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MULTIPLICITIES FOR ARBITRARY MODULES
AND REDUCTION

R. CALLEJAS-BEDREGAL AND V.H. JORGE PÉREZ

ABSTRACT. Let (R,m) be a d-dimensional Noetherian
local ring and E a finitely generated R-submodule of the
free module Rp. In this work, we introduce a multiplicity
sequence ck(E), k = 0, . . . , d + p − 1, for E that generalizes
the Buchsbaum-Rim multiplicity defined when E has finite
colength in Rp as well as the Achilles-Manaresi multiplicity
sequence that applies when E ⊆ R is an ideal. Our main
results are that the new multiplicity sequence is an invariant
of E up to reduction; we show that this multiplicity sequence
behaves well with respect to sufficiently general hyperplane
sections, and we also give a criterion for reduction of ideals
involving the c0-multiplicity in all localizations in prime ideals.

1. Introduction. Let (R,m) be a local Noetherian ring, N a finitely
generated R-module of dimension d and I ⊆ J two ideals in R. Recall
that I is a reduction of (J,N) if IJnN = Jn+1N for sufficiently large
n. If I ⊆ J are m-primary and I is a reduction of (J,N), then it is
well known and easy to prove that the Hilbert-Samuel multiplicities
e(J,N) and e(I,N) are equal. Rees proved his famous result, which
nowadays has his name, that the converse also holds under an additional
assumption:

Theorem 1.1 (Rees’s theorem, [15]). Let (R,m) be a quasi-unmixed
local ring, N a finitely generated d-dimensional R-module and I ⊆ J
m-primary ideals of R. Then, the following conditions are equivalent:

(i) I is a reduction of (J,N);

(ii) e(J,N) = e(I,N).

Now assume that I ⊆ J are arbitrary ideals with the same radicals.
If I is a reduction of J , then we always have e(Jp, Rp) = e(Ip, Rp) for
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all minimal primes of J . However, the converse is not true, in general.
Under additional assumptions, Böger [3] was able to prove a converse
as follows: let I ⊆ J ⊆ √

I be ideals in a quasi-unmixed local ring R
such that s(I) = ht (I), where s(I) denotes the analytic spread of I.
Then I is a reduction of J if and only if e(Jp, Rp) = e(Ip, Rp) for all
minimal primes of I.

Using the j-multiplicity defined by Achilles and Manaresi [1] (a
generalization of the classical Hilbert-Samuel multiplicity), Flenner and
Manaresi [8] gave a numerical characterization of reduction ideals which
generalize Böger’s theorem to arbitrary ideals: let I ⊆ J be ideals
in a quasi-unmixed local ring R, and let N be a finitely generated d-
dimensional R-module. Then I is a reduction of (J,N) if and only if
j(Jp, Np) = j(Ip, Np) for all p ∈ Spec (R).

There is another generalization of the classical Hilbert-Samuel mul-
tiplicity for arbitrary ideals due to Achilles and Manaresi [2]. They in-
troduced, for each ideal I of a d-dimensional local ring (R,m) and N a
finitely generated d-dimensional R-module, a sequence of multiplicities
c0(I,N), . . . , cd(I,N) which generalize the Hilbert-Samuel multiplicity
in the sense that, for m-primary ideals I, c0(I,N) is the Hilbert-Samuel
multiplicity of I in N , and the remaining ck(I,N), k = 1, . . . , d, are
zero. In fact, their definition was given in the case that N = R but
their construction can be readily extended to this context.

Using the above Achilles-Manaresi multiplicity sequence, Ciupercǎ
proved the following theorem.

Theorem 1.2. Let (R,m) be a local ring and N a finitely generated
d-dimensional R-module. Let I ⊆ J be proper arbitrary ideals of R. If
I is a reduction of (J,N), then ck(I,N) = ck(J,N) for all k = 0, . . . , d.

On the other hand, the Buchsbaum-Rim multiplicity eBR(E) is a
generalization of the Samuel multiplicity and is defined for submodules
of free modules E ⊂ Rp such that Rp/E has finite length. These
were first described by Buchsbaum and Rim in [4]. The Buchsbaum-
Rim multiplicity has been generalized, in the finite colength case, by
Kirby [12], Kirby and Rees [13], Katz [11], Kleiman and Thorup [14]
and Simis, Ulrich and Vasconcelos [16]. For an extensive history of
Buchsbaum-Rim multiplicity, we refer to [14]. Using the Buchsbaum-
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Rim multiplicity, Katz [11], Kleiman and Thorup [14] and Simis, Ulrich
and Vasconcelos [16] proved the following generalization of Rees’s
theorem for modules:

Theorem 1.3. Let (R,m) be a quasi-unmixed local ring, E ⊆ F a
finitely generated R-submodule of the free module Rp such that Rp/E
has finite length. Then, the following conditions are equivalent:

(i) E is a reduction of F ;

(ii) eBR(E) = eBR(F ).

There have been some generalizations of the Buchsbaum-Rim multi-
plicity for arbitrary submodules E of the free module Rp which we now
describe. Gaffney in [9] introduced a sequence of multiplicities ei(E),
0 ≤ i ≤ d = dimR in the analytic context. This sequence satisfies
a Rees type theorem: Suppose that E ⊂ F ⊂ Rp are R := OX,x-
modules where Xd is a complex analytic space which as a reduced
space is equidimensional, and which is generically reduced. Suppose
that ei(E, x) = ei(F, x), 0 ≤ i ≤ d. Then E is a reduction of F . Also,
if E is of finite colength in Rp, then ed(E) is the standard Buchsbaum-
Rim multiplicity of E, and the other ei’s are zero. Unfortunately, for
ideals of non-finite colength, Gaffney’s multiplicity sequence does not
coincide with the Achilles-Manaresi multiplicity sequence and also the
codimension condition of E in Rp is built into the definition of the mul-
tiplicity which uses a codimension filtration ascending from the integral
closure of the module.

On the other hand, the authors in [5] extended the notion of the
Buchsbaum-Rim multiplicity of a submodule of a free module to the
case where the submodule no longer has finite colength. For a sub-
module E of Rp, they introduced a sequence ekBR(E), k = 0, . . . , d +
p− 1, which in the ideal case coincides with the multiplicity sequence
c0(I, R), . . . , cd(I, R) defined for an arbitrary ideal I of R by Achilles
and Manaresi [2]. They also proved that, if E = I1 ⊕ · · · ⊕ Ip ⊂ Rp

has finite colength, then e0BR(E) = p !(eBR(E)) and ekBR(E) = 0 for
k = 1, . . . , d − 1. Nevertheless, no relation with reduction of modules
and their multiplicity sequence was shown in their work.

There is also a generalization of the Flenner-Manaresi theorem for
arbitrary submodules of a free module due to Ulrich and Validashti
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(see [17]). They introduced a multiplicity j(E) for a submodule of
the free module Rp that generalizes the Buchsbaum-Rim multiplicity
defined when E has finite colength in Rp as well as the j-multiplicity
of Achilles-Manaresi that applies when E ⊆ R is an ideal. Their result
is as follows:

Theorem 1.4. Let (R,m) be a universally catenary ring, E ⊆ F
a finitely generated R-submodule of a free module Rp and N a finitely
generated locally equidimensional Noetherian R-module. Assume that
Ep = Fp for every minimal prime p of R. Then, the following are
equivalent:

(i) E is a reduction of (F,N);

(ii) j(Eq, Nq) = j(Fq, Nq) for every q ∈ Spec (R).

In this work we introduce a multiplicity sequence ck(E,N) with
k = 0, . . . , d+p−1 for the pair (E,N) that generalize the Buchsbaum-
Rim multiplicity defined when E has finite colength in Rp as well as the
Achilles-Manaresi multiplicity sequence that applies when E ⊆ R is an
ideal. One of our main results is that the new multiplicity sequence is
an invariant of E with respect to N up to reduction:

Theorem 1.5. Let (R,m) be a Noetherian local ring, let E ⊆ F ⊆ Rp

be R-modules and write I := R1(E)A for the corresponding ideal
of A := Sym (Rp). Let N be a d-dimensional finitely generated R-
module, and set M := A ⊗R N . If E is a reduction of (F,N), then
ck(E,N) = ck(F,N) for all k = 0, . . . , d+ p− 1.

