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A UNIVERSAL SURVIVAL RING OF CONTINUOUS
FUNCTIONS WHICH IS NOT A UNIVERSAL

LYING-OVER RING

DAVID E. DOBBS, RONALD LEVY AND JAY SHAPIRO

ABSTRACT. The ring R of continuous real-valued func-
tions on the one-point compactification of the discrete space
of cardinality ℵ1 is a universal survival ring, yet is not a ULO-
ring. Chains of prime ideals of R of cardinality c exist. More-
over, R/P is a divided domain for each P ∈ Spec (R). If
the Continuum Hypothesis holds, then there exists a minimal
prime ideal P of R such that R/P is an infinite-dimensional
valuation domain; however, it is consistent with ZFC that no
such minimal primes exist.

1. Introduction. All rings considered below are commutative, with
1 �= 0; all ring homomorphisms and ring extensions are unital. If A is a
ring, then Z(A) denotes the set of zero-divisors ofA; tq (A) := AA\Z(A),
the total quotient ring of A; and Spec (A) denotes the set of all prime
ideals of A. As usual, “dim(ension)” refers to the Krull dimension.
Following [11, page 28], we use LO to denote the lying-over property of
ring extensions. Recall from [5, page 419] that a ring extension A ⊆ B
is said to satisfy QLO if, whenever P ∈ Spec (A) is such that PB �= B;
then there exists a Q ∈ Spec (B) such that Q ∩ A = P . It is clear
that LO ⇒ QLO, while any nontrivial ring of fractions (for instance,
Z ⊂ Q) shows that QLO �⇒ LO. Slightly modifying terminology from
[11, page 35], we say that a ring extension A ⊆ B is a survival extension
if PB �= B whenever P ∈ Spec (A). It is clear that each ring extension
that satisfies LO must be a survival extension; once again, examples
such as Z ⊂ Q show that the converse is false. Note that a survival
extension satisfies LO if (and only if) it satisfies QLO.
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In [7] (respectively, [8]), the first and third authors developed the
theory of rings A such that A ⊆ B satisfies LO (respectively, QLO)
for each ring extension B of A. Any such A was called a ULO-ring
(respectively, a UQLO-ring). Analogously, we will say that a ring A is
a universal survival ring (in short, a US-ring) if each ring extension of
the form A ⊆ B is a survival extension. In view of the above comments
it is clear that any ULO-ring is both a QLO-ring and a US-ring and that
a US-ring is a ULO-ring if (and only if) it is a UQLO-ring. Moreover,
it was shown in [6, Proposition 2.13] that if 1 ≤ n ≤ ∞, then there
exists an n-dimensional ULO-ring. While there are conditions that
can force a UQLO-ring to be a ULO-ring (cf. [7, Proposition 2.9]),
there exist n-dimensional UQLO-rings that are not ULO-rings, for each
n, 1 ≤ n ≤ ∞ [7, Proposition 2.10]. (The case n = 0 is avoided because
any zero-dimensional ring must be a ULO-ring [6, Proposition 2.1].) It
is natural to ask if there exist any US-rings that are not ULO-rings.

Corollary 2.4 answers this question in the affirmative, by giving n-
dimensional examples, for each integer n ≥ 2, of US-rings which are
not even UQLO-rings. These examples, as is the case with most of the
interesting examples from [6, 7], are built using the A+B construction
from [10]. (We review the A+B construction and some of its properties
in Section 2.) In fact, Corollary 2.4 results by combining a sufficient
condition for US-rings that is given in Proposition 2.2 with a family
of A + B constructions from [7, Corollary 2.15]. Thus, the question
naturally arises whether there is a basically new way to construct
infinite-dimensional US-rings which are not UQLO-rings. We answer
this in Section 2 by developing such a ring R, which is the ring of
continuous real-valued functions on a certain compact Hausdorff space.
Not only is R infinite-dimensional and a US-ring which is not a UQLO-
ring, but we also show that R cannot be obtained from any A + B
construction. The most arduous verification involves showing that
R ⊂ T does not satisfy LO for a certain ring of (continuous real-valued)
functions T ⊃ R.

While Section 2 contains enough analysis of ultrafilters and prime
ideals to obtain the above information about the ring of functions R,
Sections 3 and 4 develop additional properties of this very interesting
ring. For instance, Corollary 3.2 shows that, if P ∈ Spec (R), then R/P
is a divided domain (in the sense of [4]). However, Corollary 3.9 shows
that not every such factor domain of R can be a valuation domain,
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while Corollary 3.10 shows that if the continuum hypothesis holds,
then there does exist a minimal prime ideal P of R such that R/P is
an infinite-dimensional valuation domain. Also, while it is in general
quite difficult to explicitly describe the prime spectrum of a ring of
functions, Section 4 explains how to obtain each prime ideal of R as a
union or an intersection of the special types of prime ideals of R that
are considered in the earlier sections.

Besides the notation and conventions mentioned above, we adopt the
following. If A is a ring, then Max (A) (respectively, Min (A)) denotes
the set of maximal (respectively, minimal prime) ideals of A. As usual,
c denotes the cardinality of R; N denotes the set of natural numbers;
C(W ) denotes the ring of continuous real-valued functions defined on
a topological space W ; “Ann” denotes an annihilator; and ⊂ and ⊃
denote proper containments. Any unexplained material is standard, as
in [11].

2. Construction of an infinite-dimensional US-ring C(Y ). We
begin by recording two facts from the introduction.

Proposition 2.1. (a) Each ULO-ring is both a UQLO-ring and a
US-ring.

(b) If A is a US-ring, then A is a ULO-ring if (and only if) A is a
UQLO-ring.

In [10], Huckaba introduced a ring-theoretic property called Prop-
erty A as a generalization of the Noetherian property. Specifically, a
ring A is said to have (or satisfy) Property A if, whenever I is a finitely
generated ideal of A such that I ⊆ Z(A), we have that Ann (I) �= 0.
Proposition 2.1 (b) can be viewed as an analogue of the result [7, Propo-
sition 2.9] that, if A is a ring that has Property A and A = tq (A), then
A is a QLO-ring if (and only if) A is a UQLO-ring. The hypotheses of
the latter result are also the hypotheses of the useful sufficient condition
for US-rings in Proposition 2.2 (a).

Proposition 2.2. (a) If A is a ring satisfying Property A such that
A = tq (A), then A is a US-ring.

(b) If A is a reduced US-ring, then A satisfies Property A.
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Proof. For (a), rework the first two paragraphs of the proof of [6,
Theorem 2.6]. For (b), rework the proof of [6, Proposition 2.5].

If one chases the proof given below for Corollary 2.4 back to the proof
of [6, Corollary 2.15], we see that the rings in Corollary 2.4 were built
via the A+B construction. It is convenient next to recall the definition
and some of the basic properties of this construction from [10].

Let D be a reduced ring, and let P be a nonempty subset of Spec (D).
If A is an indexing set for P , let I := A ×N. For each i = (α, n) ∈ I,
let Pi := Pα and Di := D/Pi. Let

∏
Di be the product of {Di | i ∈ I},

and let B := Σi∈IDi. Define ϕ : D → ∏
Di by ϕ(d) := (d + Pi)i∈I . If

A is the image of ϕ, define S = A+ B. Note that S is a reduced ring,
B is an ideal of S and S/B ∼= A.

Lemma 2.3 [10, Theorems 26.1, 26.2, 26.4 and 27.1]. Let S be an
A+B ring, as defined above. Then:

(a) The minimal prime ideals of S that do not contain B are the ideals
of the form Mi = {(rj) ∈ S | ri = 0}, as i varies over I. Moreover,
S/Mi

∼= Di for each i.

(b) If P = Max (D) and J is the Jacobson radical of D, then
the prime ideals Q of S that contain B are in one to one order-
preserving correspondence with the prime ideals P of D that contain
J (via Q = ϕ(P ) +B), and S/B ∼= D/J .

(c) If P = Max (D), then S = A + B is its own total quotient ring
and has Property A.

Corollary 2.4. Let 2 ≤ n ≤ ∞. Then there exists an n-dimensional
US-ring A which is not a ULO-ring (and hence not a UQLO-ring).
It may be arranged that A is reduced, A = tq (A), and A satisfies
Property A.

