THE NUMBER OF MINIMAL COMPONENTS AND HOMOLOGICALLY INDEPENDENT COMPACT LEAVES OF A WEAKLY GENERIC MORSE FORM ON A CLOSED SURFACE

I. GELBUKH

Abstract

On a closed orientable surface M_{g}^{2} of genus g, we consider the foliation of a weakly generic Morse form ω on M_{g}^{2} and show that for such forms $c(\omega)+m(\omega)=$ $g-(1 / 2) k(\omega)$, where $c(\omega)$ is the number of homologically independent compact leaves of the foliation, $m(\omega)$ is the number of its minimal components, and $k(\omega)$ is the total number of singularities of ω that are surrounded by a minimal component. We also give lower bounds on $m(\omega)$ in terms of $k(\omega)$ and the form rank rk ω or the structure of $\operatorname{ker}[\omega]$, where $[\omega]$ is the integration map.

1. Introduction. Consider a closed connected orientable smooth two-dimensional manifold $M=M_{g}^{2}$ of genus g. Let ω be a Morse form on M, i.e., a closed 1 -form with Morse singularities $\operatorname{Sing} \omega$, locally the differential of a Morse function. This form defines a foliation \mathcal{F}_{ω} on $M \backslash \operatorname{Sing} \omega$. A leaf $\gamma \in \mathcal{F}_{\omega}$ is called compactifiable if $\gamma \cup \operatorname{Sing} \omega$ is compact.

A Morse form is called generic if each of its non-compact compactifiable leaves is compactified by a unique singularity [2, Definition 9.1]. The set of such forms is dense in any cohomology class [2, Lemma 9.2]. The term generic introduced in [2] is somewhat misleading because the set of such forms is not open. We find it plausible that such forms are the "majority" of Morse forms and thus their properties are in a sense "typical," though we are not aware of any proof of this.

Our results hold for a wider class of forms, which we call weakly generic: the requirement for a leaf to be compactified by only one singularity is only applied to the leaves not surrounded by minimal components.

[^0]The number $m(\omega)$ of minimal components and $c(\omega)$ of homologically independent compact leaves are important topological characteristics of the foliation. On M_{g}^{2} it holds [5] that

$$
\begin{equation*}
0 \leq c(\omega)+m(\omega) \leq g \tag{1}
\end{equation*}
$$

and all such combinations are possible on a given M [4]. In particular, if $c(\omega)=g$, then the foliation is compactifiable, i.e., $m(\omega)=0$, though the converse is not true: there exist compactifiable foliations with $c(\omega)<g$.

In this paper, for weakly generic forms we give a precise expression for $c(\omega)+m(\omega)$ and better bounds on $m(\omega)$. A useful characteristic of a weakly generic form foliation is the number $k(\omega)$ of singularities that are surrounded by a minimal component; for a weakly generic form $k(\omega)$ is even (Corollary 7). Our main result states that, for such forms, the inequality (1) becomes

$$
\begin{equation*}
c(\omega)+m(\omega)=g-\frac{k(\omega)}{2} \tag{2}
\end{equation*}
$$

(Theorem 5). In particular, for weakly generic forms on $M_{g}^{2}, g \neq 0$, the exact lower bound in (1) is

$$
1 \leq c(\omega)+m(\omega) \leq g
$$

(Corollary 6). On the other hand (2) gives a criterion for compactifiability for weakly generic forms [11]: $m(\omega)=0$ if and only if $c(\omega)=g$.

Inequality (1) gives an upper bound on the number of minimal components: $m(\omega) \leq g$; this was also proved in [9]. For weakly generic forms, (2) gives a better upper bound:

$$
\begin{equation*}
m(\omega) \leq g-\frac{k(\omega)}{2} \tag{3}
\end{equation*}
$$

We are not aware, though, of any lower bound on $m(\omega)$ given in literature, except that, if $\operatorname{rk} \omega>g$ (the rank of the group of periods), then the foliation has minimal components: $m(\omega)>0[11]$. For weakly generic forms, we give a lower bound on $m(\omega)$, cf. (3):

$$
\begin{equation*}
m(\omega) \geq g-\frac{k(\omega)}{2}-h(\operatorname{ker}[\omega]) \tag{4}
\end{equation*}
$$

FIGURE 1. Foliations on T^{2} with one minimal component. Form (a) is weakly generic, though not generic; form (b) is not.
(Theorem 10). Here, $\operatorname{ker}[\omega]=\left\langle z \in H_{1}(M) \mid \int_{z} \omega=0\right\rangle$ and $h(*)$ is the rank of a maximal subgroup consisting of non-intersecting cycles. We calculate the value of $h(\operatorname{ker}[\omega])$ (Lemma 8) and bound it in terms of rk ker $[\omega]$ (Corollary 9).

