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A UNIVERSAL SURVIVAL RING OF CONTINUOUS
FUNCTIONS WHICH IS NOT A UNIVERSAL

LYING-OVER RING

DAVID E. DOBBS, RONALD LEVY AND JAY SHAPIRO

ABSTRACT. The ring R of continuous real-valued func-
tions on the one-point compactification of the discrete space
of cardinality ℵ1 is a universal survival ring, yet is not a ULO-
ring. Chains of prime ideals of R of cardinality c exist. More-
over, R/P is a divided domain for each P ∈ Spec (R). If
the Continuum Hypothesis holds, then there exists a minimal
prime ideal P of R such that R/P is an infinite-dimensional
valuation domain; however, it is consistent with ZFC that no
such minimal primes exist.

1. Introduction. All rings considered below are commutative, with
1 �= 0; all ring homomorphisms and ring extensions are unital. If A is a
ring, then Z(A) denotes the set of zero-divisors ofA; tq (A) := AA\Z(A),
the total quotient ring of A; and Spec (A) denotes the set of all prime
ideals of A. As usual, “dim(ension)” refers to the Krull dimension.
Following [11, page 28], we use LO to denote the lying-over property of
ring extensions. Recall from [5, page 419] that a ring extension A ⊆ B
is said to satisfy QLO if, whenever P ∈ Spec (A) is such that PB �= B;
then there exists a Q ∈ Spec (B) such that Q ∩ A = P . It is clear
that LO ⇒ QLO, while any nontrivial ring of fractions (for instance,
Z ⊂ Q) shows that QLO �⇒ LO. Slightly modifying terminology from
[11, page 35], we say that a ring extension A ⊆ B is a survival extension
if PB �= B whenever P ∈ Spec (A). It is clear that each ring extension
that satisfies LO must be a survival extension; once again, examples
such as Z ⊂ Q show that the converse is false. Note that a survival
extension satisfies LO if (and only if) it satisfies QLO.
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In [7] (respectively, [8]), the first and third authors developed the
theory of rings A such that A ⊆ B satisfies LO (respectively, QLO)
for each ring extension B of A. Any such A was called a ULO-ring
(respectively, a UQLO-ring). Analogously, we will say that a ring A is
a universal survival ring (in short, a US-ring) if each ring extension of
the form A ⊆ B is a survival extension. In view of the above comments
it is clear that any ULO-ring is both a QLO-ring and a US-ring and that
a US-ring is a ULO-ring if (and only if) it is a UQLO-ring. Moreover,
it was shown in [6, Proposition 2.13] that if 1 ≤ n ≤ ∞, then there
exists an n-dimensional ULO-ring. While there are conditions that
can force a UQLO-ring to be a ULO-ring (cf. [7, Proposition 2.9]),
there exist n-dimensional UQLO-rings that are not ULO-rings, for each
n, 1 ≤ n ≤ ∞ [7, Proposition 2.10]. (The case n = 0 is avoided because
any zero-dimensional ring must be a ULO-ring [6, Proposition 2.1].) It
is natural to ask if there exist any US-rings that are not ULO-rings.

Corollary 2.4 answers this question in the affirmative, by giving n-
dimensional examples, for each integer n ≥ 2, of US-rings which are
not even UQLO-rings. These examples, as is the case with most of the
interesting examples from [6, 7], are built using the A+B construction
from [10]. (We review the A+B construction and some of its properties
in Section 2.) In fact, Corollary 2.4 results by combining a sufficient
condition for US-rings that is given in Proposition 2.2 with a family
of A + B constructions from [7, Corollary 2.15]. Thus, the question
naturally arises whether there is a basically new way to construct
infinite-dimensional US-rings which are not UQLO-rings. We answer
this in Section 2 by developing such a ring R, which is the ring of
continuous real-valued functions on a certain compact Hausdorff space.
Not only is R infinite-dimensional and a US-ring which is not a UQLO-
ring, but we also show that R cannot be obtained from any A + B
construction. The most arduous verification involves showing that
R ⊂ T does not satisfy LO for a certain ring of (continuous real-valued)
functions T ⊃ R.