Proof. The parenthetical assertion follows from Proposition 2.1 (b).
Hence, if n �= ∞, it is enough to combine Proposition 2.2 (a) with
[6, Corollary 2.15]. In fact, the same method can be shown to work
for the case n = ∞, the point being that [14] can be used to build
an example of an infinite-dimensional h-local domain D with infinitely
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many maximal ideals. To avoid going off on a tangent, we leave the
details of the construction of D to the interested reader, noting that we
will develop the ring of functions R as a suitable infinite-dimensional
example.

We next give a companion for Corollary 2.4.

Example 2.5. Let 1 ≤ n ≤ ∞. Then there exists an n-dimensional
UQLO-ring A which is neither a US-ring nor a ULO-ring. It may be
arranged that A is a chained ring and, hence, satisfies Property A.

Proof. Combine [7, Proposition 2.10] with Proposition 2.1 (b).

Most of this paper will be devoted to studying a specific ring of
functions. We first give a result showing that the C(−) construction is
relevant to the above concerns.

Proposition 2.6. C(W ) has Property A, for any topological
space W .

Proof. Put B := C(W ). For any f ∈ B, the annihilator Ann (f) :=
{g ∈ B | f(w)g(w) = 0 for all w ∈ W} is a radical ideal of B. Indeed, if
b ∈ B and bk ∈ Ann (f) for some k ∈ N, then (bf)k = 0, whence bf = 0
(since bf takes values in a reduced ring, i.e., R). Thus, if f1, . . . , fn ∈ B
and h :=

∑n
i=1 f

2
i , then Ann (f1, . . . , fn) = {g ∈ B | fi(w)2g(w)2 = 0

for all w ∈ W and all i = 1, . . . , n} = {g ∈ B | h(w)g(w)2 = 0 for
all w ∈ W} = Ann (h). (The first equation holds since R is a reduced
ring; the second holds since each fi(w)

2g(w)2 is non-negative; and the
third holds since Ann (h) is a radical ideal.)

We next introduce the ring of functions R = C(Y ) and devote the rest
of the section to showing that it is a (n infinite-dimensional example
of a) US-ring that is not a ULO-ring. In view of Proposition 2.1 and
Example 2.5, this will settle the remaining questions about the possible
implications among the ULO-ring, UQLO-ring and US-ring concepts.

Let X be a set of cardinality ℵ1, and let Y := X∪{∞}, where∞ /∈ X .
Put a topology on Y by defining a subset V of X to be open if and
only if either:
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(1) V ⊆ X or

(2) ∞ ∈ V and V is co-finite in Y (i.e., Y \ V is finite).

Thus, Y is the one-point compactification of a discrete space of
cardinality ℵ1. The following definition will be helpful. Given a
function f : Y → R, an element a ∈ R and a subset U of Y , we
say that f converges to a on U if for all ε > 0, the set {i ∈ U :
|f(i)− a| > ε}, is finite. Now, let R := C(Y ) be the ring of continuous
real-valued functions defined on Y (with pointwise operations). It is
straightforward to verify the following useful characterization of the
elements of R. For an arbitrary function f : Y → R with a := f(∞),
we have that f is continuous (i.e., f ∈ C(Y )) if and only if:

(1) the set W := Wa,f := {i ∈ Y : f(i) = a} is co-countable and

(2) f converges to a on Y \W (since f is identically a on W , this is
equivalent to requiring that f converges to a on each subset of Y ).

It will also be helpful later to note the following consequence of the fact
that Y is compact: if f ∈ C(Y ), then f is a bounded function.

We next collect some facts about the ring R. If f ∈ R, let the zero
set of f be Z(f) := {y ∈ Y | f(y) = 0}; let coz (f) := Y \ Z(f), the
cozero set of f . If a ∈ Y , let Ma := {f ∈ R : f(a) = 0}.

Proposition 2.7. Let R be the ring defined above. Then:

(a) Max (R) = {Ma | a ∈ Y }; Ma �= Mb if a �= b in Y .

(b) R = tq(R).

(c) R is a US-ring.

Proof. (a) This assertion is a consequence of the fact that Y is a
compact Hausdorff space: see, for instance, [1, Exercise 26, page 14].

(b) It is enough to show that, if an element f ∈ R \Z(R), then Z(f)
is empty (for then, 1/f ∈ R). Suppose not. Note that Z(f) �= {∞},
since f−1(f(∞)) is co-countable. Thus, we can choose y ∈ Z(f)\{∞}.
Define a function g : Y → R by g(y) := 1 and g(z) := 0 for all
z ∈ Y \ {y}. It follows easily from the above characterization of
elements of R that g is continuous. Also, it is clear that gf = 0.
Hence, f ∈ Z(R), the desired contradiction.

(c) Combine (b) with Propositions 2.6 and 2.2 (a).
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We also note that dim (R) �= 0. While this can be inferred directly
from the properties of Y , it will also follow from our construction of
(some of the) prime ideals of R: see Proposition 2.8. The rest of this
section is devoted to showing that R is not a ULO-ring. In fact, we
will construct a ring extension T of R such that R ⊆ T does not satisfy
LO, see Corollary 2.15.

Note that X is a dense subset of Y . Combining this with the facts
that R is Hausdorff and Y is infinite, we easily see that the ring
homomorphism R = C(Y ) → T := C(X), f �→ f |X , is an injection.
Therefore, it is harmless to view R as a subring of T (via this injection).
Our earlier characterization of the elements of R now leads to the
following useful fact. If f ∈ T , then f ∈ R = C(Y ) (in the sense
that f(∞) can be defined so that the extended function f : Y → R
is continuous) if and only if there exists a ∈ R such that the set
V := {i ∈ X : f(i) = a} is co-countable and f converges to a on
X \ V .

As X has the discrete topology, T = C(X) is isomorphic to the von
Neumann regular ring

∏
X R and, hence, is zero-dimensional. It is well

known that the prime (i.e., maximal) ideals of T are in bijection with
the ultrafilters U on the set X in the following manner: U ↔ MU ,
where the maximal ideal associated to U is

MU := {g ∈ T : {x ∈ X | g(x) = 0} ∈ U}.

Next, recall from Proposition 2.7 (c) that R is a US-ring. Therefore,
each maximal ideal of R is lain over by at least one prime ideal of T .
We next examine the contraction to R of a typical prime ideal MU of
T . In the easy case, U is the principal ultrafilter based at some a ∈ X
(i.e., U consists of all the subsets of X that contain a). For this case, it
is easy to see that MU ∩R = Ma, where Ma is as defined in Proposition
2.7 (a). We turn next to the harder case.

We next consider the prime ideals of R of the form PU := MU ∩ R
where U is a free (i.e., non-principal) ultrafilter on X . This case breaks
down into two subcases. In the first of these, U does not contain a
countable set; i.e., U is a uniform ultrafilter. For this subcase, we claim
that PU = M∞.

For a proof, it suffices to show that M∞ ⊆ PU (i.e., that M∞ ⊆ MU ),
since M∞ ∈ Max (R). We need only show that, if f ∈ M∞, then
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f ∈ MU , i.e., that Z(f) \ {∞} ∈ U . As f ∈ M∞, we have f(∞) = 0,
and so it follows from the first criterion in our earlier characterization
of the elements of R that coz (f) is a countable subset of X . Therefore,
since U is assumed to be a uniform ultrafilter, coz (f) /∈ U . As U is an
ultrafilter, it follows that Z(f) \ {∞} = X\ coz (f) ∈ U , which proves
the above claim.

The remaining subcase concerns the free non-uniform ultrafilters U on
X (i.e., the free ultrafilters U on X that contain a countable set). (By
convention, whenever we consider a “non-uniform” ultrafilter, we will
also assume that it is free.) We say something about PU for this subcase
in Proposition 2.8. First, the following comments will be helpful. Let
{an} be a sequence of real numbers and let V be a denumerable subset
of Y . We will “assign” the given sequence to V , by first choosing an
enumeration of the elements of V . Then, if x is the nth element of
V , we set f(x) := an. This creates a function V → R. Note further
that, if V ⊂ X and if limn→∞ an = a, then by setting f(y) := a for all
y ∈ Y \ V , the resulting function f : Y → R is continuous, that is, is
in R. If, in addition, a = 0, then f ∈ M∞.

Note that there exists a non-uniform ultrafilter onX . (While this fact
can be extracted from [3, Theorem 7.1], here is a more direct proof.
Choose a denumerable subset W of X and a free ultrafilter F on W ;
then U := {Z ⊆ X | Z contains some element of F} is a non-uniform
ultrafilter on X .) It follows from the first assertion in the next result
that dim (R) �= 0.