Bound (4) is not exact; however, it becomes exact together with a trivial observation that $m(\omega)>0$ if $k(\omega)>0$. All intermediate values are also reached, except for $m=1$ when $k=0$ and $h(\operatorname{ker}[\omega])=g$; this combination is impossible [6]. Our account of the relationships between $g, k(\omega), h(\operatorname{ker}[\omega])$ and $m(\omega)$ is complete: we build a (generic) form for any combination of these values within the corresponding bounds (Lemma 14).
Since it may be difficult to investigate the structure of ker $[\omega]$, we give a weaker lower bound not involving $h(\operatorname{ker}[\omega])$:

$$
m(\omega) \geq \operatorname{rk} \omega-g-\frac{k(\omega)}{2}
$$

(Corollary 12), which can, though, be easier to calculate. This estimate is efficient only for large $\operatorname{rk} \omega$, specifically, for $\operatorname{rk} \omega \geq g$. However, this is the "majority" of all forms: the forms in general position have $\operatorname{rk} \omega=2 g$.

The paper is organized as follows. Section 2 introduces some necessary definitions and facts concerning a Morse form foliation. In Section 3 we prove our main result: $c(\omega)+m(\omega)=g-(1 / 2) k(\omega)$. Finally, in Section 4 we give the bounds on $m(\omega)$.
2. Definitions and basic facts. Let us introduce, for future reference, some necessary notions and facts about Morse forms and their foliations.
2.1. Morse form. A closed 1-form on M is called a Morse form if it is locally the differential of a Morse function. Let ω be a Morse form and $\operatorname{Sing} \omega=\{p \in M \mid \omega(p)=0\}$ the set of its singularities; this set is finite since the singularities are isolated and M is compact.

By the Morse lemma, in a neighborhood of $p \in \operatorname{Sing} \omega$ on M_{g}^{2} there exist local coordinates $\left(x^{1}, x^{2}\right)$ such that $\omega(x)= \pm x^{1} d x^{1}+x^{2} d x^{2}$. If the sign is positive, then p is a center; otherwise, p is a conic singularity. We denote the set of centers by Ω_{0} and that of conic singularities by Ω_{1}, so that Sing $\omega=\Omega_{0} \cup \Omega_{1}$. By the Poincaré-Hopf theorem, the following holds

$$
\begin{equation*}
\left|\Omega_{1}\right|-\left|\Omega_{0}\right|=2 g-2 \tag{5}
\end{equation*}
$$

The rank of a closed 1-form ω is the rank of its group of periods:

$$
\operatorname{rk} \omega=\operatorname{rk}_{\mathbf{Q}}\left\{\int_{z_{1}} \omega, \ldots, \int_{z_{2 g}} \omega\right\}
$$

where $z_{1}, \ldots, z_{2 g}$ is a basis of $H_{1}\left(M_{g}^{2}\right)$. For an exact form, $\mathrm{rk} \omega=0$.
2.2. Morse form foliation. On $M \backslash \operatorname{Sing} \omega$, the form ω defines a foliation \mathcal{F}_{ω}. A leaf $\gamma \in \mathcal{F}_{\omega}$ is compactifiable if $\gamma \cup \operatorname{Sing} \omega$ is compact (compact leaves are compactifiable); otherwise, it is noncompactifiable. If a foliation contains only compactifiable leaves, it is called compactifiable.

The foliation \mathcal{F}_{ω} defines a decomposition of M into mutually disjoint sets [5]; see Figure 2 (a), (c):

$$
\begin{equation*}
M=\left(\bigcup \mathcal{C}_{i}^{\max }\right) \cup\left(\bigcup \mathcal{C}_{j}^{\min }\right) \cup\left(\bigcup \gamma_{k}^{0}\right) \cup \operatorname{Sing} \omega \tag{6}
\end{equation*}
$$

The maximal components $\mathcal{C}_{i}^{\max }$ are connected components of the union of all compact leaves. On two-manifolds, the notion of maximal
component coincides with the notion of periodic component [10]. If Sing $\omega \neq \varnothing$, each maximal component is a cylinder over a compact leaf: $\mathcal{C}_{i}^{\max } \cong \gamma_{i} \times(0,1)$. Consider the group $H_{\omega} \subseteq H_{n-1}(M)$ generated by the homology classes of all compact leaves; $H_{\omega}=\left\langle\left[\gamma_{i}\right], \gamma_{i} \in \mathcal{F}_{\omega}\right\rangle[\mathbf{3}]$. We denote by $c(\omega)=\operatorname{rk} H_{\omega}$ the number of homologically independent compact leaves.