While Section 2 contains enough analysis of ultrafilters and prime
ideals to obtain the above information about the ring of functions R,
Sections 3 and 4 develop additional properties of this very interesting
ring. For instance, Corollary 3.2 shows that, if P ∈ Spec (R), then R/P
is a divided domain (in the sense of [4]). However, Corollary 3.9 shows
that not every such factor domain of R can be a valuation domain,
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while Corollary 3.10 shows that if the continuum hypothesis holds,
then there does exist a minimal prime ideal P of R such that R/P is
an infinite-dimensional valuation domain. Also, while it is in general
quite difficult to explicitly describe the prime spectrum of a ring of
functions, Section 4 explains how to obtain each prime ideal of R as a
union or an intersection of the special types of prime ideals of R that
are considered in the earlier sections.

Besides the notation and conventions mentioned above, we adopt the
following. If A is a ring, then Max (A) (respectively, Min (A)) denotes
the set of maximal (respectively, minimal prime) ideals of A. As usual,
c denotes the cardinality of R; N denotes the set of natural numbers;
C(W ) denotes the ring of continuous real-valued functions defined on
a topological space W ; “Ann” denotes an annihilator; and ⊂ and ⊃
denote proper containments. Any unexplained material is standard, as
in [11].

2. Construction of an infinite-dimensional US-ring C(Y ). We
begin by recording two facts from the introduction.

Proposition 2.1. (a) Each ULO-ring is both a UQLO-ring and a
US-ring.

(b) If A is a US-ring, then A is a ULO-ring if (and only if) A is a
UQLO-ring.

In [10], Huckaba introduced a ring-theoretic property called Prop-
erty A as a generalization of the Noetherian property. Specifically, a
ring A is said to have (or satisfy) Property A if, whenever I is a finitely
generated ideal of A such that I ⊆ Z(A), we have that Ann (I) �= 0.
Proposition 2.1 (b) can be viewed as an analogue of the result [7, Propo-
sition 2.9] that, if A is a ring that has Property A and A = tq (A), then
A is a QLO-ring if (and only if) A is a UQLO-ring. The hypotheses of
the latter result are also the hypotheses of the useful sufficient condition
for US-rings in Proposition 2.2 (a).

Proposition 2.2. (a) If A is a ring satisfying Property A such that
A = tq (A), then A is a US-ring.

(b) If A is a reduced US-ring, then A satisfies Property A.
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Proof. For (a), rework the first two paragraphs of the proof of [6,
Theorem 2.6]. For (b), rework the proof of [6, Proposition 2.5].

If one chases the proof given below for Corollary 2.4 back to the proof
of [6, Corollary 2.15], we see that the rings in Corollary 2.4 were built
via the A+B construction. It is convenient next to recall the definition
and some of the basic properties of this construction from [10].

Let D be a reduced ring, and let P be a nonempty subset of Spec (D).
If A is an indexing set for P , let I := A ×N. For each i = (α, n) ∈ I,
let Pi := Pα and Di := D/Pi. Let

∏
Di be the product of {Di | i ∈ I},

and let B := Σi∈IDi. Define ϕ : D → ∏
Di by ϕ(d) := (d + Pi)i∈I . If

A is the image of ϕ, define S = A+ B. Note that S is a reduced ring,
B is an ideal of S and S/B ∼= A.

Lemma 2.3 [10, Theorems 26.1, 26.2, 26.4 and 27.1]. Let S be an
A+B ring, as defined above. Then:

(a) The minimal prime ideals of S that do not contain B are the ideals
of the form Mi = {(rj) ∈ S | ri = 0}, as i varies over I. Moreover,
S/Mi

∼= Di for each i.

(b) If P = Max (D) and J is the Jacobson radical of D, then
the prime ideals Q of S that contain B are in one to one order-
preserving correspondence with the prime ideals P of D that contain
J (via Q = ϕ(P ) +B), and S/B ∼= D/J .

(c) If P = Max (D), then S = A + B is its own total quotient ring
and has Property A.

Corollary 2.4. Let 2 ≤ n ≤ ∞. Then there exists an n-dimensional
US-ring A which is not a ULO-ring (and hence not a UQLO-ring).
It may be arranged that A is reduced, A = tq (A), and A satisfies
Property A.

Proof. The parenthetical assertion follows from Proposition 2.1 (b).
Hence, if n �= ∞, it is enough to combine Proposition 2.2 (a) with
[6, Corollary 2.15]. In fact, the same method can be shown to work
for the case n = ∞, the point being that [14] can be used to build
an example of an infinite-dimensional h-local domain D with infinitely
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many maximal ideals. To avoid going off on a tangent, we leave the
details of the construction of D to the interested reader, noting that we
will develop the ring of functions R as a suitable infinite-dimensional
example.