Proposition 2.8. Let U be a non-uniform ultrafilter on X. Then
PU := MU ∩ R ⊂ M∞. Moreover, PU is not contained in Ma for any
a ∈ X.

Proof. Let f ∈ MU ∩ R and b := f(∞). Since f is continuous, the
set W := {i ∈ X | f(i) �= b} is countable and f converges to b on W .
If b �= 0, it would follow that Z(f) is finite. Then f ∈ MU ∩ R would
force Z(f) ∈ U , but the finiteness of Z(f) would contradict that U is
free. Hence, b = 0, and so f ∈ M∞. This proves that MU ∩R ⊆ M∞.

To prove the first assertion, it remains to show that MU ∩ R is not
all of M∞. We will do this by using the above comments to construct
a function g ∈ M∞ \MU . By hypothesis, we can pick a denumerable
set V ∈ U . As above, we can define g ∈ M∞ ⊂ R by setting g(j) := 0
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for all j ∈ Y \ V and “assigning” the sequence {1/n} to the elements
of V . However, g /∈ MU , that is, X \ coz (g) = Z(g) \ {∞} /∈ U (the
point being that coz (g) ⊇ V entails coz (g) ∈ U).
It remains to prove the final assertion of the proposition. Let a ∈ X .

We need only find a function in PU \ Ma. Define h ∈ R by h(a) = 1
and h(i) = 0 for all i �= a. Of course, h /∈ Ma. On the other hand,
h ∈ PU ; that is, h ∈ MU . Indeed, {a} /∈ U since U is free, and so the
complementary set {x ∈ X | h(x) = 0} ∈ U , as required.

We next give a technical result on non-uniform ultrafilters. While
the result is probably known, we include a proof for the sake of
completeness.

Proposition 2.9. If U1 and U2 are distinct non-uniform ultrafilters
on X, then there exist countable subsets V and W of X such that
V ∈ U1 \ U2 and W ∈ U2 \ U1.

Proof. Suppose not. Then (relabeling if necessary) we can assume
that every countable element of U1 is an element of U2. Since the
ultrafilters are distinct, there exists H ∈ U1 \ U2. Thus, K := X \H ∈
U2 \ U1. Let L be a countable element of U1. By the definition of an
ultrafilter, H ∩L ∈ U1. Clearly, H ∩L is also a countable set. Then, by
our assumption, H ∩ L is in U2. Hence, ∅ = (H ∩ L) ∩K ∈ U2, which
is absurd.

Corollary 2.10. Let U1 and U2 be distinct non-uniform ultrafilters
on X. Then PU1 and PU2 are incomparable prime ideals of R.

Proof. Let V and W be the countable subsets of X given by
Proposition 2.9. As before, enumerate the elements of V and the
elements of W , and then obtain f (respectively, g) in R by defining
f(i) = 1/n where i is the nth element of V (respectively, g(j) = 1/n
where j is the nth element of W ) and 0 elsewhere. To conclude, note
that f ∈ PU2 \ PU1 while g ∈ PU1 \ PU2 .

The above work shows that the image of the canonical map from
Spec (T ) to Spec (R) is the union of the set Max (R) = {Ma | a ∈ Y }
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with the set {PU | U a non-uniform ultrafilter on X}. Additionally,
these ideals PU are pairwise incomparable, and each of them is con-
tained in a unique maximal ideal of R, namely M∞. We also know
that each minimal prime ideal of R belongs to the image of the map
Spec (T ) → Spec (R) (see, for instance, [11, Exercise 1, page 41]). We
can now conclude that Min (R) coincides with the set of minimal el-
ements of the image of Spec (T ) → Spec (R); that is, Min (R) is the
union of {PU | U a non-uniform ultrafilter on X} with {Ma | a ∈ X}.
The next obvious question is: apart from M∞ and the minimal prime
ideals of R, does R have any other prime ideals? In other words, are
any prime ideals of R not lain over from T ?

We devote the rest of this section to answering the above question.
We next describe prime ideals of R contained between PU and M∞,
where U is a non-uniform ultrafilter on X . This description, which is
very reminiscent of what was done in [12], is determined by the growth
of certain functions X → {r ∈ R | r ≥ 0}.
Let f and g be arbitrary non-negative real-valued functions defined

on X , and let U be an ultrafilter on X . We say that g ≤ f (mod U) if
there exists a V ∈ U such that g(i) ≤ f(i) for all i ∈ V . If there is no
chance of confusion, we will suppress the “U” and simply write g ≤ f .

A very useful fact is that, for any f, g,U as above, g and f must
be comparable (mod U). To prove this, partition X into two sets,
W := {i ∈ X | g(i) ≤ f(i)} and X \W = {i ∈ X | g(i) > f(i)}. Since
exactly one of W,X \W is in U , the assertion follows easily.

Let f, g,U as above. If g ≤ f and there do not exist positive integers
n and M such that fn ≤ Mg, then we write g � f . Using the result of
the preceding paragraph, one can show that � is a transitive relation.

Let U be a non-uniform ultrafilter on X , and let f ∈ M∞ be a non-
negative function such that coz (f) ∈ U . (So, f /∈ PU ). We now use f
and U to define two subsets of M∞ that each contain PU .

PU ,f =: {g ∈ M∞ | |g| � f}.
P f
U =: {g ∈ M∞ | ∃ n > 0, M > 0 in N with |g|n ≤ Mf}.

Observe that, if g ∈ PU (so, Z(g) ∈ U), then g � f . (The point is that
V := coz (f) ∩ Z(g) ∈ U and fn(z) > Mg(z) for any positive integers
n and M and all z ∈ V .) In view of Proposition 2.8, the upshot is that
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PU ⊆ PU ,f . On the other hand, it is easy to check that PU ,f ⊆ P f
U and

that f ∈ P f
U \ PU ,f . In summary,

PU ⊆ PU ,f ⊂ P f
U ⊆ M∞.

Theorem 2.11. Let U be a non-uniform ultrafilter on X, and let
f ∈ M∞ be a non-negative function such that coz (f) ∈ U . Then both

PU ,f and P f
U are prime ideals of R.

Proof. We consider PU ,f first. To show that PU ,f is closed under
sums, we let g, h ∈ PU ,f and will show that g + h ∈ PU ,f . We have
that |g| � f and |h| � f and must show that |g + h| � f . Without
loss of generality, |g| ≤ |h|. If f ≤ |g + h|, then f ≤ |g| + |h| ≤ 2|h|,
which contradicts the fact that |h| � f . Thus, |g + h| ≤ f . Hence, to
show that |g + h| � f , it will suffice to prove that there do not exist
integers n,M > 0 such that fn ≤ M |g + h|. If such n,M exist, then
fn ≤ 2M |h|, another contradiction to the fact that h � f . Therefore,
PU ,f is closed under sums.

Next, to show that PU ,f is closed under multiplication by elements
of R, we let g ∈ PU ,f and r ∈ R and will show that rg ∈ PU ,f . We
have that |g| � f . Pick a positive integer N such that |r(i)| ≤ N
for all i ∈ Y . (Such an N exists because each element of R is
a bounded function.) Then |r| ≤ N , where “N” here denotes the
constant function that takes only the value N . If f ≤ |rg|, then
f ≤ N |g|, which contradicts the fact that |g| � f . Thus, |rg| ≤ f .
Hence, to show that |rg| � f , it will suffice to prove that there do
not exist integers n,M > 0 such that fn ≤ M |rg|. If such n,M exist,
then fn ≤ M |rg| ≤ MN |g|, a contradiction to the fact that g � f .
Therefore, PU ,f is closed under scalar multiplication by R, and so PU ,f

is an ideal of R. Of course, it is a proper ideal because it is contained
in M∞.

Finally, we show that PU ,f ∈ Spec (R). Suppose r, s,∈ R satisfy
rs ∈ PU ,f . If there exist positive integers n1,M1, n2,M2 such that
fn1 ≤ M1|r| and fn2 ≤ M2|s|, then fn1+n2 ≤ M1M2|rs|, which
contradicts the fact that |rs| � f . So, without loss of generality, there
do not exist integers n,M > 0 such that fn ≤ M |r|. Since |r| and f



836 DAVID E. DOBBS, RONALD LEVY AND JAY SHAPIRO

are comparable (mod U), we must have |r| ≤ f . Therefore |r| � f ,
proving that r ∈ PU ,f , and so PU ,f ∈ Spec (R).

