �∂2

q = ker �∂|Ω0
q
. Now

�∂βq = τq−1 + τq+1 implies �∂3βq = λ(τq−1 + τq+1) = λ�∂βq, and so
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�∂(�∂2βq − λβq) = 0. Since �∂2βq − λβq ∈ ker �∂2
q ∩ (ker �∂2

q)
⊥, �∂2βq = λβq.

The proof of the claim that

Eλ(�∂2
q) � σq �−→ �∂(σq) = σq−1 + σq+1 ∈ E+

λ (�∂2
q−1)⊕ E−

λ (�∂2
q+1)

is an isomorphism is now complete.

However, for λ �= 0, the mappings σq∓1 �→ �∂σq trivially implement
isomorphisms E±

λ (�∂2
q∓1) 
 E∓

λ (�∂2
q), and, since E+

λ (�∂2
q) ⊕ E−

λ (�∂2
q) ⊂

Eλ(�∂2
q), we just proved that

(51) Eλ(�∂2
q) = E+

λ (�∂2
q)⊕ E−

λ (�∂2
q).

We claim now that if, for λ > 0, E+
λ (�∂2

q) �= 0, then necessarily λ
belongs to the family (λq+1 + k)(n + k − λq), k = 0, 1, . . . , and then
E+

(λq+1+k)(n+k−λq)
(�∂2

q) is naturally isomorphic to Hk(Vq+1). Likewise,

if E−
λ (�∂2

q) �= 0, then necessarily λ belongs to the family (λq + k)(n +

k − λq−1), k = 0, 1, . . . , and then E−
(λq+k)(n+k−λq−1)

(�∂2
q) is naturally

isomorphic to Hk(Vq).

To this end, let σq �= 0 be an element of E+
λ (�∂2

q). Then the separation
of variables formula (36) shows that there are real numbers α and c such
that, for

C∞(Rn+1 \ {0},Vq+1) � s

≡ rα(c�∂σq + n·σq) ∈ C∞((0,∞), C∞(Sn,Vq+1)),

�Ds = 0 if and only if α and c satisfy

(52) (α+ λq+1)(α + n− λq) = λ, and λc = α+ n− λq.

Since 0 ≤ λq, λq+1 ≤ n, for fixed λ > 0 and q there are real numbers
α and c, α unique subject to the inequality α > max(−λq+1, λq − n),
such that (52) holds. Also, since s(x) = rα(c�∂σq(ω) + n·σq(ω)) is
homogeneous of degree α and �Ds = 0, we must have that α is an integer
such that α ≥ 0 or α ≤ −n, one more time invoking Proposition 1. Now
the values of α in the range α ≤ −n are excluded by the inequality
α > max(−λq+1, λq − n), so we must have α ≥ 0. Therefore, x = 0
is a removable singularity of s and, moreover, s ∈ Hk(Vq+1) for some
non-negative integer k.
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Since, conversely, the elements of Hk(Vq+1) can be written on
Rn+1 \ {0} as rk(σq+1(ω) + n·σq(ω)), where σq ∈ C∞(Sn,Ω0

q), σq+1 ∈
C∞(Sn,Ω0

q+1), �∂2σq = (λq+1 + k)(n + k − λq)σq, and �∂σq = (λq+1 +

k)σq+1, the claimed isomorphism between E+
(λq+1+k)(n+k−λq)

(�∂2
q) and

Hk(Vq+1) also follows.

The statement about E−
λ (�∂ 2

q) can be proved similarly, by considering
0-eigenspinors of �D on Rn+1 \ {0} of type rα(σq(ω) + cn·�∂σq(ω)),
associated to elements σq ∈ E−

λ (�∂2
q).

The precise description of E±
λ (�∂2

q) in terms of polynomial Dirac

spinors from Hk(Vq+1) or Hk(Vq) together with equation (51) now
yield the multiplicity (49) and (50) of λ > 0 as an eigenvalue of �∂2

q.

Finally, the possible case of the eigenvalue λ = 0 is implicit in the
analysis provided at a).

Corollary. a) For the spherical classical Dirac operator n·�∂|Ω0

induced by the Euclidean classical Dirac operator �D (cf. Definition,
a), and Example 1) the spectrum is ±((n/2) + k), k = 0, 1, 2, . . . , and
the multiplicity of ±((n/2) + k) is

2[n/2]
(
n+ k − 1

k

)
.

b) For the spherical Laplace-Beltrami operator �∂2
|Ω0

q
, q = 0, 1, . . . , n,

associated to the Euclidean Gauss-Bonnet operator �D (cf. Definition,
b), and Example 2) the spectrum belongs to the families (q+1+k)(n+
k − q) and (q + k)(n + k − q + 1), k = 0, 1, 2, . . . . The multiplicity of
(q + 1 + k)(n+ k − q) equals

{
q+1

q+1+k
n+1+2k
n−q+k

(
n+k
k

)(
n

q+1

)
if 0 ≤ q ≤ n− 1, k = 0, 1, 2, . . .

1 if q = n, k = 0,

and the multiplicity of (q + k)(n+ k − q + 1) equals

{
q

q+k
n+1+2k
n+1−q+k

(
n+k
k

)(
n
q

)
if 1 ≤ q ≤ n, k = 0, 1, 2, . . .

1 if q = 0, k = 0,
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unless n is an even integer and q = n/2, in which case the multiplicity
of (

n

2
+ 1 + k

)(
n

2
+ k

)

equals

4
n

n+ 2k

n+ 1 + 2k

n+ 2 + 2k

(
n+ k

k

)(
n

n/2

)
.

Proof. The proof of a) is an obvious consequence of the spectral
decomposition theorem for spherical classical Dirac-type operators,
since p = 0, λ0 = n/2 and

dimHk(V) = 2[n/2]+1

(
n+ k − 1

k

)

(cf. Definition, a), and Example 1).

The proof of b) is an obvious consequence of the spectral decom-
position theorem for spherical Laplace-Beltrami-type operators, since
p = n, λq = q, q = 0, 1, . . . , n (cf. Definition, b), Example 2 and
equation (17)). Notice that the two families of eigenvalues are disjoint,
unless n is an even integer and q = n/2. Notice also that the ele-
ments in the two families corresponding to q = 0, n and k > 0 are not
eigenvalues, while the eigenvalue λ = 0, treated separately in the spec-
tral decomposition for the spherical Laplace-Beltrami-type operators,
incorporates nicely in the two-family eigenvalue description.
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20. L. Paquet, Méthode de Séparation des Variables et Calcul du Spectre
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