We next give a companion for Corollary 2.4.

Example 2.5. Let 1 ≤ n ≤ ∞. Then there exists an n-dimensional
UQLO-ring A which is neither a US-ring nor a ULO-ring. It may be
arranged that A is a chained ring and, hence, satisfies Property A.

Proof. Combine [7, Proposition 2.10] with Proposition 2.1 (b).

Most of this paper will be devoted to studying a specific ring of
functions. We first give a result showing that the C(−) construction is
relevant to the above concerns.

Proposition 2.6. C(W ) has Property A, for any topological
space W .

Proof. Put B := C(W ). For any f ∈ B, the annihilator Ann (f) :=
{g ∈ B | f(w)g(w) = 0 for all w ∈ W} is a radical ideal of B. Indeed, if
b ∈ B and bk ∈ Ann (f) for some k ∈ N, then (bf)k = 0, whence bf = 0
(since bf takes values in a reduced ring, i.e., R). Thus, if f1, . . . , fn ∈ B
and h :=

∑n
i=1 f

2
i , then Ann (f1, . . . , fn) = {g ∈ B | fi(w)2g(w)2 = 0

for all w ∈ W and all i = 1, . . . , n} = {g ∈ B | h(w)g(w)2 = 0 for
all w ∈ W} = Ann (h). (The first equation holds since R is a reduced
ring; the second holds since each fi(w)

2g(w)2 is non-negative; and the
third holds since Ann (h) is a radical ideal.)

We next introduce the ring of functions R = C(Y ) and devote the rest
of the section to showing that it is a (n infinite-dimensional example
of a) US-ring that is not a ULO-ring. In view of Proposition 2.1 and
Example 2.5, this will settle the remaining questions about the possible
implications among the ULO-ring, UQLO-ring and US-ring concepts.

Let X be a set of cardinality ℵ1, and let Y := X∪{∞}, where∞ /∈ X .
Put a topology on Y by defining a subset V of X to be open if and
only if either:
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(1) V ⊆ X or

(2) ∞ ∈ V and V is co-finite in Y (i.e., Y \ V is finite).

Thus, Y is the one-point compactification of a discrete space of
cardinality ℵ1. The following definition will be helpful. Given a
function f : Y → R, an element a ∈ R and a subset U of Y , we
say that f converges to a on U if for all ε > 0, the set {i ∈ U :
|f(i)− a| > ε}, is finite. Now, let R := C(Y ) be the ring of continuous
real-valued functions defined on Y (with pointwise operations). It is
straightforward to verify the following useful characterization of the
elements of R. For an arbitrary function f : Y → R with a := f(∞),
we have that f is continuous (i.e., f ∈ C(Y )) if and only if:

(1) the set W := Wa,f := {i ∈ Y : f(i) = a} is co-countable and

(2) f converges to a on Y \W (since f is identically a on W , this is
equivalent to requiring that f converges to a on each subset of Y ).

It will also be helpful later to note the following consequence of the fact
that Y is compact: if f ∈ C(Y ), then f is a bounded function.

We next collect some facts about the ring R. If f ∈ R, let the zero
set of f be Z(f) := {y ∈ Y | f(y) = 0}; let coz (f) := Y \ Z(f), the
cozero set of f . If a ∈ Y , let Ma := {f ∈ R : f(a) = 0}.

Proposition 2.7. Let R be the ring defined above. Then:

(a) Max (R) = {Ma | a ∈ Y }; Ma �= Mb if a �= b in Y .

(b) R = tq(R).

(c) R is a US-ring.

Proof. (a) This assertion is a consequence of the fact that Y is a
compact Hausdorff space: see, for instance, [1, Exercise 26, page 14].

(b) It is enough to show that, if an element f ∈ R \Z(R), then Z(f)
is empty (for then, 1/f ∈ R). Suppose not. Note that Z(f) �= {∞},
since f−1(f(∞)) is co-countable. Thus, we can choose y ∈ Z(f)\{∞}.
Define a function g : Y → R by g(y) := 1 and g(z) := 0 for all
z ∈ Y \ {y}. It follows easily from the above characterization of
elements of R that g is continuous. Also, it is clear that gf = 0.
Hence, f ∈ Z(R), the desired contradiction.