Next, we show that P f
U ∈ Spec (R). Of course, P f

U �= R since

P f
U ⊆ M∞. Let g, h ∈ P f

U . There exist positive integers n1, n2,M1 and
M2 such that |g|n1 ≤ M1f pointwise on some V1 ∈ U and |h|n1 ≤ M2f

pointwise on some V2 ∈ U . Note that g, h ∈ P f
U ⊆ M∞. In particular,

g(∞) = 0 = h(∞). So, by continuity (and the fact that U is an
ultrafilter), there exists an element of U on which g and h each take
values in the interval [0, 1), whence |h|n ≤ |h|ni if n ≥ ni. Thus,
there is no harm in assuming that n1 = n = n2. Also, without loss of
generality, |h| ≤ |g|, and so |h|j ≤ |g|j for all j = 1, . . . , n. Then on
V1 ∩ V2 ∈ U , we have

|g + h|n ≤
n∑

i=0

(
n
i

)
|g|n−i|h|i ≤ (n+ 1)S|g|n ≤ (n+ 1)SM1f,

where S is the maximum of the above binomial coefficients. Thus
g+ h ∈ P f

U , which shows that P f
U is closed under sums. Next, to prove

that P f
U is closed under scalar multiplication from R, observe that, if

|g|n ≤ Mf and |r| ≤ N , then |rg|n ≤ NnMf .

Finally, we must show that, if r, s ∈ R such that rs ∈ P f
U , then either

r or s is in P f
U . Suppose |rs|n ≤ Mf pointwise on V ∈ U . Let

W1 = {i ∈ V : |r(i)|n ≤
√
Mf}

and

W2 = {i ∈ V : |s(i)|n ≤
√
Mf}.

If W1 ∈ U , then |r|2n ≤ Mf pointwise on W1 and so r ∈ P f
U ; similarly,

if W2 ∈ U , then s ∈ P f
U . In the remaining case, both X \ W1 and

X \W2 are elements of U . In this case, Z1 := (X \W1)∩ (X \W2) ∈ U .
Clearly |rs|n > Mf pointwise on Z1. But this contradicts the fact that
U is a filter, since the set Z2 := {i ∈ V : |r(i)s(i)|n ≤ Mf(i)} is also
an element of U and Z1 ∩ Z2 = ∅. The proof is complete.

We show next that the proper inclusion of prime ideals of the form
P f
U can be characterized in terms of �. Proposition 2.12 will be used

significantly in the next two sections.
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Proposition 2.12. Let U be a non-uniform ultrafilter on X, and let
f, g ∈ M∞ \ PU be such that f and g are each non-negative functions
and g � f . Then:

(a) If g ≤ f (mod U), then P g
U ⊆ P f

U .

(b) g � f if and only if P g
U ⊂ P f

U .

Proof. Since (a) is clear, we turn to (b). Suppose first that g � f .

As g ≤ f , (a) gives that P g
U ⊆ P f

U . Moreover, g � f forces f /∈ P g
U , and

so f ∈ P f
U \ P g

U , thus proving the “only if” assertion. For the converse,

suppose that P g
U ⊂ P f

U . By (a), it cannot be the case that f ≤ g, and
so g ≤ f . It remains to show that g � f , namely, that there cannot
exist n,M ∈ N such that fn ≤ Mg. We will show that, if this fails
and h ∈ P f

U , then h ∈ P g
U (which would contradict the hypothesis that

P g
U ⊂ P f

U ). Pick n′,M ′ ∈ N such that |h|n′ ≤ M ′f . Then

|h|n′n = (|h|n′
)n ≤ (M ′f)n = M ′nfn ≤ M ′nMg,

whence h ∈ P g
U , and we have the desired contradiction.

The key to showing that dim (R) = ∞ is contained in the following
lemma.

Lemma 2.13. Let V be a denumerable subset of X ; for convenience,
identify V with N. Let {ai} and {bi} each be sequences of positive real
numbers that converge to ∞. As in the discussion prior to Proposi-
tion 2.8, consider the function f (respectively, g) from Y to R obtained
by “assigning” the sequence {1/2ai} (respectively, {1/2bi}) to V . (This
means that f (respectively, g) sends the nth element of V to 1/2an

(respectively, 1/2bn) and each element of Y \ V to limi→∞ 1/2ai = 0
(respectively, to limi→∞ 1/2bi = 0).) Then:

(a) f, g in R. In fact, f, g ∈ M∞.

(b) If, in addition, bi ≤ ai for all i and the sequence {ai/bi} converges
to ∞, then f � g relative to any non-uniform ultrafilter U on X such
that V ∈ U .

Proof. (a) It is enough to consider f . As limn→∞ 1/2an = 0, the
assertions follow from the discussion prior to Proposition 2.8.
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(b) Note that f ≤ g (in fact, pointwise on Y ). Suppose that gn ≤ Mf
for some n > 0 and M > 0. Since V ∈ U and U is an ultrafilter, we infer
that 1/(2bi)n ≤ M/2ai for infinitely many i ∈ N. Hence, 2ai−nbi ≤ M
for infinitely many i ∈ N, and so ai ≤ log2 M + nbi for infinitely many
i ∈ N. Since log2 M is a constant and {bi} converges to ∞, we then
have ai ≤ bi + nbi = (1 + n)bi for infinitely many i ∈ N. But this
contradicts the assumption that limi→∞ ai/bi = ∞. Thus, f � g.

Theorem 2.14. Fix a denumerable subset V of X. Let U be any
non-uniform ultrafilter U on X such that V ∈ U . For each positive
real number r, let ar be the sequence of real numbers whose ith term is
(ar)i := ir, and let fr ∈ M∞ be constructed from ar and V just as f

was constructed from {ai} and V in Lemma 2.13. Then P
fr1
U ⊂ P

fr2
U

whenever 0 < r2 < r1 in R. Hence, there is a chain C of prime ideals
in R such that the cardinality of C is c (the cardinality of R) and each
P ∈ C contains the minimal prime PU of R and is contained in the
maximal ideal M∞ of R. In particular, dim (R) = ∞.

Proof. For any positive real number r, consider the sequence of
positive real numbers whose ith term is (ar)i := ir. Note that
limi→∞ ir = ∞. Hence, by Lemma 2.13 (a), fr ∈ M∞ ⊂ R. Also, the
above comments show that fr /∈ PU . Moreover, since coz (fr) = V ∈ U ,
Theorem 2.11 shows that both PU ,fr and P fr

U are prime ideals of R
containing PU and contained in M∞.

Note also that, if r1 > r2 > 0 in R, then ir2 < ir1 for each i ∈ N
and limi→∞ ir1/ir2 = limi→∞ ir1−r2 = ∞. Hence, by Lemma 2.13 (b),

fr1 � fr2 . Therefore, by Proposition 2.12 (b), P
fr1
U ⊂ P

fr2
U . Thus, one

way to build the desired chain is to let C := {P fr
U | r > 0 in R}.

We can now prove a particularly striking property of ring R.

Corollary 2.15. The ring extension R ⊂ T does not satisfy LO, and
so R is neither a ULO-ring nor a UQLO-ring.

Proof. The discussion following Corollary 2.10 showed, in particular,
that the image of the canonical map Spec (T ) → Spec (R) is Max (R)∪
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Min (R). Thus, to prove that R ⊂ T does not satisfy LO, it is enough
to show that dim (R) ≥ 2. Theorem 2.14 showed even more, namely,
that dim (R) = ∞. This proves the first assertion. The second
assertion then follows from the definition of a ULO-ring. As for the
final assertion, combine the second assertion with Propositions 2.7 (c)
and 2.1 (b).

Combining Theorem 2.14, Proposition 2.7 (c) and Corollary 2.15,
we see that R is an infinite-dimensional US-ring which is not a ULO-
ring (or even a UQLO-ring). To close the section (and to provide a
counterpoint to the example given in Corollary 2.4 for n = ∞), we show
next that R is not of the form A + B. The proof of Proposition 2.16
uses nothing that was given after Proposition 2.7 (a).

Proposition 2.16. R cannot be built via the A+B construction.