We also show that this multiplicity sequence behaves well with respect
to sufficiently general hyperplane sections:

Theorem 1.6. Let (R,m) be a Noetherian local ring, E ⊆ Rp an
R-module, N a d-dimensional finitely generated R-module, and write
I := R1(E)A for the corresponding ideal of A := Sym (Rp). Let y be a
superficial element for (E,N) and a non zero-divisor on N . Then

ck(E,N) = ck(E,N), k = 0, . . . , d+ p− 2,

where N := N/yN and E := E ⊗R R with R := R/yR.
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We also give a criterion for reduction of ideals involving the c0-
multiplicity in all localizations in prime ideals.

Theorem 1.7. Let (R,m) be a universally catenary local Noetherian
ring, E ⊆ F submodules of the free module L := Rp and N a d-
dimensional finitely generated R-module. Assume that the R-module N
is locally equidimensional and that Ep = Lp for every minimal prime p
in SuppR(N). Then the following are equivalent:

(i) E is a reduction of (F,N).

(ii) c0(Ep, Np) = c0(Fp, Np) for all p ∈ Spec (R).

(iii) c0(Ep, Np) ≤ c0(Fp, Np) for all p ∈ Spec (R).

The paper is organized as follows. In Section 2, we recall the
basic results of Hilbert functions of bigraded algebras, and we define
the cD-multiplicity sequence associated to a graded module. The
important result of this section is the additivity formula for this
multiplicity sequence. In Section 3, we define the first multiplicity
sequence associated to ideals generated by linear forms, which we call
the c∗-multiplicity sequence. The important results of this section are
the additivity formula for this multiplicity sequence (Theorem 3.2)
and Theorem 3.3 which shows that the c∗-multiplicity sequence is
an invariant of M with respect to I up to reduction. In Section 4,
we define two multiplicity sequences associated to ideals generated by
linear forms, which we call c�-multiplicity and b-multiplicity sequences.
These multiplicity sequences are related to the c∗-multiplicity sequence
in Lemma 4.3. The b-multiplicity sequence has been introduced only
with the purpose of proving that the c�-multiplicity sequence is an
invariant of I up to reduction (see Theorem 4.6). In Section 5, we
show that sufficiently general hyperplane sections behave well with
respect to the c∗-multiplicity sequence (Proposition 5.4). In Section 6,

we give a criterion for reduction of ideals involving the c�0-multiplicity
in all localizations in prime ideals (Theorem 6.3). In Section 7, we
introduce a multiplicity sequence ck(E), k = 0, . . . , d + p − 1, for
an arbitrary submodule E of the free module Rp which generalizes
the Buchsbaum-Rim multiplicity defined when E has finite colength in
Rp as well as the Achilles-Manaresi multiplicity sequence that applies
when E ⊆ R is an ideal. The main result of this section, other than
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the definition of multiplicities for arbitrary modules, is Theorem 7.3
(an immediate consequence of Theorem 4.6) which says that the new
multiplicity sequence is an invariant of E with respect to N up to
reduction. We show that this multiplicity sequence behaves well with
respect to sufficiently general hyperplane sections (Theorem 7.5) and we
also give a criterion for reduction of ideals involving the c0-multiplicity
in all localizations in prime ideals (Theorem 7.6). Our approach is
partly inspired by [2, 17].

2. Multiplicity sequence. In this section we recall some well-
known facts on Hilbert functions and Hilbert polynomials of bigraded
modules which will be essential for defining the multiplicity sequences
associated to a pair (I,M).

Let R = ⊕∞
i,j=0Ri,j be a bigraded ring, and let T = ⊕∞

i,j=0Ti,j be a
bigraded R-module. Assume that R0,0 is an Artinian ring and that R
is finitely generated as an R0,0-algebra by elements of R1,0 and R0,1

(i.e., R is a standard bigraded algebra). The Hilbert function of T is
defined to be

hT (i, j) = �R0,0(Ti,j).

For i, j sufficiently large, the function hT (i, j) becomes a polynomial
PT (i, j). If D denotes the dimension of the module T , we can write
this polynomial in the form

PT (i, j) =
∑
k,l≥0

k+l≤D−2

ak,l(T )

(
i+ k
k

)(
j + l
l

)

with ak,l(T ) ∈ Z and ak,l(T ) ≥ 0 if k+ l = D− 2 [18, Theorem 7, page
757 and Theorem 11, page 759].

We also consider the sum transform of hT with respect to the first
variable defined by

h
(1,0)
T (i, j) =

i∑
u=0

hT (u, j).

From this description, it is clear that, for i, j sufficiently large, h
(1,0)
T

becomes a polynomial with rational coefficients of degree at mostD−1.
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As usual, we can write this polynomial in terms of binomial coefficients

P
(1,0)
T (i, j) =

∑
k,l≥0

k+l≤D−1

a
(1,0)
k,l (T )

(
i+ k
k

)(
j + l
l

)

with a
(1,0)
k,l (T ) integers and a

(1,0)
k,D−k−1(T ) ≥ 0.

Since
hT (i, j) = h

(1,0)
T (i, j)− h

(1,0)
T (i − 1, j),

we get a
(1,0)
k+1,l(T ) = ak,l(T ) for k, l ≥ 0, k + l ≤ D − 2.

Definition 2.1. For the coefficients of the terms of highest degree

in P
(1,0)
T , we introduce the symbols

ck(T ) := a
(1,0)
k,D−k−1(T ), k = 0, . . . , D − 1,

which are called the multiplicity sequence of T .

We define next the cD-multiplicity sequence associated to a module.
Let (R,m) be a local ring, S = ⊕j∈NSj a standard graded R-algebra,
N = ⊕j∈NNj a finitely generated graded S-module and

T := Gm(N) =
⊕
i,j∈N

miNj

mi+1Nj

the bigraded F -module with

F := Gm(S) =
⊕
i,j∈N

miSj

mi+1Sj
.

Notice that F0,0 = R/m is a field.

Definition 2.2. Consider an integer D such that D ≥ dimN . For
all k = 0, . . . , D − 1, we set

cDk (N) =

{
0 if dimN < D

ck(T ) if dimN = D,
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which is called the cD-multiplicity sequence of N . Moreover, we set
ck(N) := cdimN

k (N).

First we show that this cD-multiplicity sequence behaves well with
respect to short exact sequences.

Proposition 2.3. Let (R,m) be a local ring, S = ⊕j∈NSj a standard
graded R-algebra, and 0 → N0 → N1 → N2 → 0 an exact sequence of
finitely generated graded S-modules. Then, for D ≥ d := dimN1,

cDk (N1) = cDk (N0) + cDk (N2)

for all k = 0, . . . , D − 1.

Proof. Let Ms := R(m, Ns)
+ := ⊕i∈Z⊕j∈N mi(Ns)j be the extended

Rees module associated to Ns, s = 0, 1, 2. For any bigraded module T
and for i, j � 0, we define the polynomial hD

T (i, j) of degree D − 2 as
the Hilbert polynomial of hT (i, j) adding coefficient zero to the terms
of degree between dim (T )− 2 and D − 2.

Let u be an indeterminate, which we consider with degree one. Set
M ′

0 := ker (M1 → M2) = ⊕i∈Z, j∈N(N0)j ∩ mi(N1)j . We consider the
natural diagram

0 � M ′
0(1, 0) �

�

u−1

M1(1, 0) �

�

u−1

M2(1, 0) �

�

u−1

0

0 � M ′
0 � M1 � M2 � 0,

which gives an exact sequence of cokernels

(1) 0 −→ G′ :=
M ′

0

u−1M ′
0

−→ Gm(N1) −→ Gm(N2) −→ 0.

Denote the cokernel of the natural injection Mo ↪→ M ′
0 by L. Using

the diagram,

0 � M0(1, 0) �

�

u−1

M ′
0(1, 0) �

�

u−1

L(1, 0) �

�

u−1

0

0 � M0 � M ′
0 � L � 0,
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the snake-lemma yields an exact sequence

(2) 0 −→ V −→ Gm(N0) −→ G′ −→ W −→ 0,

where V and W are the kernel and cokernel of u−1 : L(1, 0) → L,
respectively, i.e., we have the exact sequence:

(3) 0 −→ V −→ L(1, 0) −→ L −→ W −→ 0.