The minimal components $\mathcal{C}_{j}^{\text {min }}$ of the foliation are connected components of the set covered by all non-compactifiable leaves. A foliation consisting of exactly one minimal component (and no maximal components) is called minimal. Each non-compactifiable leaf is dense in its minimal component $[\mathbf{1}, \mathbf{8}]$. We denote by $m(\omega)$ the number of minimal components. Par abus de langage, we say that a minimal component $\mathcal{C}^{\text {min }}$ contains a leaf or singularity, or the leaf or singularity is inside the minimal component, if it belongs to int $\left(\overline{\mathcal{C}^{\text {min }}}\right)$. We denote by $k(\omega)=\sum_{i=1}^{m(\omega)}\left|\operatorname{int}\left(\overline{\mathcal{C}_{i}^{\text {min }}}\right) \cap \operatorname{Sing} \omega\right|$ the number of singularities inside minimal components; in Figure $5, k(\omega)=2$.

The components $\mathcal{C}_{i}^{\max }$ and $\mathcal{C}_{j}^{\text {min }}$ are open; their boundaries lie in the union $\left(\bigcup_{k} \gamma_{k}^{0}\right) \cup \operatorname{Sing} \omega$ of non-compact compactifiable leaves and singularities. The number of components, as well as the number of non-compact compactifiable leaves γ_{k}^{0}, is finite.
2.3. Weakly generic Morse form. While a foliation \mathcal{F}_{ω} is defined on $M \backslash \operatorname{Sing} \omega$, a singular foliation $\overline{\mathcal{F}}_{\omega}$ is defined on the whole M : two points $p, q \in M$ belong to the same leaf of $\overline{\mathcal{F}}_{\omega}$ if there exists a path $\alpha:[0,1] \rightarrow M$ with $\alpha(0)=p, \alpha(1)=q$ and $\omega(\dot{\alpha}(t))=0$ for all $t[\mathbf{2}]$. A singular leaf contains a singularity.
On $M \backslash \operatorname{Sing} \omega, \overline{\mathcal{F}}_{\omega}$ differs from \mathcal{F}_{ω} only by possibly merging together some of its leaves: indeed, non-singular leaves of $\overline{\mathcal{F}}_{\omega}$ are leaves of \mathcal{F}_{ω}; the number of singular leaves of $\overline{\mathcal{F}}_{\omega}$ is finite, and each such leaf consists of a finite number of non-compact leaves of \mathcal{F}_{ω} and singularities.

A Morse form is called generic if each of its singular leaves contains a unique singularity $[\mathbf{2}]$. On M_{g}^{2} this means that each non-compact compactifiable leaf is compactified by only one singularity. The set of generic forms is dense in any cohomology class [2].

We call a form weakly generic if its non-compact compactifiable leaves not lying inside a minimal component are compactified by only one
singularity, while those inside a minimal component can form segments, as γ^{0} in Figure 1 (a). On $M \backslash \bigcup_{i=1}^{m(\omega)}$ int $\left(\overline{\mathcal{C}_{i}^{\text {min }}}\right)$ a weakly generic foliation is generic: all its compact singular leaves are either centers or figures of eight, and connected components of the boundaries of minimal components are single-leaf circles; see Figure 2.
2.4. Foliation graph. The configuration formed by the maximal components in the decomposition (6) is described by the foliation graph. Rewrite (6) as

$$
M=\left(\bigcup \mathcal{C}_{i}^{\max }\right) \cup\left(\bigcup P_{j}\right)
$$

where P_{j} are connected components of the union $P=\left(\bigcup \mathcal{C}_{j}^{\text {min }}\right) \cup$ $\left(\bigcup \gamma_{k}^{0}\right) \cup \operatorname{Sing} \omega$ of all non-compact leaves and singularities.

Since $\partial \mathcal{C}_{i}^{\max } \subseteq P$ consists of one or two connected components, each $\mathcal{C}_{i}^{\max }$ adjoins one or two of P_{j}. This allows representing M as a connected graph Γ with edges $\mathcal{C}_{i}^{\max }$ and vertices P_{j} : an edge $\mathcal{C}_{i}^{\max }$ is incident to a vertex P_{j} if $\partial \mathcal{C}_{i}^{\max } \cap P_{j} \neq \varnothing$; see Figure 2.

We call those vertices P_{j}^{I} that consist solely of compactifiable leaves and singularities I-vertices, see Figure 2 (b); II-vertices $P_{j}^{I I}$ contain minimal components, such as P_{2} in Figure 2 (d). Note that I-vertices are compact singular leaves (including center singularities). A II-vertex can contain several minimal components separated by compactifiable leaves.