Proof. Suppose, on the contrary, that R has the form A+B. It will
be convenient in this proof to say that a prime ideal of a ring E is a
minimax prime ideal of E if it is both a maximal ideal and a minimal
prime ideal of E. Recall from the discussion following Corollary 2.10
that {Ma | a ∈ X} is an uncountably infinite set of minimax prime
ideals of R. Next, it follows easily from Lemma 2.3 (fortified by the
proof of [10, Theorem 26.2]) that the minimax prime ideals of A + B
are of two kinds, as follows. Each P ∈ Max (D) ∩ P gives rise to
denumerably many minimax prime ideals of A+B which do not contain
B, and this is how all the minimax prime ideals of A + B which do
not contain B arise. On the other hand, if I denotes the intersection
of the elements of P , the minimax prime ideals of A + B which do
contain B are in bijection with those maximal ideals P of D which
are minimal with respect to containing I. Moreover, A ∼= D/I, by
the first isomorphism theorem. Thus, if we could show that Max (A)
is finite, it would follow that A + B has at most denumerably many
minimax prime ideals (contradicting the above information about the
number of minimax prime ideals of R). We will show, in fact, that A
is quasilocal. As R/B = (A + B)/B ∼= A, it will suffice to prove that
the only maximal ideal of R that contains B is M∞.

Let K be the ideal of R that is generated by the set of primitive
idempotents of R. (Recall that an idempotent element e of a ring E
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is called a primitive idempotent (of E) if e is not a nontrivial sum
of orthogonal idempotents of E, equivalently, if the ring Ee has no
nontrivial idempotents.) We claim thatK ⊆ B, i.e., that each primitive
idempotent of R is contained in B.

One consequence of the A+B construction is that each element s of
A+B is of the form s = a+ b, where a ∈ A, b ∈ B, either a = 0 or a is
nonzero in infinitely many coordinates, and b is nonzero in only finitely
many coordinates. Consider an arbitrary element of R = A + B, say
s = a+b, where a, b are as in the preceding sentence. Recall that A+B
is constructed as a subring of a certain product,

∏
Di. Of course, s

is idempotent if and only if each of its coordinates is idempotent. To
prove the above claim, it suffices to show that, if s is idempotent and
a �= 0, then s is not a primitive idempotent. Note that infinitely many
coordinates of a are nonzero idempotents. Therefore, since b has only
finitely many nonzero coordinates, we can find a coordinate j such that
aj is a nonzero idempotent and bj = 0. Define c ∈ Dj ⊆ B ⊆ A + B
to be the element of

∏
Di whose only nonzero coordinate is cj := aj .

Observe that (a − c) + b and c are nonzero orthogonal idempotents of
R. (Perhaps the key calculation is that, at any coordinate i �= j, we
have that (ai − ci) + bi = ai + bi is the ith coordinate of s and hence is
idempotent.) Since the sum of (a− c) + b and c is a+ b = s, it follows
that s is not a primitive idempotent of R. This proves the above claim.

Recall that it suffices to prove that the only maximal ideal of R that
contains B is M∞. As K ⊆ B, it therefore suffices to prove that
the only maximal ideal of R that contains K is M∞. By Proposition
2.7 (b), we need only show that, if a ∈ X , there exists a g ∈ K \Ma.
To that end, consider the function f : Y → R defined by f(a) := 1
and f(y) := 0 for all y ∈ Y \ {a}. By our earlier criteria characterizing
continuity, it is easy to see that f ∈ R. Of course, f2 = f . Moreover, f
is a primitive idempotent of R, for it is clear that the ring of functions
Y → R that vanish on Y \ {a} has no nontrivial idempotents. Finally,
it is clear that f /∈ Ma, and so taking g := f completes the proof.

3. Factor domains of C(Y ). We begin the section by showing
that, modulo any prime ideal, the ring R satisfies a certain divisibility
property.
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Proposition 3.1. Let P ∈ Spec (R) and D := R/P . Then any two
elements of D may be labeled d and e such that, if d does not divide e
(in D), then d | e2 and e | d3.

Proof. If Q ⊆ P in Spec (R) and R/Q has the asserted property, then
so does R/P , since R/P is (isomorphic to) a factor domain of R/Q.
So, without loss of generality, P ∈ Min (R).

Either P = Ma for some a ∈ X or P = PU for some non-uniform
ultrafilter U on X . (Compare with Proposition 2.8.) In the first
case, P ∈ Max (R), and so D = R/P is a field and the assertion
is obvious. Hence, without loss of generality, P = PU for some non-
uniform ultrafilter U on X . Note that, modulo P , each element of
R \M∞ is a unit, since (R/P,M∞/P ) is quasilocal by Proposition 2.8.

Let d, e ∈ D. Then d = f + P and e = g + P for some f, g ∈ R. The
assertion is clear if d or e is either 0 or a unit of D. Hence, without loss
of generality, f and g are elements of M∞ \P . As P = PU and U is an
ultrafilter, we have coz (f), coz (g) ∈ U , and so coz (f) ∩ coz (g) ∈ U .
Moreover, it follows via continuity that f and g each converge to 0 on
coz (f) ∩ coz (g). It follows from the definition of an ultrafilter that we
can find an element U ′ (respectively, U ′′) of U such that f (respectively,
g) is either pointwise strictly positive or pointwise strictly negative on
U ′ (respectively, on U ′′). Therefore, by possibly replacing f and/or g
with its negative (which has the harmless effect of replacing d or e with
its negative) and considering U ′ ∩U ′′, we can assume that both f and
g are strictly positive on some U ∈ U . Also, as noted earlier, we may
assume (possibly by interchanging f and g) that 0 < g(i) ≤ f(i) for all
i ∈ U . (Note that this is the only point in the proof that the original
labels d and e may be switched.) Thus, the real-valued function g/f is
defined and bounded on U .

There are two cases to consider. Suppose first that g � f . Then it
cannot happen that f2 ≤ g, and so g ≤ f2 (without loss of generality,
pointwise on U). By replacing U with U ∩W where W is a countable
element of the non-uniform ultrafilter U , we can also assume that U is
denumerable. Note that g/f2 is bounded on U . Thus, g/f = (g/f2)f
is the product of a bounded function with a function that converges
to 0 (on U), and so g/f converges (to 0 on U). Let h : Y → R be
the function defined by h(i) := g(i)/f(i) for i ∈ U and h(j) := 0 if
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i ∈ Y \U . Then h ∈ R. (Note that we get the continuity of h by using
the criterion from the preceding section, and that is why we needed U
to be countable.) Moreover, g − fh is 0 pointwise on U . In particular,
g − fh ∈ MU ∩ R = PU = P . In other words, f divides g modulo P ,
i.e., d | e (in D). We will soon use the above technique again.

In the remaining case, (g ≤ f but) g �� f . As above, we can assume
that U is countable and g/f is bounded on U . Hence, g2/f = (g/f)g
is the product of a bounded function with a function that converges to
0 on an element of U . Therefore, g2/f converges to 0. Then, arguing
as before, there exists h′ ∈ R such that g2 − h′f ∈ P . In other words,
f divides g2 modulo P , i.e., d | e2.
There are now two subcases. Modulo the ultrafilter U , either g ≤ f2

or f2 ≤ g. In the first of these subcases, g/f2 is bounded and then
we see as above that g/f converges to 0 on a countable element of
U , in which case f in fact divides g modulo P , that is, d | e. We
turn to the final subcase, where we have that f2/g is bounded. Then
f3/g = (f2/g)f converges to 0 on a countable element of U , which
implies as above that g divides f3 modulo P , that is, that e | d3.

A ring A is called divided if, for each P ∈ Spec (A) and a ∈ A, either
a ∈ P or P ⊆ Aa. Note that a domain A is a divided ring if and only if
A is a divided domain in the sense of [4], i.e., if and only if P = PAP

for all P ∈ Spec (A). Recall from [2, Proposition 2] that a ring A is
a divided ring if and only if, for any elements a, b ∈ A, either a | b or
there exists an n = n(a, b) ∈ N such that b | an. Combing these facts
with Proposition 3.1 immediately yields the following corollary.

Corollary 3.2. R/P is a divided domain for each prime ideal P
of R.

Corollary 3.3. Let U be a non-uniform ultrafilter on X. Then the
set of prime ideals of R that are contained between PU and M∞ is
linearly ordered by inclusion.

Proof. By Corollary 3.2, R/PU is a divided domain. But it is easy
to see that, in any divided domain, the set of prime ideals is linearly
ordered by inclusion. Therefore, the assertion follows from a standard
homomorphism theorem.
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We will use Corollary 3.3 in Section 4 to give two descriptions of the
prime ideals contained between PU and M∞ in terms of prime ideals
of the form PU ,f and P f

U .