For n ≤ 1, the coefficient modules of un in R(m, N0)
+ and in M ′

0

coincide; hence, the action of u−1 on L is nilpotent. Therefore, the
dimension of L is at most that of G′, which is bounded by D. Thus,
all modules occurring in exact sequence (3) have dimension at most D.

Now (1), (2) and (3) are exact sequences of finitely generated modules
of dimension at most D. We denote by hTs(i, j) the Hilbert-Samuel
function of Ts := Gm(Ns).

From (1) and (2), we have

(4) h
D (1,0)
T0

(i, j) + h
D (1,0)
T2

(i, j)− h
D (1,0)
T1

(i, j)

= h
D (1,0)
V (i, j)− h

D (1,0)
W (i, j).

Because of (3), we have

(5) h
D (1,0)
V (i, j)− h

D (1,0)
W (i, j)

= h
D (1,0)
L (i + 1, j)− h

D (1,0)
L (i, j) = hD

L (i, j).

Hence by (4) and (5),

h
D (1,0)
T0

(i, j) + h
D (1,0)
T2

(i, j)− h
D (1,0)
T1

(i, j) = hD
L (i, j)

is a polynomial of degree at most D− 2, which concludes the proof.

3. c∗-multiplicity sequence. We begin by recalling the notion
of the Achilles-Manaresi multiplicity sequence for arbitrary ideals as
introduced and developed in [2]. Let R be a d-dimensional Noetherian
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ring with a fixed maximal ideal m and I an arbitrary ideal of R. Set
S := Gm(GI(R)) =: ⊕i,j∈NSi,j where

Si,j =
miIj + Ij+1

mi+1Ij + Ij+1
.

Let h(i, j) = �(Si,j) be the Hilbert-Samuel function of S and

h(1,1)(i, j) =

j∑
v=0

i∑
u=0

h(i, j)

its Hilbert sum. Notice that, for i, j � 0, h(1,1)(i, j) becomes a
polynomial of degree d which can be written as

h(1,1)(i, j) =

d∑
k=0

ck(I)

k!(d− k)!
ikjd−k + · · · ,

where · · · means lower degree terms. The coefficients ck(I), k =
0, . . . , d, are the Achilles-Manaresi multiplicity sequence for I. If I
is an m-primary ideal of R, then c0(I) is the usual Hilbert-Samuel
multiplicity of I, and the remaining ck(I), k = 1, . . . , d, are zero.
Hence, the Achilles-Manaresi multiplicity sequence is a generalization
of the usual Hilbert-Samuel multiplicity.

We are now ready to introduce the c∗-multiplicity sequence. The
main idea here is to consider a suitable grading on the extended Rees
module as in the work of Ulrich and Validashti [17].

Let (R,m) be a Noetherian local ring, A a standard graded Noethe-
rian R-algebra, I an ideal of A generated by elements of degree one
and M a finitely generated graded A-module.

Let t be a variable. Consider the extended Rees ring of I

R(I, A)+ :=
⊕
i∈Z

Iiti ⊆ A[t, t−1],

and the extended Rees module

R(I,M)+ :=
⊕
i∈Z

IiMti ⊆ M
⊗
R

R[t, t−1],
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where we set Ii = R for i ≤ 0. Notice that R(I,M)+ is a module over
R(I, A)+ which gives rise to the associated graded module of M with
respect to I,

GI(M) :=
R(I,M)+

t−1R(I,M)+
=

⊕
i∈N

IiM

Ii+1M
ti,

which is a module over the associated graded ring GI(A) of the same
dimension as M . Note that here N contains 0.

Assigning degree zero to the variable t, the Laurent polynomial
ring A[t, t−1] becomes a standard graded Noetherian R[t, t−1]-algebra,
and M [t, t−1] := M ⊗R R[t, t−1] a finitely generated graded mod-
ule over this algebra. The extended Rees ring R(I, A)+ is a homo-
geneous R[t−1]-subalgebra of A[t, t−1], and hence a standard graded
Noetherian R[t−1]-algebra. Furthermore R(I,M)+ is a homogeneous
R(I, A)+-submodule of M [t, t−1], thus a finitely generated graded
module over R(I, A)+. With respect to this grading, GI(A) :=
R(I, A)+/t−1R(I, A)+ becomes a standard graded Noetherian R-
algebra and GI(M) := R(I,M)+/t−1R(I,M)+ a finitely generated
graded module over this algebra. Notice that

[GI(M)]n =
⊕
i∈N

[IiM/Ii+1M ]n.

The grading so defined on the extended Rees module and the associated
graded module is called internal grading for it is induced by the grading
on the module M (see [17]).

Definition 3.1. Let D be any integer with D ≥ dimM . We define
the c∗-multiplicity sequence of M with respect to I as

c∗k,D(I,M) := cDk (GI(M)), k = 0, . . . , D − 1,

where GI(M) is graded by the internal grading. In the case where
D = dimM , we simply write c∗k(I,M) instead of c∗k, dimM (I,M),
k = 0, . . . , dimM − 1.

To be more explicit, consider the standard bigraded R-algebra S∗ :=
Gm(GI(A)) = ⊕∞

s,n=0S
∗
s,n with

S∗
s,n =

∞⊕
i=0

[
msIiA+ Ii+1A

ms+1IiA+ Ii+1A

]
n

,
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where GI(A) is graded by the internal grading, and the finitely gener-
ated bigraded module over this algebra

T ∗ = Gm(GI(M)) =

∞⊕
s,n=0

T ∗
s,n

with

T ∗
s,n =

∞⊕
i=0

[
msIiM + Ii+1M

ms+1IiM + Ii+1M

]
n

,

where GI(M) is graded by the internal grading.

Observe that S∗
0,0 = R/m is a field and T ∗ has dimension dimM . We

denote the Hilbert-Samuel function �S∗
0,0
(T ∗

s,n) of T
∗ = Gm(GI(M)) by

h∗
(I,M)(s, n) and its first Hilbert sum by h

∗ (1,0)
(I,M) (s, n). Thus,

h∗
(I,M)(s, n) =

∞∑
i=0

�R

[
msIiM + Ii+1M

ms+1IiM + Ii+1M

]
n

and

h
∗ (1,0)
(I,M) (s, n) =

∞∑
i=0

�R

[
IiM

ms+1IiM + Ii+1M

]
n

.

For s, n � 0, we define the polynomial h∗D
(I,M)(s, n) of degree D − 2

as the Hilbert polynomial of h∗
(I,M)(s, n), adding coefficient zero to the

terms of degree between dimM − 2 and D − 2.

Thus, if s, n � 0, the sequence

c∗k, D(I,M)

k!(D − 1− k)!
, k = 0, . . . , D − 1,

is the coefficients of the leading form of the polynomial h
∗D (1,0)
(I,M) (s, n).

We will need the fact that the c∗-multiplicity sequence is additive on
short exact sequences:

Theorem 3.2 (Additivity). Let (R,m) be a local Noetherian ring, A
a standard graded Noetherian R-algebra, and I an ideal of A generated
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by linear forms. If 0 −→ M0 −→ M1 −→ M2 −→ 0 is an exact
sequence of finitely generated graded A-modules and D an integer with
D ≥ d := dimM1. Then,

c∗k, D(I,M1) = c∗k, D(I,M0) + c∗k, D(I,M2)

for all k = 0, . . . , D − 1.

Proof. Let Nj := R(I,Mj)
+ be the extended Rees module associated

to Mj , graded by the internal grading. Set

N ′
0 := ker (N1 → N2) =

⊕
n∈Z

∞⊕
i=0

[M0 ∩ IiM1]n.

We consider the natural diagram

0 � N ′
0 �

�

t−1

N1 �

�

t−1

N2 �

�

t−1

0

0 � N ′
0 � N1 � N2 � 0,

which gives an exact sequence of cokernels:

(6) 0 −→ G′ :=
N ′

0

t−1N ′
0

−→ GI(M1) −→ GI(M2) −→ 0.