3. Total number of homologically independent compact leaves and minimal components.

Lemma 1. Let P be an I-vertex. Then $\operatorname{deg} P=1$ if and only if P is a center.

Proof. If P is a center, in its neighborhood the manifold foliates into circles. Thus, a unique cylinder adjoins P, and so $\operatorname{deg} P=1$.

Conversely, if P is not a center, then $P=\left(\bigcup_{i} \gamma_{i}^{0}\right) \cup\left(\bigcup_{j} s_{j}\right)$, where γ_{i}^{0} are non-compact compactifiable leaves and $s_{j} \in \Omega_{1}$. In a neighborhood of P the form is exact: $\omega=d f, f(P)=0$. The components covering the areas $\{f>0\}$ and $\{f<0\}$ are locally distinct. Since P is a I-vertex, these have to be maximal components, which means $\operatorname{deg} P \geq 2$.

FIGURE 2 (a), (c). Examples of the decomposition (6). (b) Vertices of Γ can include singularities, non-compact compactifiable leaves, and (d) whole minimal components.

FIGURE 3. Possible (a) and impossible (b) configuration of the leaves adjoining the singularity s. Areas with different sign of f are shown in different colors.

Lemma 2. Let $\gamma^{0} \in \mathcal{F}_{\omega}$ be a non-compact compactifiable leaf such that $\gamma^{0} \cup s$ is compact for some $s \in \operatorname{Sing} \omega$. Then, in any neighborhood of $\overline{\gamma^{0}}=\gamma^{0} \cup s$, there exists a compact leaf $\gamma \in \mathcal{F}_{\omega}$.

Proof. Similarly, consider a small cylindrical neighborhood U of $\overline{\gamma^{0}}$ such that $U \cap \operatorname{Sing} \omega=\{s\}$. In this neighborhood, $\omega=d f$; let $f\left(\gamma^{0}\right)=0$. The set $U \backslash \overline{\gamma^{0}}$ has two connected components U_{1}, U_{2}. Locally, there are exactly four (non-compact) leaves adjoining s, and f changes sign when crossing a leaf. Since $U \cap \operatorname{Sing} \omega=\{s\}$, the function f has a constant sign in one of U_{i} (see Figure 3); let $f>0$ in U_{1}. Then there exists a $t>0$ such that a connected component γ of $f^{-1}(t)$ is a compact leaf and lies in U.

The condition of Lemma 2 requires the leaf to be compactified only by one singularity. For leaves compactified by more than one singularity

FIGURE 4. Foliation on $M_{2}^{2}=T^{2} \sharp T^{2}$ (connected sum) with a compactifiable leaf γ^{0}, two minimal components, and without compact leaves.
the conclusion of Lemma 2 may not hold: there exist non-compact compactifiable leaves without compact leaves in their neighborhood; see Figure 4.

Proposition 3. Let P be an I-vertex of a weakly generic form. Then either P is a center or $\operatorname{deg} P=3$.

Proof. If P is not a center, then $P=S^{1} \vee_{s} S^{1}, s \in \Omega_{1}$. As in Lemma 2, in a small neighborhood of P the form is exact, so leaves of the foliation are levels of a Morse function. Since P contains a unique singularity, close levels have one and two connected components, correspondingly. Thus, $\operatorname{deg} P=3$.

Proposition 4. Let P be a II-vertex of a weakly generic form. Then:
(i) P contains a unique minimal component $\mathcal{C}^{\text {min }}$;
(ii) each connected component of $\partial \overline{\mathcal{C}^{\text {min }}}$ locally attaches to $\mathcal{C}^{\text {min }}$ exactly one maximal component;
(iii) $\operatorname{deg} P=\left|\partial \overline{\mathcal{C}^{\text {min }}} \cap \operatorname{Sing} \omega\right|$.

Proof. Since P is a II-vertex, it contains a minimal component $\mathcal{C}^{\text {min }}$. Each connected component ∂_{i} of $\partial \overline{\mathcal{C}^{\text {min }}}$ is compact and includes exactly one $s \in \operatorname{Sing} \omega$, which adjoins at least one non-compactifiable leaf and at least one non-compact compactifiable leaf γ^{0}, which adjoins only
this singularity. Thus, $\partial_{i}=\gamma^{0} \cup s$. By Lemma 2, there is exactly one maximal component $\mathcal{C}_{i}^{\max }$ glued to $\mathcal{C}^{\text {min }}$ by ∂_{i}; see Figure 3 (a). Therefore, P consists of $\overline{\mathcal{C}^{\text {min }}}$ with $\mid \partial \overline{\mathcal{C}^{\text {min }}} \cap$ Sing $\omega \mid$ maximal components locally attached to it (globally they can be different ends of the same cylinder).