We next pursue some consequences of the method of proof of Propo-
sition 3.1.

Remark 3.4. Let U be a non-uniform ultrafilter on X . Consider
(typically non-negative) f, g ∈ M∞ \ PU .

(a) It follows from the proof of Proposition 3.1 that, if g ∈ P f
U , then

modulo PU , f divides some power of g. Moreover, in that proof where
g ≤ f2 but g �� f , we saw that modulo PU , f in fact divides g.
However, we also know that, in that case, there exist n,M > 0 such
that fn ≤ Mg. Then it would follow as in the above proof that modulo
PU , g divides some power of f . Therefore, if g ≤ f but g �� f , then a
prime ideal P that contains PU will contain f if and only if P contains
g. On the other hand, if g � f , then every prime ideal of R that
contains PU and f must contain g.

(b) If g ∈ P f
U , then f �� g. Thus, if g ∈ P f

U \ PU ,f (and we have seen
that such g exist), then g �� f and f �� g.

Proposition 3.5. Let U be a non-uniform ultrafilter on X, and let
f ∈ M∞ \ PU be a non-negative function. Then there are no prime

ideals of R contained strictly between PU ,f and P f
U .

Proof. Suppose g, h ∈ P f
U \ PU ,f . Since U is an ultrafilter, we may

assume that g and h are non-negative modulo U (for either g or h could
be replaced by its negative). We claim that g �� h and h �� g.

If the claim fails, we can suppose, without loss of generality, that
g � h. As h ∈ P f

U , there exist (integers) n,M > 0 such that
|h|n ≤ Mf . Since g � h, there cannot exist t,M ′ > 0 such that
|h|nt ≤ M ′g. Hence, g � |h|n. Note that, if f ≤ g (modulo U),
then |h|n ≤ Mf ≤ Mg, whence |h|n ≤ Mg, contradicting g � |h|n.
Therefore, g ≤ f . Now, as g /∈ PU ,f , it is not the case that g � f , and
so there exist m,K > 0 such that fm = |f |m ≤ Kg. Thus,

|h|nm = (|h|n)m ≤ (Mf)m = Mmfm ≤ MmKg,

contradicting g � h. This proves the above claim.



844 DAVID E. DOBBS, RONALD LEVY AND JAY SHAPIRO

Without loss of generality, g ≤ h. Thus, by Remark 3.4 (a), any prime
ideal of R that contains PU will contain h if and only if it contains
g. The assertion follows, for if there is a prime ideal Q of R such
that PU ,f ⊂ Q ⊂ P f

U , then you could have taken g ∈ Q \ PU ,f and

h ∈ P f
U \Q.

Corollary 3.6. Let U be a non-uniform ultrafilter on X, and let
f, g ∈ M∞ \ PU be such that f and g are each non-negative functions
and g � f . Then P g

U ⊆ PU ,f .

Proof. By Proposition 2.12 (b), P g
U ⊂ P f

U . By Corollary 3.3 (and
Theorem 2.11), the prime ideals P g

U and PU ,f are comparable. In view
of Proposition 3.5, the assertion follows.

We have seen that each factor domain R/P of R is a divided domain.
It is reasonable to wonder if these rings are, in fact, valuation domains.
We will show in Corollary 3.9 that, in general, they are not, even if
P ∈ Min (R). We will show, moreover, that the answer to the question
“Can R/P be a valuation domain for some P ∈ Min (R) \Max (R)” is
axiom dependent. First, we need to collect some facts about ultrafilters.

Remark 3.7. (a) Let C be a fixed denumerable set and U a free
ultrafilter on C. Recall that a function f :C → R is said to converge
on U if there is a real number L such that, for each ε > 0, there exists
U ∈ U such that |f(n) − L| < ε for all n ∈ U . Let us say that f
converges strongly on U if there exists a U ∈ U such that f converges
to some a on U (essentially as defined in Section 2, where the domain
of f was Y ). It is known that, if f :C → R is any bounded function,
then f converges on U . If every bounded function converges strongly
on U , then U is said to be a P -point (this is also known as U being
“weakly selective”).

Without any set-theoretic assumptions, there are free ultrafilters that
are not P -points. (See, for example, [9, 13]). Rudin [16] proved that, if
the continuum hypothesis holds, then in fact there are P -points. Some
other set-theoretic hypotheses are also known to imply the existence
of P -points. However, Shelah (cf. [17]) has proved that it is consistent
with ZFC that there are no P -points.
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Thus, it is true in ZFC that there are free ultrafilters U on C such that
every bounded function f :C → R converges on U , but some bounded
functions from C to R do not converge strongly on U . On the other
hand, it is independent of the axioms of ZFC that there exists an
ultrafilter U such that every bounded function f :C → R converges
strongly on U . Finally, we note that, if D is a set of cardinality ℵ1 and
V is a non-uniform ultrafilter on D, then the previous comments may
be applied to any denumerable set C ∈ V .
(b) We need to examine more closely the question of when, given

two elements f, g ∈ R, one divides the other modulo a minimal prime
ideal of the form PU . Note that the canonical image of f in R/PU
divides the canonical image of g if and only if there exists an h ∈ R
such that g − fh ∈ PU . Now, suppose that f divides g modulo PU
and that g /∈ PU . Therefore, on some U ∈ U , g = fh. Thus, g, and
hence f , are each pointwise nonzero on this element of the ultrafilter U .
Hence, for the restriction of h to U , we have h = g/f . Since h ∈ R, h
converges on U . (In detail, since f, g ∈ R, we know that f (respectively,
g) converges on any subset W of X to f(∞) (respectively, to g(∞)),
and so g/f converges on U to g(∞)/f(∞).) Thus, in the language
of part (a), we can say that g/f converges strongly on U . The above
argument is reversible. Therefore, the canonical image of f divides the
canonical image of g in R/PU if and only if g/f converges strongly on
U .
(c) Let U be a non-uniform free ultrafilter on X . Then U is a P -point

if the restriction of U to some (and hence every) countable U ∈ U is a
P -point.

For a proof, suppose first that U is a P -point. Let f be a bounded
continuous real-valued function on X . Fix a denumerable set U ∈ U .
Note that f converges on some W ∈ U . Then the restriction of f to
W converges on U ∩W , and so ultrafilter obtained by restricting U to
U is a P -point. Conversely, suppose that the restriction of U to U is a
P -point for each denumerable U ∈ U , and pick one such U . Let g be a
bounded continuous real-valued function on X . Then the restriction of
g to U is bounded on U . Since the restriction of U to U is a P -point,
there exists a V in this ultrafilter such that the restriction of g to U
converges on V . As V must also be in the original ultrafilter, U is a
P -point.
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Proposition 3.8. Let U be a non-uniform ultrafilter on X. Then
R/PU is a valuation domain if and only if U is a P -point.

Proof. Suppose first that U is a P -point. Let f, g ∈ R. To show that
R/PU is a valuation domain, it is enough to show that, possibly after
interchanging f and g, there exists an h ∈ R such that g − fh ∈ PU .
As in the proof of Proposition 3.1, we can reduce to the case that
f, g ∈ M∞ \ PU and, possibly after interchanging f and g, we can pick
U ∈ U such that 0 < g(i) ≤ f(i) for all i ∈ U . Then the restriction of
g/f to U is a well-defined bounded function. Since U is a P-point, g/f
converges strongly on U , and so there exists a denumerable set W ⊆ U
such that W ∈ U and g/f converges on W to, say, a. Define a function
h : Y → R via h(i) := g(i)/f(i) for all i ∈ W and h(j) := a for all
j ∈ Y \ W . Then h ∈ R by the criterion for continuity in Section 2.
Moreover, g − fh is zero on W , whence g − fh ∈ MU ∩ R = PU , as
required.