(c) Combine (b) with Propositions 2.6 and 2.2 (a).
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We also note that dim (R) �= 0. While this can be inferred directly
from the properties of Y , it will also follow from our construction of
(some of the) prime ideals of R: see Proposition 2.8. The rest of this
section is devoted to showing that R is not a ULO-ring. In fact, we
will construct a ring extension T of R such that R ⊆ T does not satisfy
LO, see Corollary 2.15.

Note that X is a dense subset of Y . Combining this with the facts
that R is Hausdorff and Y is infinite, we easily see that the ring
homomorphism R = C(Y ) → T := C(X), f �→ f |X , is an injection.
Therefore, it is harmless to view R as a subring of T (via this injection).
Our earlier characterization of the elements of R now leads to the
following useful fact. If f ∈ T , then f ∈ R = C(Y ) (in the sense
that f(∞) can be defined so that the extended function f : Y → R
is continuous) if and only if there exists a ∈ R such that the set
V := {i ∈ X : f(i) = a} is co-countable and f converges to a on
X \ V .

As X has the discrete topology, T = C(X) is isomorphic to the von
Neumann regular ring

∏
X R and, hence, is zero-dimensional. It is well

known that the prime (i.e., maximal) ideals of T are in bijection with
the ultrafilters U on the set X in the following manner: U ↔ MU ,
where the maximal ideal associated to U is

MU := {g ∈ T : {x ∈ X | g(x) = 0} ∈ U}.

Next, recall from Proposition 2.7 (c) that R is a US-ring. Therefore,
each maximal ideal of R is lain over by at least one prime ideal of T .
We next examine the contraction to R of a typical prime ideal MU of
T . In the easy case, U is the principal ultrafilter based at some a ∈ X
(i.e., U consists of all the subsets of X that contain a). For this case, it
is easy to see that MU ∩R = Ma, where Ma is as defined in Proposition
2.7 (a). We turn next to the harder case.

We next consider the prime ideals of R of the form PU := MU ∩ R
where U is a free (i.e., non-principal) ultrafilter on X . This case breaks
down into two subcases. In the first of these, U does not contain a
countable set; i.e., U is a uniform ultrafilter. For this subcase, we claim
that PU = M∞.

For a proof, it suffices to show that M∞ ⊆ PU (i.e., that M∞ ⊆ MU ),
since M∞ ∈ Max (R). We need only show that, if f ∈ M∞, then
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f ∈ MU , i.e., that Z(f) \ {∞} ∈ U . As f ∈ M∞, we have f(∞) = 0,
and so it follows from the first criterion in our earlier characterization
of the elements of R that coz (f) is a countable subset of X . Therefore,
since U is assumed to be a uniform ultrafilter, coz (f) /∈ U . As U is an
ultrafilter, it follows that Z(f) \ {∞} = X\ coz (f) ∈ U , which proves
the above claim.

The remaining subcase concerns the free non-uniform ultrafilters U on
X (i.e., the free ultrafilters U on X that contain a countable set). (By
convention, whenever we consider a “non-uniform” ultrafilter, we will
also assume that it is free.) We say something about PU for this subcase
in Proposition 2.8. First, the following comments will be helpful. Let
{an} be a sequence of real numbers and let V be a denumerable subset
of Y . We will “assign” the given sequence to V , by first choosing an
enumeration of the elements of V . Then, if x is the nth element of
V , we set f(x) := an. This creates a function V → R. Note further
that, if V ⊂ X and if limn→∞ an = a, then by setting f(y) := a for all
y ∈ Y \ V , the resulting function f : Y → R is continuous, that is, is
in R. If, in addition, a = 0, then f ∈ M∞.

Note that there exists a non-uniform ultrafilter onX . (While this fact
can be extracted from [3, Theorem 7.1], here is a more direct proof.
Choose a denumerable subset W of X and a free ultrafilter F on W ;
then U := {Z ⊆ X | Z contains some element of F} is a non-uniform
ultrafilter on X .) It follows from the first assertion in the next result
that dim (R) �= 0.

Proposition 2.8. Let U be a non-uniform ultrafilter on X. Then
PU := MU ∩ R ⊂ M∞. Moreover, PU is not contained in Ma for any
a ∈ X.

Proof. Let f ∈ MU ∩ R and b := f(∞). Since f is continuous, the
set W := {i ∈ X | f(i) �= b} is countable and f converges to b on W .
If b �= 0, it would follow that Z(f) is finite. Then f ∈ MU ∩ R would
force Z(f) ∈ U , but the finiteness of Z(f) would contradict that U is
free. Hence, b = 0, and so f ∈ M∞. This proves that MU ∩R ⊆ M∞.