Now we are ready to prove our main theorem:

Theorem 5. Let ω be a weakly generic Morse form on M_{g}^{2}. Then

$$
c(\omega)+m(\omega)=g-\frac{k(\omega)}{2}
$$

Proof. Denote by n_{i} the number of vertices of degree i of the foliation graph $\Gamma ; n_{i}=n_{i}^{\mathrm{I}}+n_{i}^{\mathrm{II}}$, where $n_{i}^{\mathrm{I}}, n_{i}^{\mathrm{II}}$ are the corresponding numbers for I- and II-vertices. Similarly, denote Ω_{1}^{I} and Ω_{1}^{II} to be the sets of conic singularities belonging to the vertices of each type.

Consider n_{i}^{I}. By Lemma 1, it holds that $n_{1}^{I}=\left|\Omega_{0}\right| ;$ Proposition 3 gives $n_{3}^{I}=\left|\Omega_{1}^{I}\right|$ and $n_{i}^{I}=0$ for $i \neq 1,3$.

Consider $n_{i}^{\text {II }}$. By Proposition 4 (i), each II-vertex contains a unique minimal component, so $\sum_{i} n_{i}^{I I}=m(\omega)$. Denote $k_{j}=\mid \operatorname{int}\left(\overline{\mathcal{C}_{j}^{\text {min }}}\right) \cap$ Sing $\omega \mid$. By Proposition 4 (iii), $\left|\Omega_{1}^{\mathrm{II}}\right|=\sum_{i} i n_{i}^{\mathrm{II}}+\sum_{j} k_{j}=\sum_{i} i n_{i}^{\mathrm{II}}+k(\omega)$.

For the cycle rank $m(\Gamma)=(1 / 2) \sum_{i}(i-2) n_{i}+1[7]$ we have

$$
\begin{aligned}
2 m(\Gamma) & =-n_{1}^{\mathrm{I}}+n_{3}^{\mathrm{I}}+\sum_{i} i n_{i}^{\mathrm{II}}-2 \sum_{i} n_{i}^{\mathrm{II}}+2 \\
& =-\left|\Omega_{0}\right|+\left|\Omega_{1}^{\mathrm{I}}\right|+\left|\Omega_{1}^{\mathrm{II}}\right|-k(\omega)-2 m(\omega)+2 .
\end{aligned}
$$

Since $m(\Gamma)=c(\omega)[\mathbf{5}]$ and, by (5), this proves the theorem.

Corollary 6. For weakly generic forms on $M_{g}^{2}, g \neq 0$, the following holds

$$
1 \leq c(\omega)+m(\omega) \leq g
$$

for a given M_{g}^{2}, the bounds are exact and all combinations of $c(\omega)$ and $m(\omega)$ within these bounds are possible in the class of generic forms.

FIGURE 5. Minimal foliation on $M_{2}^{2}=T^{2} \sharp T^{2}$.
Proof. If $c(\omega)+m(\omega)=0$, then $m(\omega)=0$, and thus $k(\omega)=0$; Theorem 5 gives $g=0$. That all intermediate values are reached for generic forms was shown in [4]. In particular, on any $M_{g}^{2}, g \neq 0$, there exists a minimal foliation [4], see Figure 5, which shows the exactness of the lower bound; the upper bound is reached on $\omega=d f$.

The condition for the form to be weakly generic in Corollary 6 is important: on every M_{g}^{2}, there exist not weakly generic forms with $c(\omega)+m(\omega)=0$; see Figure 6.
Theorem 5 and Corollary 6 give:

Corollary 7. For a weakly generic form on $M_{g}^{2}, k(\omega)$ is even. In addition,

$$
0 \leq k(\omega) \leq 2 g-2
$$

if $g \neq 0$; otherwise, $k(\omega)=0$. On a given M_{g}^{2}, the bounds are exact and all (even) intermediate values are possible in the class of generic forms.
4. Bounds on the number of minimal components. The inequality (1) gives an upper bound on the number of minimal components of a Morse form: $m(\omega) \leq g$; this fact was also proven in [9]. We obtain a lower bound and a better upper bound on $m(\omega)$ for weakly generic Morse forms.