We next prove the contrapositive of the “only if” assertion. Suppose
that U is not a P -point. Since U is not a P -point, there exists a bounded
real-valued function f on X such that the restriction of f to any subset
of X that is in U does not converge. Fix a denumerable set U ∈ U .
View the restriction of f to U as a sequence “on U .” By the choice of
f , this bounded sequence on U , call it {an}, does not converge on any
subset of U that is in U . We may assume that {an} is a strictly positive
sequence that is bounded away from 0 on U . (In detail, choose M > 0
such that f(x) > −M for all x ∈ X and replace f with f + M + 1,
thus replacing {an} with the sequence {an +M + 1} which is strictly
positive, bounded away from 0 on U and does not converge on any
subset of U that is in U .) Then {1/an} is also a well-defined bounded
sequence on U that does not converge on any element of U .
Next, we will construct two elements of R such that neither of their

canonical images divides the other in R/PU (thus showing that R/PU
is not a valuation domain). Define functions g, f : Y → R as follows.
Take g to be (1/n)an on U (i.e., at the nth element of U) and 0
elsewhere on Y ; and take f to be 1/n on U and 0 elsewhere on Y .
Since an is bounded on U , it is easy to see that g and f each converge
to 0 on U , and so the criterion for continuity from Section 2 yields that
g, f ∈ R. However, on U , g/f is given by an, which does not converge
on any subset of U that is in U .
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Suppose that g = rf +h, where r ∈ R and h ∈ PU . As h ∈ MU , there
exists a W ∈ U such that h is pointwise identically 0 on W . On the
other hand, since r ∈ R, r converges to r(∞) on W . It follows that, on
U ∩W ∈ U , g/f converges to r(∞), a contradiction. Thus, the image
of f cannot divide the image of g. Similarly, since f/g is given on U
by 1/an, which does not converge on any element of U , we see that the
canonical image of g does not divide that of f , as required.

Corollary 3.9. Not every factor domain of R is a valuation domain.
Moreover, it is consistent with ZFC that there does not exist any non-
uniform ultrafilter U on X such that R/PU is a valuation domain.

Proof. As noted in Remark 3.7, there exist non-uniform free ultra-
filters on X that are not P -points, and so the first assertion follows
from Proposition 3.8. To prove the second assertion, combine Proposi-
tion 3.8 with the result of Shelah that was noted in Remark 3.7, namely,
that it is consistent with ZFC that there are no P -points.

Corollary 3.10. If one assumes the continuum hypothesis, then
there exists a non-uniform ultrafilter U on X such that R/PU is a
valuation domain.

Proof. As noted in Remark 3.7, if the continuum hypothesis holds,
then there exist non-uniform ultrafilters onX that are P -points. Hence,
the assertion follows from Proposition 3.8.

4. Describing the prime ideals of C(Y ). In any ring, the union or
intersection of any chain of prime ideals is a prime ideal [11, Theorem
9]. While the precise nature of Spec (R) remains unknown, we will
show, in the converse direction, that each prime ideal of R is both a
union and an intersection of prime ideals of the types constructed in
Section 2. We begin the section by showing that RP is a domain for
all prime ideals P �= M∞.

Lemma 4.1. If U1 and U2 are distinct non-uniform ultrafilters on
X, then PU1 + PU2 = M∞.
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Proof. By Proposition 2.8, it suffices to prove that, if f ∈ M∞, then
f ∈ PU1 + PU2 . If Z(f) is in U1 (respectively, U2), then f ∈ PU1

(respectively, f ∈ PU2); in either of these cases, f ∈ PU1 + PU2 .
Hence, without loss of generality, Z(f) is in neither U1 nor U2. Thus,
V := coz (f) ∈ U1 ∩ U2. Since f ∈ M∞, V is countable and the
restriction of f to V converges to f(∞) = 0. As U1 �= U2, there exists
a set W ⊂ X such that W ∈ U1 \U2. Therefore, Z := X \W ∈ U2 \U1.
Then V1 := V ∩W ∈ U1, V2 := V ∩Z ∈ U2, V1∪V2 = V , and V1∩V2 = ∅.
So, V2 /∈ U1 and V1 /∈ U2. Define two real-valued functions f1 and f2 on
X by taking f1 to be f on V2 and 0 elsewhere, while f2 is taken to be f
on V1 and 0 elsewhere. Observe that f1, f2 ∈ R. Clearly, f1 + f2 = f .
Since Z(f1) = X \V2 ∈ U1 and, similarly, Z(f2) ∈ U2, we have f1 ∈ PU1

and f2 ∈ PU2 , which proves the result.

Corollary 4.2. If P ∈ Spec (R) \ {M∞}, then {Q ∈ Spec (R) | Q ⊆
P} is linearly ordered by inclusion, and so RP is a domain.

Proof. If P = Ma for some a ∈ X , then P is both a maximal and
a minimal prime ideal of R, and so the first assertion is clear. As
for the second assertion, note that RP is then a reduced ring (since
R is reduced) with a unique prime ideal, that is, a field (and hence
a domain). Thus, we may assume henceforth that P is not of the
form Ma, a ∈ X . By Lemma 4.1, P contains exactly one minimal
prime ideal P0 of R, and P0 is necessarily of the form PU for some
non-uniform ultrafilter U . Therefore, the first assertion follows from
Corollary 3.3. For the second assertion, note that RP is a reduced ring
with a unique minimal prime ideal.

Note that Corollary 4.2 is best-possible. Indeed, RM∞ is not a
domain, in view of Proposition 2.8 and the fact that there is more
than one non-uniform ultrafilter on X .

As noted in Corollary 4.2, if U is a non-uniform ultrafilter on X ,
the prime ideals contained between PU and M∞ are linearly ordered
(by inclusion). We use this fact to describe these prime ideals in
Theorem 4.4. First, we need the following lemma.

Lemma 4.3. Let U be a non-uniform ultrafilter on X, and let
f ∈ M∞ \PU . Then there exists a non-negative function h ∈ M∞ \PU
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such that, for any prime ideal P of R which contains PU , f ∈ P if and
only if h ∈ P .

Proof. Consider U := coz (f). Since f ∈ M∞, f converges to 0 on
U . Moreover, U ∈ U since f /∈ PU . Let U1 := {u ∈ U | f(u) > 0} and
U2 := {u ∈ U | f(u) < 0} = U \ U1. As either U1 or U2 is an element
of U , while f and −f are members of exactly the same prime ideals,
we can assume (possibly by replacing f with −f) that U1 ∈ U . Define
a function g : Y → R via g(i) := f(i) if i ∈ U2 and g(j) = 0 otherwise.
Using the criterion from Section 2, we see that g is continuous, i.e.,
g ∈ R. As U1 ⊆ Z(g) and U1 ∈ U , we have g ∈ PU . Then h := f − g
has the asserted property (since g is in each relevant P ).

Theorem 4.4. Let U be a non-uniform ultrafilter on X, and let P
be any prime ideal contained strictly between PU and M∞. Then

P =
⋃
f∈P

P f
U =

⋂
g∈M∞\P

PU ,g,

where the items f ∈ P and g ∈ M∞ \ P are assumed also to be non-
negative.

Proof. For the first equality, it is enough to consider elements
f ∈ P \ PU . Without loss of generality (i.e., by Lemma 4.3), f is

non-negative. Since f ∈ P f
U for any such f , we see that P is contained

in the union. For the reverse containment, we need only show that if
g ∈ P f

U , then g ∈ P . Without loss of generality, g is non-negative. It
was noted in Remark 3.4 (a) that, modulo PU , f divides some power

of every element of P f
U . Thus, some power of g is in P . Since P is a

prime ideal, it follows that g ∈ P , thus proving the first equality.

Next, we show that P is equal to the stated intersection. Let Q denote
that intersection. Suppose that g ∈ M∞\P and that g is non-negative.
Then, since the prime ideals of R contained between PU and M∞ are
linearly ordered (by Corollary 3.3), we have P ⊂ P g

U . (The inclusion is
strict since g ∈ P g

U \P .) Combining Corollary 3.3 with Proposition 3.5,
we can now infer that P ⊆ PU ,g. Therefore, P ⊆ Q.

If the assertion fails, there exists h ∈ Q\P . Without loss of generality,
h is non-negative. As h ∈ M∞ \ P , the definition of Q gives Q ⊆ PU ,h,
whence h ∈ PU ,h, the desired contradiction.
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Let U be a non-uniform ultrafilter on X . We do not know if there
are any prime ideals between PU and M∞ other than those of the form
PU ,f and P f

U . However, we are able to show in Proposition 4.6 and
Corollary 4.7 that the union of any strictly ascending countable chain
of prime ideals of the form P f

U must be of the form Ph for some h ∈ M∞.
First, we need the following proposition.

Lemma 4.5. Let U be a non-uniform ultrafilter on X. Consider
any sequence {fk}k=1,2,... of non-negative functions contained in M∞.
Then there exists an f ∈ M∞ such that fk ≤ f (mod U) for all k.