Next consider the following commutative diagram:

0 � N0 �

�

t−1

N ′
0 �

�

t−1

L �

�

t−1

0

0 � N0 � N ′
0 � L � 0,

where L := coker (N0 → N ′
0). The snake-lemma yields an exact se-

quence of finitely generated graded R(I, A)+-modules having dimen-
sion at most D,

(7) 0 −→ U −→ GI(M0) −→ G′ −→ V −→ 0,
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where U := ker (t−1 : L → L) and V := coker (t−1 : L → L). We also
have the exact sequence:

(8) 0 −→ U −→ L −→ L −→ V −→ 0.

For n ≤ 1, the coefficient modules of tn in Re(I,M0) and in N ′
0

coincide; hence, the action of t−1 on L is nilpotent. Therefore, the
dimension of L is at most that of G′, which is bounded by D. Thus, all
modules occurring in the exact sequence (8) have dimension at most
D.

Now (6), (7) and (8) are exact sequences of graded GI(A)-modules
of dimension at most D. Hence, we may compute the cD-multiplicity
sequence of graded modules along these sequences. Using the additivity
of this multiplicity sequence as stated in Proposition 2.3, we deduce
that indeed

c∗k,D(I,M1) = c∗k,D(I,M0) + c∗k, D(I,M2)

for all k = 0, . . . , D − 1.

We will prove next that the c∗-multiplicity sequence is an invariant
of M with respect to I up to reduction. For I ⊆ J two A-ideals and
M a Noetherian A-module, we say that I is a reduction of (J,M) if
IJ iM = J i+1M for some i ≤ 0.

Theorem 3.3. Let (R,m) be a local Noetherian ring, A a standard
graded Noetherian R-algebra, M a finitely generated graded A-module
and D an integer with D ≥ dimM . Let I ⊆ J be ideals of A generated
by linear forms. If I is a reduction of (J,M), then c∗k,D(I,M) =
c∗k, D(J,M) for all k = 0, . . . , D − 1.

Proof. Since I is a reduction of (J,M), we have that I(J iM) =
J i+1M = J(J iM)) for some i ≥ 0. Hence, we have that GI(J

iM) =
GJ (J

iM), and thus c∗k, D(I, J iM) = c∗k,D(J, J iM) for all k = 0, . . . , D−
1. On the other hand, set Mj := JjM/Jj+1M for j ≥ 0. Notice
that JMj = 0 = IMj ; hence, GI(Mj) = Mj = GJ(Mj), and then
c∗k, D(I,Mj) = c∗k,D(J,Mj) for all k = 0, . . . , D − 1.
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Using the additivity of the c∗-multiplicity sequence as proved in
Theorem 3.2, we now conclude that

c∗k, D(I,M) = c∗k, D(I, J iM) +

i−1∑
j=0

c∗k, D(I,Mj)

= c∗k, D(J, J iM) +

i−1∑
j=0

c∗k,D(J,Mj)

= c∗k, D(J,M).

4. c�-multiplicity sequence. We introduce another multiplicity
sequence, the c�-multiplicity sequence, that is more suited for general-
izing the Achilles-Manaresi multiplicity sequence for arbitrary ideals as
well as the Buchsbaum-Rim multiplicity for modules of finite colength
in a free module. The definition is inspired by [2, 17].

In addition to the assumptions of the last section, suppose that M
is generated in degree zero. Again, consider GI(M) as graded by the
internal grading.

Definition 4.1. Let D be any integer with D ≥ dimM . We define
the c�-multiplicity sequence of M with respect to I as

c�k,D(I,M) := cDk (A1GI(M)), k = 0, . . . , D − 1,

where GI(M) is graded by the internal grading. In the case where

D = dimM , we simply write c�k(I,M) instead of c�k, dimM (I,M),
k = 0, . . . , dimM − 1.

To be more explicit, consider the standard bigraded R-algebra S� :=
Gm(A1GI(A)) = ⊕∞

s,n=0S
�
s,n, with

S�
s,n =

∞⊕
i=0

[
msIiA1 + Ii+1

ms+1IiA1 + Ii+1

]
n

=

n−1⊕
i=0

[
msIiA1 + Ii+1

ms+1IiA1 + Ii+1

]
n

,

where GI(A) is graded by the internal grading, and the finitely gener-
ated bigraded module over this algebra

T � = Gm(A1GI(M)) =

∞⊕
s,n=0

T �
s,n
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with

T �
s,n =

∞⊕
i=0

[
msIiA1M + Ii+1M

ms+1IiA1M + Ii+1M

]
n

=

n−1⊕
i=0

[
msIiM + Ii+1M

ms+1IiM + Ii+1M

]
n

,

where GI(M) is graded by the internal grading.

We denote the Hilbert-Samuel function �R(T
�
s,n) of T

�=Gm(A1GI(M))

by h�
(I,M)(s, n) and its first Hilbert sum by h

� (1,0)
(I,M)(s, n).

Thus,

h�
(I,M)(s, n) =

n−1∑
i=0

�R

[
msIiM + Ii+1M

ms+1IiM + Ii+1M

]
n

and

h
� (1,0)
(I,M)(s, n) =

n−1∑
i=0

�R

[
IiM

ms+1IiM + Ii+1M

]
n

.

For s, n � 0, we define the polynomial h�D
(I,M)(s, n) of degree D − 2

as the Hilbert polynomial of h�
(I,M)(s, n), adding coefficient zero to the

terms of degree between dim (A1GI(M))− 2 and D − 2.

Thus, if s, n � 0, the sequence

c�k, D(I,M)

k!(D − 1− k)!
, k = 0, . . . , D − 1

is the coefficients of the leading form of the polynomial h
�D (1,0)
(I,M) (s, n).

Next we introduce another multiplicity sequence, called the b-multi-
plicity sequence, which also is an invariant of M with respect to I up
to reduction. The motivation for introducing this new multiplicity se-
quence is to help prove one of our main results: that the c�-multiplicity
sequence is an invariant of M with respect to I up to reduction (see
Theorem 4.6).
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Definition 4.2. Denote the gradedGI(A)-moduleGI(M)/A1GI(M)
by B(I,M). Let D be any integer with D ≥ dimM . We define the
b-multiplicity sequence of M , with respect to I, as

bk,D(I,M) := cDk (B(I,M)), k = 0, . . . , D − 1,

where B(I,M) is graded by the internal grading. In the case where
D = dimM , we simply write bk(I,M) instead of bdimM

k (I,M), k =
0, . . . , dimM − 1.

It will be useful to clarify the relationship between the three multi-
plicity sequences c∗, b and c�.

Lemma 4.3. We use the same notation of Definition 4.1. We have
that

c∗k, D(I,M) = c�k, D(I,M) + bk,D(I,M).

Proof. Consider the exact sequence of GI(A)-modules:

0 −→ A1GI(M) −→ GI(M) −→ B(I,M) −→ 0.

By the additivity of the cD-multiplicity sequence, Proposition 2.3, we
have

cDk (GI(M)) = cDk (A1GI(M)) + cDk (B(I,M)).

Recall that cDk (GI(M)) = c∗k, D(I,M), cDk (A1GI(M)) = c�k, D(I,M)

and cDk (B(I,M)) = bk,D(I,M). Hence, the result follows.

We will need the fact that the b-multiplicity sequence is additive on
short exact sequences:

Proposition 4.4 (Additivity). Let (R,m) be a local ring, A a
standard graded Noetherian R-algebra, and I an ideal of A generated
by linear forms. If 0 → M0 → M1 → M2 → 0 is an exact sequence of
finitely generated graded A-modules andD an integer with D ≥ dimM1,
then

bk,D(I,M1) = bk,D(I,M0) + bk,D(I,M2)

for all k = 0, . . . , D − 1.
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Proof. Notice that B(I,Mj) = ⊕n∈N[InMj]n, j = 0, 1, 2. Set

G′ := ker (B(I,M1) −→ B(I,M2)) =
⊕
n∈N

[M0 ∩ InM1]n.

We have the exact sequence

(9) 0 −→ G′ −→ B(I,M1) −→ B(I,M2) −→ 0.

Set

L := coker (B(I,M0) −→ G′) =
⊕
n∈N

[
M0 ∩ InM1

InM0

]
n

.

We have the exact sequence

(10) 0 −→ B(I,M0) −→ G′ −→ L −→ 0.