FIGURE 6. Compactifiable foliation with $c(\omega)=0$ on (a) T^{2}, (b) $M_{g}^{2}=\sharp T_{i}^{2}$.
Consider on $H_{1}\left(M_{g}^{2}\right)$ the intersection of cycles:

$$
\cdot: H_{1}\left(M_{g}^{2}\right) \times H_{1}\left(M_{g}^{2}\right) \rightarrow \mathbf{Z}
$$

it is skew-symmetric and non-degenerated. A subgroup $H \subset H_{1}\left(M_{g}^{2}\right)$ is called isotropic with respect to the intersection \cdot if, for any $z, z^{\prime} \in H$, it holds that $z \cdot z^{\prime}=0[\mathbf{1 2}]$. For an isotropic subgroup, rk $H \leq g$.
For $G \subseteq H_{1}\left(M_{g}^{2}\right)$, denote $h(G)=\operatorname{rk} H$, where $H \subseteq G$ is a maximal isotropic subgroup. For higher-dimensional manifolds M, this value would depend on the choice of H; the maximal rank of an isotropic subgroup is an important topological invariant of a manifold denoted $h(M)[\mathbf{3}, 12] ; h\left(M_{g}^{2}\right)=h\left(H_{1}(M)\right)=g[\mathbf{1 3}]$. For M_{g}^{2}, though, this definition does not depend on the choice of H :

Lemma 8. Let $G \subseteq H_{1}\left(M_{g}^{2}\right)$. Then

$$
h(G)=\operatorname{rk} G-\frac{\operatorname{rk}\left\|z_{i} \cdot z_{j}\right\|}{2},
$$

where $\left\{z_{i}\right\}$ is a basis of G.

Proof. Obviously, rk $\left\|z_{i} \cdot z_{j}\right\|$ does not depend on the choice of the basis $\left\{z_{i}\right\}$. Let $H \subseteq G$ be a maximal isotropic subgroup; denote $n=\mathrm{rk} G$,
$h=\mathrm{rk} H$. Choose a basis $\left\{z_{i}\right\}$ such that $z_{i} \in H$ for $i \leq h$. Consider $A=\left\|z_{i} \cdot z_{j}\right\|:$

1	h		
0	\cdots	0	
\vdots		\vdots	B
0	\cdots	0	
	C		

Since H is maximal, the $n-h$ columns of B are independent, and so are the rows of $C=-B^{T}$ and thus some $n-h$ of its columns. The corresponding $2(n-h)$ columns of A are independent, and no greater system of columns is independent. Thus, rk $A=2(n-h)$.

Corollary 9. The following holds:

$$
\frac{\mathrm{rk} G}{2} \leq h(G) \leq \min \{\operatorname{rk} G, g\}
$$

Consider the subgroup $\operatorname{ker}[\omega]=\left\{z \in H_{1}\left(M_{g}^{2}\right) \mid \int_{z} \omega=0\right\}$; obviously, rk ker $[\omega]=2 g-\operatorname{rk} \omega$, and thus

$$
\begin{equation*}
g-\frac{\operatorname{rk} \omega}{2} \leq h(\operatorname{ker}[\omega]) \leq \min \{2 g-\operatorname{rk} \omega, g\} \tag{7}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
0 \leq h(\operatorname{ker}[\omega]) \leq g \tag{8}
\end{equation*}
$$

Since $H_{\omega} \subseteq \operatorname{ker}[\omega]$,

$$
\begin{equation*}
c(\omega) \leq h(\operatorname{ker}[\omega]) \tag{9}
\end{equation*}
$$

It can be shown $[\mathbf{6}]$ that, if $k(\omega)=0$ and $m(\omega) \leq 1$, then

$$
\begin{equation*}
h(\operatorname{ker}[\omega])=c(\omega)=g-m(\omega) \tag{10}
\end{equation*}
$$

A lower bound on $m(\omega)$ can be given in terms of the structure of ker $[\omega]$. Theorem 5, (9) and (10) give:

Theorem 10. For weakly generic forms ω on M_{g}^{2}, the following holds:

$$
\begin{equation*}
g-\frac{k(\omega)}{2}-h(\operatorname{ker}[\omega]) \leq m(\omega) \leq g-\frac{k(\omega)}{2} \tag{11}
\end{equation*}
$$

In addition,
(i) $m(\omega)>0$ if $k(\omega)>0$;
(ii) $m(\omega) \neq 1$ if $k(\omega)=0$ and $h(\operatorname{ker}[\omega])=g$.

On a given M_{g}^{2}, the bounds given by system (11) and (i) are exact, and all intermediate values are reached except for the case specified in (ii).

Exactness of the bounds and existence of all intermediate values are shown in Lemma 14 below.