Proof. Pick a countable element U of U , and suppose that we have
enumerated the elements of U so that we can write U = {1, 2, 3, . . .}.
Since each fk is continuous and sends ∞ to 0, we can inductively
construct a strictly increasing (hence unbounded) sequence of positive
integers n2 < n3 < n4 < · · · such that n > nk implies f1(n) <
1/k, f2(n) < 1/k, . . . , fk(n) < 1/k. (In other words, each of the first k
functions fi is less than 1/k at all arguments after nk.) Now define a
function f : X → R via

f(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i /∈ U ,

f1(i) for i = 1, 2, . . . , n2,

max{f1(i), f2(i)} for i = n2 + 1, n2 + 1, . . . , n3,

max{f1(i), f2(i), f3(i)} for i = n3 + 1, n3 + 2, . . . , n4,

...

If i > nk, then f(i) < 1/k. (To see this, we can suppose nj + 1 ≤ i ≤
nj+1; note that f(i) = max{ft(i) | 1 ≤ t ≤ j}.) It follows that f is
continuous, and so f ∈ R. As f(∞) = 0, we have f ∈ M∞. Also, for
i ∈ U and for a given k, we have f(i) ≥ fk(i) except for finitely many
i’s. More precisely, if i > nk, then f(i) ≥ fk(i). Thus for all k, fk ≤ f
(mod U).

Recall the definition of the ring T . It is the ring of continuous real-
valued functions onX , a set of cardinality ℵ1 with the discrete topology.
For the moment, we want to consider the ordered field T := T/M and
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its subring R := R/PU , where M = MU is the maximal ideal of T
determined by some free ultrafilter U on X . A natural ordering on T
(modulo U) can be obtained just as it was on R and, in fact, extends
that earlier order. Then the ordering on T is derived from the ordering
on T modulo U . (More precisely, we can well-define an ordering on T as
follows: if f, g ∈ T , then f+M ≤ g+M if and only if f ≤ g (mod U).)
Similarly, the notion of strong inequality (i.e, �) also carries over to T .
If A and B be subsets of T , we say that A < B (respectively, A � B)
if, for each a ∈ A and b ∈ B, a < b (respectively, a � b).

It was shown by Erdös, Gillman, and Henriksen [8, Theorem 3.4] that
T is an η1-set. This means that, for any countable subsets A and B
of T such that A < B, there exists a h ∈ T such that A < h < B.
Moreover, as noted in [8], the construction of h is independent of B.

In particular, if B
′
is another countable subset of T such that A < B

′
,

then for the same h, we have A < h < B
′
. This construction also

works for strong inequalities in T . Specifically, suppose that A and
B are subsets of T , with A = {f1 � f2 � · · · � f i � · · · } and
B = {· · · � gi � · · · g2 � g1} such that A � B. By [8, Theorem 3.4],
choose h ∈ T satisfying A < h < B. Then f i � f i+1 < h < gj+1 � gj ,

and so A � h � B. Now if A and B are subsets of R with A � B
(mod U), then by passing to R ⊂ T , we can find h ∈ T between the
two sets. We can then pull this element back to some h ∈ T with
A � h � B. It is not clear whether h is also in R. However, under
the circumstances that we need, it will be. We are now ready to show
our next result.

Proposition 4.6. Let U be a non-uniform ultrafilter on X. Let A =
{fi}i∈N be a denumerable subset of M∞, where 0 < fi � fi+1 (mod U)
for each i. Then there exists an h ∈ M∞ such that ∪P fi

U = PU ,h.

Proof. We will suppress the ultrafilter U when writing inequalities
or prime ideals. Consider the prime ideal P := ∪P fi ⊆ M∞, and let
f be as in Lemma 4.5. Then fk ≤ f for all k. As fk � fk+1, we
conclude from the construction of f that fk � f for all k. (Indeed,
if there exist n,M > 0 such that fn ≤ Mfk, then (fk+1)

n ≤ Mfk,
a contradiction.) Let A := {fk}k=1,2,... and B := {fk}k=1,2,.... Since
f ∈ M∞, coz (z) is countable and f converges to 0 on coz (f). Thus
modU , fk+1 ≤ f = f1 for all k. Moreover A < B (since modU ,
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fk � f implies that fk ≤ f ≤ fn for all k and n). Then, using [8,
Theorem 3.4] applied to T , we can find h ∈ T such that A � h ≤ B.

Viewing the elements fk, h and f j in T , we see that modulo U (in
the obvious sense), we have 0 < fk ≤ h ≤ f j. Since f ∈ M∞, we can
conclude that the set of inputs where h is nonzero is an element of U ,
and that on this set, h converges to 0. Hence, h ∈ M∞. (Note that
we are abusing notation, as M∞ ⊆ R, but the meaning is clear here,
namely, that h ∈ T and h(∞) = 0.) As fi � h for all i, Corollary 3.6
gives us that P fi ⊂ Ph for all i, whence P ⊆ Ph. If the assertion fails,
choose g ∈ Ph \ P . By Lemma 4.3, g can be assumed non-negative.
Since g /∈ P fk , we conclude that fk � g. (In detail, if there exist
n,K > 0 such that gn ≤ Kfk, note that K is a unit of R, so that
(1/K)gn ≤ fk, whence (1/K)gn ∈ P fk and g ∈ P fk , a contradiction.)
Therefore, A � g, and so A � {gn}n=1,2,.... But, as noted prior to the
statement of the proposition, it follows from the construction of h in
[8, Theorem 3.4] that A � h � {gn}n=1,2,.... This gives the desired
contradiction, for g ∈ Ph implies that h �� |g| = g.

We return to the ring R for the next result.

Corollary 4.7. Let U be a non-uniform ultrafilter on X. Let

P f1
U ⊂ P f2

U ⊂ P f3
U ⊂ · · ·

be a strictly ascending denumerable chain of prime ideals of R. Then
there exists h ∈ M∞ such that ∪P fi

U = Ph.

Proof. By Proposition 2.12 (b), f1 � f2 � · · · , and so an application
of Proposition 4.6 completes the proof.

We close with some observations and questions. In Section 2, we
showed that R is not a ULO ring by showing that R ⊆ T does not
satisfy LO, where T is the ring of real-valued functions on the discrete
space of cardinality ℵ1. Note that T is, in fact, the complete ring of
quotients of R. To see this, observe that T is a direct product of fields
and that the ideal of T consisting of those functions with finite support
is contained in R (for if f is such a function, then one can extend its
domain to Y by defining f(∞) to be 0). Moreover, this is the unique
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ideal of R that is minimal with respect to being dense in R (“dense”
in the sense that its annihilator is zero). In [6, Remark 2.18 (b)], we
suggested that it might be possible to show that a ring A is a ULO-ring
if (and only if) the canonical embedding of A into its complete ring of
quotients satisfies LO. The example given by R ⊆ T represents one
more (small) piece of evidence in that direction.

By Proposition 2.16, R is not of the form A + B. However, the
referee pointed out the following. Consider the more general C + D
construction for rings (as opposed to the specific A + B construction
from [10] that was examined in Section 2). Namely, if S is an arbitrary
ring, C a subring of S and D an ideal of S, then the additive group
C+D is also a subring of S. Now let R and T be as usual. Let C be the
diagonal in T , that is, the subring consisting of constant functions, and
let D ⊂ T again be the ideal of functions which have finite support.
Then C + D is a (von Neumann regular) subring of R. Moreover,
it follows from the Stone-Weierstrass theorem that C + D is in fact
dense in R when R is supplied with the sup norm. Since R = C(Y ) is
complete with the sup norm, R is the norm-completion of C +D.

Finally, note that, if U is a non-uniform ultrafilter on X , we have
described each of the prime ideals of R contained between PU and M∞
as being either a union of prime ideals of the form P f

U or an intersection
of prime ideals of the form PU ,f . However, we do not know whether the

prime ideals of the form P f
U or PU ,f are the only prime ideals between

PU and M∞. In particular, we would ask the following, given a chain
C of functions in M∞, ordered by �: does C have a co-final countable
subchain? A positive answer to this question, when combined with
Theorem 4.4 and Corollary 4.7, would imply that R has no prime ideals
other than those of the form PU , PU ,f , P

f
U and Ma, a ∈ Y .

Acknowledgments. We want to thank the referee for helpful
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(1998), 480 504.

15. B. Olberding and J. Shapiro, Prime ideals in ultraproducts of commutative
rings, J. Algebra 285 (2005), 768 794.

16. W. Rudin, Homogeneity problems in the theory of Čech compactifications,
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