Now (9) and (10) are exact sequences of finitely generated graded
modules of dimension at most D. Hence, we may compute the cD-
multiplicity sequence of graded modules along these sequences. Using
the additivity of this multiplicity sequence as stated in Proposition 2.3,
we deduce that

bk,D(I,M1) = bk,D(I,M0) + bk,D(I,M2) + cDk (L).

To obtain that cDk (L) = 0, we show that L has dimension less than
D. In fact, by Artin-Rees we have that

M0 ∩ InM1

InM0
=

In−c(M0 ∩ IcM1)

InM0
⊆ In−cM0

InM0
.

Hence, dim (L) ≤ dim (P ) where P := ⊕n∈N[In−cM0/I
nM0]n. Clearly,

P has dimension less than the dimension of GI(M0) = ⊕n∈N ⊕∞
i=0

[IiM0/I
i+1M0]n, which is at most D.

We will prove next that the b-multiplicity sequence is an invariant of
M with respect to I up to reduction.
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Proposition 4.5. Let (R,m) be a local ring, A a standard graded
Noetherian R-algebra, M a finitely generated graded A-module and D
an integer with D ≥ dimM . Let I ⊆ J be ideals of A generated by linear
forms. If I is a reduction of (J,M), then bk,D(I,M) = bk,D(J,M) for
all k = 0, . . . , D − 1.

Proof. Since I is a reduction of (J,M), we have that I(J iM) =
J i+1M = J(J iM)) for some i ≥ 0. Hence, we have that B(I, J iM) =
B(J, J iM), and thus bk,D(I, J iM) = bk,D(J, J iM) for all k =
0, . . . , D − 1. On the other hand, set Mj := JjM/Jj+1M for j ≥ 0.
Notice that JMj = 0 = IMj; hence, B(I,Mj) = 0 = B(J,Mj) and
then bk,D(I,Mj) = 0 = bk,D(J,Mj) for all k = 0, . . . , D − 1.

Using the additivity of the b-multiplicity sequence as proved in
Theorem 4.4, we now conclude that

bk,D(I,M) = bk, D(I, J iM) +

i−1∑
j=0

bk,D(I,Mj)

= bk, D(J, J iM) +

i−1∑
j=0

bk,D(J,Mj)

= bk, D(J,M).

Now we come to one of our main results: that the c�-multiplicity
sequence is an invariant of M with respect to I up to reduction.

Theorem 4.6. Let (R,m) be a Noetherian local ring, A a stan-
dard graded Noetherian R-algebra, M a graded A-module generated by
finitely many homogeneous elements of degree zero and D an integer
with D ≥ dimM . Let I ⊆ J be ideals of A generated by linear forms.
If I is a reduction of (J,M), then c�k,D(I,M) = c�k,D(J,M) for all
k = 0, . . . , D − 1.

Proof. By Lemma 4.3. we have that

c∗k, D(I,M) = c�k, D(I,M) + bk,D(I,M).
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On the other hand, we have by Theorem 3.3 and Proposition 4.3
that c∗k,D(I,M) = c∗k,D(J,M) and bk,D(I,M) = bk,D(J,M) for all

k = 0, . . . , D − 1, respectively. Therefore, c�k,D(I,M) = c�k,D(J,M)
for all k = 0, . . . , D − 1.

Remark 4.7. Let (R,m) be a Noetherian local ring. Given two
standard finitely generated graded R-algebras G′ and G, with G′ a
graded subalgebra of G and M a D-dimensional finitely generated
graded G-module, we define a sequence of multiplicities ck(G

′, G;M),
k = 0, . . . , D − 1, as follows: let I := G′

1G and A := G. Set

ck(G
′, G;M) := c�k(I,M), k = 0, . . . , D − 1.

Let G′′ be another standard finitely generated graded R-algebras such
that G′′ ⊆ G′ ⊆ G. Then Theorem 4.6 asserts that ck(G

′′, G;M) =
ck(G

′, G;M) for all k = 0, . . . , D − 1 if G′′ is a reduction of G′ for
M . This result is in the spirit of [14, Theorem 6.7 (a), item (iii) (a)].
It would be very important to prove the converse and also that G′

is a reduction of G for M if, and only if, ck(G
′, G;M) = 0 for all

k = 0, . . . , D − 1, as in [14, Theorem 6.3 (a)].

5. Hyperplane sections. In this section we show that the
multiplicity sequences c∗, c�, b behave well with respect to sufficiently
general hyperplane sections.

Given g =
∑

n∈N gn ∈ M \ {0}, let n be the smallest number such
that gn = 0. Let i be the largest number such that gn ∈ [IiM ]n, and
define the initial form of g, denoted by g∗, by

g∗ := gn modulo [Ii+1M ]n ∈ [IiM/Ii+1M ]n.

If g = 0, we define g∗ = 0. For a graded A-submodule N of M ,

GI(N,M) :=
⊕
n∈N

⊕
i∈N

[
N ∩ IiM + Ii+1M

Ii+1M

]
n

will denote the GI(A)-submodule of GI(M) generated by the initial
forms of all elements of N .



ARBITRARY MODULES AND REDUCTION 1097

If x is an element of A, denote by x′ the initial form of x∗ ∈ GI(A)
in Gm(GI(A)). Similarly, if J is a graded ideal in A, let

J ′ := Gm(GI(J,A), GI(A)) ⊆ Gm(GI(A))

be the ideal of A generated by all x′ when x ∈ J , and, if N is a graded
A submodule of M , we denote

N ′ = Gm(GI(N,M), GI(M)) ⊆ Gm(GI(M)).

Definition 5.1. Let S = Gm(GI(A)), and let (0) = N1 ∩N2 ∩ · · · ∩
Nr∩Nr+1∩· · ·∩Nt be an irredundant primary decomposition of (0) in
the S-module T = Gm(GI(M)). Denote Pi =

√
(Ni :S T ), i = 1, . . . , t.

Assume that

I ′ ⊆ Pr+1, . . . , Pt

and

I ′ ⊆ P1, . . . , Pr.

We say that x ∈ I is a superficial element for (I,M) if x′ /∈ P1, . . . , Pr.

Remark 5.2. Let x ∈ I be a superficial element for (I,M). By
definition, there exist k such that (I ′)kT ⊆ Nr+1 ∩ · · · ∩Nt. Then

(0′ :T x′) =
t⋂

i=1

(Ni :T x′) ⊆ N1 ∩N2 ∩ · · · ∩Nr;

hence,

(I ′)kT ∩ (0′ :T x′) ⊆ N1 ∩N2 ∩ · · · ∩Nr ∩Nr+1 ∩ · · · ∩Nt.

The following lemma, in its version for ungraded modules, is due to
Ciupercǎ in [6, Lemma 2.10], whose proof can be easily adapted to the
graded case we present here.
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Lemma 5.3. Let (R,m) be a local ring, A a standard graded
Noetherian R-algebra and M a finitely generated graded A-module,
and let L ⊆ K be two graded submodules of M such that the length
�(Kn/Ln) is finite for all n ∈ N. Then

�

(
Kn

Ln

)
= �

(
[GI(K,M)]n
[GI(L,M)]n

)
.

The following proposition shows that sufficiently general hyperplane
sections behave well with respect to the c∗-multiplicity sequence. The
proof is similar to that of Ciupercǎ [6, Proposition 2.11], but we include
the proof in its graded context for completeness.

Proposition 5.4. Let (R,m) be a local Noetherian ring, A a standard
graded Noetherian R-algebra and M a D-dimensional finitely generated
graded A-module. Suppose that x ∈ I is a superficial element for (I,M)
and a nonzero divisor on M with x′ ∈ S0,1. Denote T = Gm(GI(M)),

where A = A/xA, I = I ⊗A and M = M ⊗A. Then,

c∗k(I,M) = c∗k(I,M), for k = 0, . . . , D − 2.

Proof. The proof relies on Lemma 5.3.