Note that, if $k(\omega)=0$, then the left side of (11) is non-negative (can be zero) and the bound given by (11) alone is exact. However, if $k(\omega)>0$, then the left side of (11) can be zero or even negative and (i) can give a better bound. As an example, consider the foliation in Figure 5, assuming the periods $(1, \sqrt{2})$ in each torus; then $h(\operatorname{ker}[\omega])=1$ and the left side of (11) is zero. Assuming the periods $(1, \sqrt{2})$ and $(1,-\sqrt{2})$, we have $h(\operatorname{ker}[\omega])=2$ and the left side of (11) negative.

Note also that, if $k(\omega)=0$ and $h(\operatorname{ker}[\omega])=g$, then $m(\omega)=0$, $\Lambda, 2,3, \ldots, g$.

Corollary 11. For a weakly generic form on $M_{g}^{2}, m(\omega)=0$ implies $h(\operatorname{ker}[\omega])=g$.

The converse is not true; a counterexample is a connected sum $T^{2} \sharp T^{2}$ with windings with the periods $(1, \sqrt{2})$ and $(1,-\sqrt{2})$, correspondingly.

Since $H \subseteq \operatorname{ker}[\omega]$ implies rk $H \leq 2 g-\operatorname{rk} \omega$, Theorem 10 gives:

Corollary 12. For weakly generic forms ω on M_{g}^{2}, the following holds:

$$
m(\omega) \geq \operatorname{rk} \omega-g-\frac{k(\omega)}{2}
$$

Though this bound is weaker than (11), it is easier to calculate. This bound is efficient for forms with large rk ω, which are the "majority" of all forms: a form in general position has $\operatorname{rk} \omega=2 g$. In the general case, a Morse form with $\operatorname{rk} \omega=2 g$ (i.e., $\operatorname{ker}[\omega]=0$) has $c(\omega)=0[5]$ and $m(\omega) \geq 1[\mathbf{3}]$. For weakly generic forms, Theorem 10 gives an exact value:

Corollary 13. For weakly generic forms ω on M_{g}^{2} such that rk $\omega=$ $2 g$, the following holds:

$$
m(\omega)=g-\frac{k(\omega)}{2}
$$

Note that, for $c(\omega),(7)$ and (9) give a bound not involving $k(\omega)$:

$$
c(\omega) \leq h(\operatorname{ker}[\omega]) \leq 2 g-\operatorname{rk} \omega
$$

The following lemma shows that we have given a complete account of the relations between $g, k(\omega), h(\operatorname{ker}[\omega])$, and $m(\omega)$:

Lemma 14. For any $g \geq 0, k, m$, and h satisfying the constraints of Corollary 7, Theorem 10 and (8), on M_{g}^{2} there exists a generic form ω such that $k(\omega)=k, m(\omega)=m$, and $h(\operatorname{ker}[\omega])=h$.

Proof. Consider g, k, h and m satisfying the constraints:

$$
0 \leq g
$$

Corollary 7 : $\quad 0 \leq k \leq 2 g-2(k=0$ if $g=0) ; k$ is even,
Theorem 10: $0 \leq m \leq g-\frac{1}{2} k$,
Theorem 10, (8): $\quad c \leq h \leq g ; h<g$ if $k=0$ and $m=1$,
where $c=g-(1 / 2) k-m$. If $g=0$, then $k=m=0$, and the statement trivially holds, so we assume $g>0$. In the rest of the proof we assume that all unspecified periods of ω are incommensurable.

Let $k=0$ and $m \leq 1$; then, $h=c$. An example is a connected sum $\sharp_{j=1}^{c} T_{j}$ of tori with a compact foliation each plus, if $m=1$, a torus with a minimal foliation. $\operatorname{By}(10), h(\operatorname{ker}[\omega])=h$.

FIGURE 7. Construction of the foliation in Lemma 14.
Let $k=0$ and $2 \leq m \leq g$. Consider a connected sum \sharp of m tori $T_{i}^{(m)}$ with a minimal foliation and $c=g-m$ tori $T_{j}^{(c)}$ with a compact foliation. Complete H_{ω} to a maximal isotropic subgroup $H \subseteq \operatorname{ker}[\omega]$ such that rk $H=h$. Namely, denote $h^{(m)}=h-c$; obviously, $0 \leq h^{(m)} \leq m$.
(i) Let $h^{(m)}=0$. Then just choose all incommensurable periods in all $T_{i}^{(m)}$.
(ii) Let $h^{(m)}=1$. Choose the periods $(1, \sqrt{2})$ in $T_{1}^{(m)}$ and $(1, \sqrt{3})$ in $T_{2}^{(m)}$. Then, $\operatorname{ker}\left[\left.\omega\right|_{\sharp T_{i}^{(m)}}\right]=\left\langle z_{11}-z_{21}\right\rangle$, where $z_{i 1}, z_{i 2}$ are the basic cycles of $T_{i}^{(m)}$ corresponding to these periods.
(iii) Let $h^{(m)}=2$. Similarly, choose the periods $(1, \sqrt{2})$ and $(\sqrt{2}, 1)$ in the first two $T_{i}^{(m)}$. Then $\operatorname{ker}\left[\left.\omega\right|_{\sharp T_{i}^{(m)}}\right]=\left\langle z_{11}-z_{22}, z_{12}-z_{21}\right\rangle$ is isotropic.
(iv) Let $h^{(m)}=3$. Choose the periods $(1, \sqrt{2}),(\sqrt{2},-1)$ and $(\sqrt{2}-1,2 \sqrt{2})$ in the first three $T_{i}^{(m)}$. By Lemma 8 , the isotropic subgroup $\left\langle z_{11}-z_{21}+z_{31}, z_{12}+z_{22}-z_{31}, z_{12}+z_{21}-z_{32}\right\rangle$ of $\operatorname{ker}\left[\left.\omega\right|_{\sharp T_{i}^{(m)}}\right]$ is maximal.
(v) Let $h^{(m)}=2 n, n \in \mathbf{N}$. Consider n pairs of tori with periods $\left(\alpha_{i}, \alpha_{i} \sqrt{2}\right)$ and $\left(\alpha_{i} \sqrt{2}, \alpha_{i}\right)$, so that each pair behaves as in (iii) above, but different pairs are incommensurable.
(vi) Let $h^{(m)}=2 n+1$. Choose $n-1$ pairs as in (v) and a triple as in (iv).
By construction, we obtain $h(\operatorname{ker}[\omega])=c+h^{(m)}=h$.

Now let $k \geq 2$; thus, $g \geq(1 / 2) k+1$. Construct a manifold $M^{(k)}$ with $g^{(k)}=(1 / 2) k+1, m\left(\omega^{(k)}\right)=1, k\left(\omega^{(k)}\right)=k$ as shown in Figure 5 and a manifold $M^{(0)}$ with $g^{(0)}=g-g^{(k)}, m\left(\omega^{(0)}\right)=m-1, k\left(\omega^{(0)}\right)=0$ as discussed above; see Figure 7. Then $M^{(k)} \sharp M^{(0)}$ has the desired properties. To obtain $h(\operatorname{ker}[\omega])=h, M^{(0)}$ is to be constructed with $h^{(0)}=\min \left(h, g^{(0)}\right)$ and in $M^{(k)}$, the periods are constructed as in (i)-(vi) above with $h^{(k)}=h-h^{(0)}$ if positive.

REFERENCES

1. Pierre Arnoux and Gilbert Levitt, Sur l'unique ergodicité des 1-formes fermées singulières, Invent. Math. 84 (1986), 141-156.
2. Michael Farber, Topology of closed one-forms, Math. Surv. 108, American Mathematical Society, 2004.
3. Irina Gelbukh, Presence of minimal components in a Morse form foliation, Diff. Geom. Appl. 22 (2005), 189-198.
4. -, Number of minimal components and homologically independent compact leaves for a Morse form foliation, Stud. Sci. Math. Hung. 46 (2009), 547-557.
5. -, On the structure of a Morse form foliation, Czech. Math. J. 59 (2009), 207-220.
6. - Structure of a Morse form foliation on a closed surface in terms of genus, Diff. Geom. Appl. 29 (2011), 473-492.
7. Frank Harary, Graph theory, Addison-Wesley Publishing Company, Massachusetts, 1994.
8. Hideki Imanishi, On codimension one foliations defined by closed one forms with singularities, J. Math. Kyoto Univ. 19 (1979), 285-291.
9. Anatole Katok, Invariant measures for flows on oriented surfaces, Sov. Math. Dokl. 14 (1973), 1104-1108.
10. Artemiy Grigorievich Maier, Trajectories on closed orientable surfaces, Math. Sbor. 12 (1943), 71-84.
11. Irina Mel'nikova, An indicator of the noncompactness of a foliation on M_{g}^{2}, Math. Notes 53 (1993), 356-358.
12. -, A test for non-compactness of the foliation of a Morse form, Russ. Math. Surv. 50 (1995), 444-445.
13. —, Maximal isotropic subspaces of skew-symmetric bilinear mapping, Moscow Univ. Math. Bull. 54 (1999), 1-3.

Department of Mathematics, Moscow State University, Russia
Email address: gelbukh@member.ams.org

[^0]: 2010 AMS Mathematics subject classification. Primary 57R30, 58K65.
 Keywords and phrases. Surface, Morse form foliation, number of minimal components.

 Received by the editors on June 18, 2009, and in revised form on February 6, 2011.