We have the following exact sequence:

0 −→ K −→
[

IiM

ms+1IiM + Ii+1M

]
n

−→
[

IiM + xM

ms+1IiM + Ii+1M + xM

]
n

−→ 0,

where

K =

[
IiM ∩ (ms+1IiM + Ii+1M + xM)

ms+1IiM + Ii+1M

]
n

=

[
(ms+1IiM + Ii+1M) + IiM ∩ xM

ms+1IiM + Ii+1M

]
n

=

[
IiM ∩ xM

(ms+1IiM + Ii+1M) ∩ xM

]
n

.
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From this exact sequence, we get

h
(1,0)

T
(s, n) =

∞∑
i=0

�

([
IiM + xM

ms+1IiM + Ii+1M + xM

]
n

)

=

∞∑
i=0

�

([
IiM

ms+1IiM + Ii+1M

]
n

)

−
∞∑
i=0

�

([
IiM ∩ xM

(ms+1IiM + Ii+1M) ∩ xM

]
n

)
.

Therefore, to conclude the proof, we need to show that for s, n � 0,

∞∑
i=0

�

([
IiM ∩ xM

(ms+1IiM + Ii+1M) ∩ xM

]
n

)

and

∞∑
i=0

�

([
Ii−1M

ms+1Ii−1M + IiM

]
n−1

)

have the same leading forms.

We have that

∞∑
i=0

�

([
IiM ∩ xM

(ms+1IiM + Ii+1M) ∩ xM

]
n

)

=

∞∑
i=0

�

([
x(IiM : x)

x((ms+1IiM + Ii+1M) : x)

]
n

)

=

∞∑
i=0

�

([
(IiM : x)

(ms+1IiM + Ii+1M) : x

]
n−1

)

=

∞∑
i=0

�

([
(IiM : x)′

((ms+1IiM + Ii+1M) : x)′

]
n−1

)
,

where the last equality follows by a successive application of Lemma 5.3.

By Remark 5.2, there exist c such that (I ′)cT ∩ (0′ :T x′) = (0). We
claim that, for i > c,

(IiM : x)′ ∩ (I ′)cT = (Ii−1M)′(11)
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and

((ms+1IiM + Ii+1M) : x)′ ∩ (I ′)cT = (ms+1IiM + Ii+1M)′.
(12)

We first prove (11). Let y ∈ (IiM : x) be such that 0 = y′ ∈ (I ′)cT .
Since (I ′)cT ∩ (0′ :T x′) = (0), it follows that y′ /∈ (0′ :T x′); hence,
0 = (yx)′ ∈ (IiM)′. But (IiM)′ is

0 ⊕ 0 ⊕ · · · ⊕ 0 ⊕ T0,i ⊕ T0,i+1 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
0 ⊕ 0 ⊕ · · · ⊕ 0 ⊕ T1,i ⊕ T1,i+1 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
0 ⊕ 0 ⊕ · · · ⊕ 0 ⊕ T2,i ⊕ T2,i+1 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
...

...
...

...
...

Since x′ ∈ S0,1, we must have y′ ∈ (Ii−1M)′.

To see (12), consider y ∈ ((ms+1IiM + Ii+1M) : x) such that
0 = y′ ∈ (I ′)cT . By the choice of c, we have y′ /∈ (0′ : x′); hence,
(yx)′ ∈ (ms+1IiM + Ii+1M)′ and (yx)′ = 0. The homogeneous
components of the bigraded submodule (ms+1IiM + Ii+1M)′ ⊆ T are
represented below:

0 ⊕ · · · ⊕ 0 ⊕ 0 ⊕ T0,i+1 ⊕ T0,i+2 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
0 ⊕ · · · ⊕ 0 ⊕ 0 ⊕ T1,i+1 ⊕ T1,i+2 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
...

...
...

...
...

⊕ ⊕ ⊕ ⊕ ⊕
0 ⊕ · · · ⊕ 0 ⊕ 0 ⊕ Ts,i+1 ⊕ Ts,i+2 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
0 ⊕ · · · ⊕ 0 ⊕ Ts+1,i ⊕ Ts+1,i+1 ⊕ Ts+1,i+2 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
0 ⊕ · · · ⊕ 0 ⊕ Ts+2,i ⊕ Ts+2,i+1 ⊕ Ts+2,i+2 ⊕ · · ·
⊕ ⊕ ⊕ ⊕ ⊕
...

...
...

...
... .
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Since x′ ∈ S0,1, we must have y′ ∈ (ms+1IiM+Ii+1M)′. Then we have

∞∑
i=0

�

([
IiM ∩ xM

(ms+1IiM + Ii+1M) ∩ xM

]
n

)

=

∞∑
i=0

�

([
x(IiM : x)

x((ms+1IiM + Ii+1M) : x)

]
n

)

=
∞∑
i=0

�

([
(IiM : x)

(ms+1IiM + Ii+1M) : x

]
n−1

)

=

∞∑
i=0

�

([
(IiM : x)′

((ms+1IiM + Ii+1M) : x)′

]
n−1

)

=
∞∑
i=0

�

([
(IiM : x)′ ∩ (I ′)cT

((ms+1IiM + Ii+1M) : x)′ ∩ (I ′)cT

]
n−1

)

+

∞∑
i=0

�

([
(IiM : x)′ + (I ′)cT

((ms+1IiM + Ii+1M) : x)′ + (I ′)cT

]
n−1

)
.

Notice that, by (11) and (12) we have that the right-hand-side of the
above equality and

∞∑
i=0

�

([
Ii−1M

ms+1IiM + IiM

]
n−1

)

+

∞∑
i=0

�

([
(IiM : x)′ + (I ′)cT

((ms+1IiM + Ii+1M) : x)′ + (I ′)cT

]
n−1

)

have the same leading forms.

By the Artin-Rees lemma, there exists a p such that, for i > p,

IiM ∩ xM = Ii−p(IpM ∩ xM),

i.e.,
x(IiM :M x) = xIi−p(IpM :M x),

or
(IiM :M x) = Ii−p(IpM :M x).

Then, for i > p+ c, (IiM :M x)′ ⊆ (I ′)cT.
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On the other hand, we also have

((ms+1IiM + Ii+1M) : x)′ ⊆ (IiM :M x)′

⊆ (I ′)cT for i > p+ c and all s.

We can now conclude that

∞∑
i=0

�

([
IiM ∩ xM

(ms+1IiM + Ii+1M) ∩ xM

]
n

)

and

∞∑
i=0

�

([
Ii−1M

ms+1Ii−1M + IiM

]
n−1

)

have the same leading forms, which finishes the proof.

Remark 5.5. Similarly, we can show that sufficiently general hyper-
plane sections behave well with respect to the b-multiplicity sequence.
Since, by Lemma 4.3,

c∗k, D(I,M) = c�k, D(I,M) + bk,D(I,M),

we have that the c�-multiplicity sequence also has this property.

6. Local criterion for reduction. In this section we give a
criterion for reduction of ideals involving the c�-multiplicity sequence
in all localizations in prime ideals.

In order to be able to prove the main result in a simple way, we
need some notations. Let (R,m) be a local Noetherian ring and A
a standard graded Noetherian R-algebra. Given a finitely generated
graded A-module, N j = ⊕n∈N[N j ]nv

n, the extended Rees module

Re(m, N j) :=
⊕
s∈Z
n∈N

ms[N j ]nu
svn

will be denoted by P j . It gives rise to the associated bigraded module

Gj :=
P j

u−1P j
= Gm(N

j) :=
⊕

s,n∈N

[Gj ]s,n,
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where

[Gj ]s,n :=
ms[N j ]n

ms+1[N j ]n
.

In general, given any bigraded module F , its generic s, nth piece will
be denoted by Fs,n, i.e., F = ⊕s,n∈NFs,n.

Lemma 6.1. Let N j, j = 0, 1, 2, be finitely generated A-modules and

0 −→ N0 −→ N1 −→ N2 −→ 0

an exact sequence. Let P ′0 = ker (P 1 → P 2). Assume that P 0 is

naturally injected in P ′0, and denote by L the cokernel of P0 ↪→ P ′0, Let
U and V denote the kernel and cokernel of the map u−1 : L(1, 0) → L,
respectively. Then we have that

(i) �([G1]s,n) = �([G0]s,n) + �([G2]s,n)− [�(Us,n)− �(Vs,n)];

(ii) 0 → U → L(1, 0) → L → V → 0 is an exact sequence; and

(iii) all modules occurring in (ii) have dimension at most dim (N1).

Proof. From the exact sequence,

0 −→ N0 −→ N1 −→ N2 −→ 0,

we get the natural diagram

0 � P ′0(1, 0) �

�

u−1

P 1(1, 0) �

�

u−1

P 2(1, 0) �

�

u−1

0

0 � P ′0
� P 1

� P 2
� 0

which gives an exact sequence of cokernels:

(13) 0 −→ G′ :=
P ′0

u−1P ′0 −→ G1 −→ G2 −→ 0.

Using the diagram coming from the natural injection, P 0 ↪→ P ′0,

0 � P 0(1, 0) �

�

u−1

P ′0(1, 0) �

�

u−1

L(1, 0) �

�

u−1

0

0 � P 0
� P ′0

� L � 0
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the snake-lemma yields:

(14) 0 −→ U −→ G0 −→ G′ −→ V −→ 0.

By definition of U and V , we have the exact sequence:

(15) 0 −→ U −→ L(1, 0) −→ L −→ V −→ 0,

which proves (ii).

For s ≤ 1, the coefficient modules of us in P 0 = Re(m, N0) and in

P ′0 coincide; hence, the action of u−1 on L is nilpotent. Therefore,
the dimension of L is at most that of G′, which by (13) is bounded by
dim (N1). Thus, all modules occurring in the exact sequence (15) have
dimension at most dim (N1), which proves (iii).

Finally, by exact sequences (13), (14) and (15), we have that

�([G1]s,n) = �([G0]s,n) + �([G2]s,n)− [�(Us,n)− �(Vs,n)],

which proves (i).

The next theorem provides a crucial step in the proof of our main
result of this section.

Theorem 6.2. Let (R,m) be a local Noetherian ring, A a standard
graded Noetherian R-algebra, I ⊆ J A-ideals generated by linear forms,
and M a D-dimensional graded A-module generated by finitely many
homogeneous elements of degree zero. Assume that Iq is a reduction of
(Jq,Mq) for every prime q of R with q = m. Then

(i) c�k(I,M) = c�k(J,M) for all k = 1, . . . , D − 1 and c�0(I,M) ≥
c�0(J,M);

(ii) Suppose that R is universally catenary, M is equidimensional as
an A-module, and (I1)p = (A1)p for every prime p of R that is the

contraction of a minimal prime in SuppA(M). If c�0(I,M) ≤ c�0(J,M),
then I is a reduction of (J,M).

Proof. We may factor out the annihilator of M to assume that M is a
faithful A-module. In particular, A is equidimensional of dimension D
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in the setting of (ii). Theorem 4.6 shows that c�k(I,M) does not change
when we replace I by the ideal generated by all linear forms in J that
are integral over I on M . Thus, by our assumptions on I and J we
may suppose that [JM/IM ]1 has finite length over R.

For any 0 ≤ i ≤ n−1 consider the following exact sequences of graded
A-modules whose nth piece is described:

0 −→
[
J i+1M

Ii+1M

]
n

−→
[

J iM

Ii+1M

]
n

−→
[

J iM

J i+1M

]
n

−→ 0

(16)

and

0 −→
[

IiM

Ii+1M

]
n

−→
[

J iM

Ii+1M

]
n

−→
[
J iM

IiM

]
n

−→ 0.

(17)

Applying Lemma 6.1 (i) to the exact sequence (16), we have that
(18)

n−1∑
i=0

�

([
J iM

msJ iM + Ii+1M

]
n

)
=

n−1∑
i=0

�

([
J iM

msJ iM + J i+1M

]
n

)

+

n−1∑
i=0

�

([
J i+1M

Ii+1M

]
n

)

− [h
(1,0)
L (s+ 1, n)− h

(1,0)
L (s, n)],

where L := ⊕s,n∈NLs,n with

Ls,n :=

n−1⊕
i=0

[
msJ iM ∩ J i+1M + Ii+1M

msJ i+1M + Ii+1M

]
n

,

and where we use the fact that �([J i+1M/Ii+1M ]n) < ∞ and hence,
for s � 0, �([J i+1M/msJ i+1M + Ii+1M ]n) = �([J i+1M/Ii+1M ]n).
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Applying Lemma 6.1 (i) to the exact sequence (17), we have that
(19)

n−1∑
i=0

�

([
J iM

msJ iM + Ii+1M

]
n

)
=

n−1∑
i=0

�

([
IiM

msIiM + Ii+1M

]
n

)

+

n−1∑
i=0

�

([
J iM

IiM

]
n

)

− [h
(1,0)
L′ (s+ 1, n)− h

(1,0)
L′ (s, n)],

where L′ := ⊕s,n∈NL′
s,n with

L′
s,n :=

n−1⊕
i=0

[
msJ iM ∩ IiM + Ii+1M

msIiM + Ii+1M

]
n

and where we use the fact that �([J iM/IiM ]n) < ∞ and hence, for
i � 0, �([J iM/msJ iM + IiM ]n) = �([J iM/IiM ]n).

By Lemma 6.1 (iii), L and L′ have dimension at most D; hence,

[h
(1,0)
L (s + 1, n) − h

(1,0)
L (s, n)] and [h

(1,0)
L′ (s + 1, n) − h

(1,0)
L′ (s, n)] are

eventually polynomials of degree at most D − 2.

Notice that

n−1∑
i=0

[
�

([
J i+1M

Ii+1M

]
n

)
− �

([
J iM

IiM

]
n

)]
= �

([
JnM

InM

]
n

)
.

Hence, the right-hand-side of the above equality is eventually a poly-
nomial in n of degree at most D− 1 whose leading coefficient we write
as a�(I/J ;M).

Therefore, by equalities (18) and (19), we have that

n−1∑
i=0

�

([
J iM

msJ iM + J i+1M

]
n

)
+ �

([
JnM

InM

]
n

)

and
n−1∑
i=0

�

([
IiM

msIiM + Ii+1M

]
n

)
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are eventually polynomials of degree at most D−1 with the same lead-
ing coefficients. Comparing coefficients in degree D − 1 of these poly-
nomials, one sees that c�k(I,M) = c�k(J,M) for all k = 1, . . . , D−1 and

c�0(I,M) = c�0(J,M)+a�(I/J ;M), which proves (i) since a�(I/J ;M) ≥
0.

Under the assumptions of (ii) we have that a�(I/J ;M) = 0. This
forces I to be a reduction of (J,M) (see the proof of [17, Theorem
3.3]).

We are now ready to assemble the proof of the main theorem of this
subsection.

Theorem 6.3. Let (R,m) be a universally catenary local Noethe-
rian ring, A a standard graded Noetherian R-algebra, I ⊆ J A-ideals
generated by linear forms, and M a D-dimensional graded A-module
generated by finitely many homogeneous elements of degree zero. As-
sume that the A-module M is equidimensional locally at every maximal
ideal of R, and (I1)p = (A1)p for every prime p of R that is the con-
traction of a minimal prime in SuppA(M). Then the following are
equivalent:

(i) I is a reduction of (J,M);

(ii) c�0(Ip,Mp) = c�0(Jp,Mp) for all p ∈ Spec (A), and

(iii) c�0(Ip,Mp) ≤ c�0(Jp,Mp) for all p ∈ Spec (A).

Proof. The implication (i) ⇒ (ii) follows from Theorem 4.6, and (ii)
⇒ (iii) is trivial. To show that (i) follows by (iii), we let q be any
prime ideal of A. Assuming that (iii) holds, we prove by induction on
e := dimAq that Iq is a reduction of (Jq,Mq). If e = 0, then the result
follows immediately from Theorem 6.2 applied to the local ring (Aq, qq).
Hence, we may suppose that e > 0. Let p be any prime ideal of A such
that dimAp = e−1 and p ⊂ q. Hence, by induction hypotheses, we have
that Ip is a reduction of (Jp,Mp). The equidimensional assumption on
M is preserved under localization [7, Proof of 3.2]. Thus, in the local
ring (Aq, qq), all the assumptions of Theorem 6.2 hold; hence, Iq is a
reduction of (Jq,Mq).
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7. Multiplicity sequence for arbitrary modules. We begin by
recalling the notion of the Buchsbaum-Rim multiplicity for submodules
of finite colength in a free module as introduced and developed in [4].

Let (R,m) be a Noetherian local ring and E a submodule of the free
R-module Rp. The symmetric algebra A := Sym (Rp) = ⊕Sn(R

p) of
Rp is a polynomial ring R[T1, . . . , Tp]. If h = (h1, . . . , hp) ∈ Rp, then
we define the element w(h) = h1T1 + · · · + hpTp ∈ A. We denote
by R(E) := ⊕Rn(E) the subalgebra of A generated in degree one by
{w(h) : h ∈ E} and call it the Rees algebra of E. Then R(E) has
dimension d+ p.

If E has finite colength in Rp then, for n � 0, the function

H(n) = �A(Sn(A
p)/Rn(M))

becomes a polynomial in n with rational coefficients and degree d+p−1
where the coefficient of nd+p−1 could be written as

eBR(E)

(d+ p− 1)!
.

It is proved that, if E = Rp, then eBR(E) > 0 (see [4, page 214]) and
is called the Buchsbaum-Rim multiplicity of E.

We are now ready to introduce the main object of this paper, the
multiplicity sequence of an arbitrary module. Here the ideal of the
previous section will be replaced by a module E.

Let (R,m) be a Noetherian local ring, E a submodule of the free
R-module Rp and N a finitely generated R-module of dimension d.
Consider the A-ideal I generated by R1(E) and the A-module M :=
A ⊗R N . Notice that I is an A-ideal generated by linear forms and
M is a finitely generated graded A-module of dimension d + p that is
generated in degree zero.

Definition 7.1. We define the multiplicity sequence associated to
module E with respect to N by

ck(E,N) := c�k(I,M), k = 0, . . . , d+ p− 1.

To be more explicit,[
IiM

ms+1IiM+Ii+1M

]
n

=
Ri(E)Sn−i(R

p)N

ms+1Ri(E)Sn−i(Rp)N+Ri+1(E)Sn−i−1(Rp)N
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for 0 ≤ i ≤ n− 1. Thus, the Hilbert function of T � = Gm(A1GI(M)) is

h
� (1,0)
(I,M)(s, n)=

n−1∑
i=0

�R

[ Ri(E)Sn−i(R
p)N

ms+1Ri(E)Sn−i(Rp)N+Ri+1(E)Sn−i−1(Rp)N

]
,

which, for s, n � 0, becomes a polynomial of degree at most d+ p− 1
whose leading coefficients are

ck(E,N)

k!(d+ p− 1− k)!
, k = 0, . . . , d+ p− 1.

If N = R, we simply write ck(E) instead of ck(E,N) for k = 0, . . . , d+
p− 1.

Remark 7.2. Our multiplicity sequence ck(E,N) with k = 0, . . . , d+
p − 1 for the pair (E,N) generalizes the Buchsbaum-Rim multiplicity
defined when E has finite colength in Rp as well as the Achilles-
Manaresi multiplicity sequence that applies when E ⊆ R is an ideal.
In fact, if E has finite colength in Rp, then, for s � 0, we have that,
for all i ∈ N,

ms+1S1(R
p)Ri(E) ⊆ Ri+1(E),

thus

ms+1Ri(E)Sn−i(R
p) ⊆ Ri+1(E)Sn−i−1(R

p),

for all i ≤ n. Hence, in this context, if I and M are as in Definition 7.1
with N = R, then

h
� (1,0)
(I,M)(s, n) =

n−1∑
i=0

�R

[ Ri(E)Sn−i(R
p)

ms+1Ri(E)Sn−i(Rp) +Ri+1(E)Sn−i−1(Rp)

]

=

n−1∑
i=0

�R

[ Ri(E)Sn−i(R
p)

Ri+1(E)Sn−i−1(Rp)

]

= �R

[
Sn(R

p)

Rn(E)

]

=
eBR(E)

(d+ p− 1)!
nd+p−1 + · · · .
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Thus, by comparing the coefficients in the above equality, we have
in this case that c0(E,R) = eBR(E) and ck(E,R) = 0 for all k =
1, . . . , d + p − 1. Thus, our multiplicity sequence ck(E,N) with k =
0, . . . , d + p − 1 for the pair (E,N) generalizes the Buchsbaum-Rim
multiplicity.

In the case that E is an arbitrary ideal J of R (p = 1!), then our
multiplicity sequence ck(E,N) coincides with the Achilles-Manaresi
multiplicity sequence ck(J,N) for all k = 0, . . . , d. In fact, in this
case, Ri(E) = J i and Sj(R

p) = R for all i, j. Thus,

Ri(E)Sn−i(R
p)N = J iN

and

ms+1Ri(E)Sn−i(R
p) +Ri+1(E)Sn−i−1(R

p)N = ms+1J iN + J i+1N.

Hence,

h
� (1,0)
(I,M)(s, n) =

n−1∑
i=0

�R

[ Ri(E)Sn−i(R
p)N

ms+1Ri(E)Sn−i(Rp)N+Ri+1(E)Sn−i−1(Rp)N

]

=

n−1∑
i=0

�R

(
J iN

ms+1J iN + J i+1N

)

=

n−1∑
i=0

h
(1,0)
(J,N)(s, i) = h

(1,1)
(J,N)(s, n− 1).

Therefore, by comparing the coefficients in the above equality, we
obtain the claim.

Theorem 4.6 immediately gives the following result which says that
the multiplicity sequence associated to module E with respect to N is
an invariant of E with respect to N up to reduction.

Theorem 7.3. Let (R,m) be a Noetherian local ring, let E ⊆ F ⊆ Rp

be R-modules and write I := R1(E)A for the corresponding ideal
of A := Sym (Rp). Let N be a d-dimensional finitely generated R-
module, and set M := A ⊗R N . If E is a reduction of (F,N), then
ck(E,N) = ck(F,N) for all k = 0, . . . , d+ p− 1.
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This result generalizes a result proved by Ciupercǎ in [6, Proposition
2.7] when E is an ideal of R.

Remark 7.4. To close the circle of ideas around Rees’s theorem, it
will be extremely important to prove that the converse of Theorem 7.3
also holds. This is not even known in the ideal case. The only known
result in this direction is due to Gaffney and Gassler [10, Corollary 4.9]
where they proved that the converse of Theorem 7.3 holds for ideals
in the local ring of a pure dimensional analytic germ, but their proof
is analytic in nature since it is a consequence of what they call the
principle of specialization of integral dependence.

The following result shows that sufficiently general hyperplane sec-
tions behave well with respect to the multiplicity sequence of a module.
Before stating this result, we need some notation.

Let (R,m) be a Noetherian local ring, E ⊆ Rp an R-module and
write I := R1(E) for the corresponding ideal of A := Sym (Rp). Let N
be a d-dimensional finitely generated R-module. Let πi : R

p → R be
the projection on the ith-factor. Set J to be the ideal of R generated
by the union of πi(I). Let S := Gm(GJ (N)). An element y ∈ J will
be called a superficial element for (E,N) if y′ ∈ S0,1 is a filter regular
element with respect to S0,1, in the sense of [1, Remark 2.3].

Theorem 7.5. Let (R,m) be a Noetherian local ring, E ⊆ Rp an
R-module, N a d-dimensional finitely generated R-module and write
I := R1(E)A for the corresponding ideal of A := Sym (Rp). Let y be a
superficial element for (E,N) and a nonzero divisor on N . Then

ck(E,N) = ck(E,N), k = 0, . . . , d+ p− 2,

where N := N/yN and E := E ⊗R R with R := R/yR.

The above theorem follows immediately from Proposition 5.4 and
Remark 5.5.

Theorem 6.3 immediately gives the following local criterium for
reduction of arbitrary modules.

Theorem 7.6. Let (R,m) be a universally catenary local Noetherian
ring, E ⊆ F submodules of the free module L := Rp and N a d-
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dimensional finitely generated R-module. Assume that the R-module N
is locally equidimensional and that Ep = Lp for every minimal prime p
in SuppR(N). Then the following are equivalent:

(i) E is a reduction of (F,N);

(ii) c0(Ep, Np) = c0(Fp, Np) for all p ∈ Spec (R), and

(iii) c0(Ep, Np) ≤ c0(Fp, Np) for all p ∈ Spec (R).
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