To prove the first assertion, it remains to show that MU ∩ R is not
all of M∞. We will do this by using the above comments to construct
a function g ∈ M∞ \MU . By hypothesis, we can pick a denumerable
set V ∈ U . As above, we can define g ∈ M∞ ⊂ R by setting g(j) := 0
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for all j ∈ Y \ V and “assigning” the sequence {1/n} to the elements
of V . However, g /∈ MU , that is, X \ coz (g) = Z(g) \ {∞} /∈ U (the
point being that coz (g) ⊇ V entails coz (g) ∈ U).
It remains to prove the final assertion of the proposition. Let a ∈ X .

We need only find a function in PU \ Ma. Define h ∈ R by h(a) = 1
and h(i) = 0 for all i �= a. Of course, h /∈ Ma. On the other hand,
h ∈ PU ; that is, h ∈ MU . Indeed, {a} /∈ U since U is free, and so the
complementary set {x ∈ X | h(x) = 0} ∈ U , as required.

We next give a technical result on non-uniform ultrafilters. While
the result is probably known, we include a proof for the sake of
completeness.

Proposition 2.9. If U1 and U2 are distinct non-uniform ultrafilters
on X, then there exist countable subsets V and W of X such that
V ∈ U1 \ U2 and W ∈ U2 \ U1.

Proof. Suppose not. Then (relabeling if necessary) we can assume
that every countable element of U1 is an element of U2. Since the
ultrafilters are distinct, there exists H ∈ U1 \ U2. Thus, K := X \H ∈
U2 \ U1. Let L be a countable element of U1. By the definition of an
ultrafilter, H ∩L ∈ U1. Clearly, H ∩L is also a countable set. Then, by
our assumption, H ∩ L is in U2. Hence, ∅ = (H ∩ L) ∩K ∈ U2, which
is absurd.

Corollary 2.10. Let U1 and U2 be distinct non-uniform ultrafilters
on X. Then PU1 and PU2 are incomparable prime ideals of R.

Proof. Let V and W be the countable subsets of X given by
Proposition 2.9. As before, enumerate the elements of V and the
elements of W , and then obtain f (respectively, g) in R by defining
f(i) = 1/n where i is the nth element of V (respectively, g(j) = 1/n
where j is the nth element of W ) and 0 elsewhere. To conclude, note
that f ∈ PU2 \ PU1 while g ∈ PU1 \ PU2 .

The above work shows that the image of the canonical map from
Spec (T ) to Spec (R) is the union of the set Max (R) = {Ma | a ∈ Y }
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with the set {PU | U a non-uniform ultrafilter on X}. Additionally,
these ideals PU are pairwise incomparable, and each of them is con-
tained in a unique maximal ideal of R, namely M∞. We also know
that each minimal prime ideal of R belongs to the image of the map
Spec (T ) → Spec (R) (see, for instance, [11, Exercise 1, page 41]). We
can now conclude that Min (R) coincides with the set of minimal el-
ements of the image of Spec (T ) → Spec (R); that is, Min (R) is the
union of {PU | U a non-uniform ultrafilter on X} with {Ma | a ∈ X}.
The next obvious question is: apart from M∞ and the minimal prime
ideals of R, does R have any other prime ideals? In other words, are
any prime ideals of R not lain over from T ?

We devote the rest of this section to answering the above question.
We next describe prime ideals of R contained between PU and M∞,
where U is a non-uniform ultrafilter on X . This description, which is
very reminiscent of what was done in [12], is determined by the growth
of certain functions X → {r ∈ R | r ≥ 0}.
Let f and g be arbitrary non-negative real-valued functions defined

on X , and let U be an ultrafilter on X . We say that g ≤ f (mod U) if
there exists a V ∈ U such that g(i) ≤ f(i) for all i ∈ V . If there is no
chance of confusion, we will suppress the “U” and simply write g ≤ f .

A very useful fact is that, for any f, g,U as above, g and f must
be comparable (mod U). To prove this, partition X into two sets,
W := {i ∈ X | g(i) ≤ f(i)} and X \W = {i ∈ X | g(i) > f(i)}. Since
exactly one of W,X \W is in U , the assertion follows easily.

Let f, g,U as above. If g ≤ f and there do not exist positive integers
n and M such that fn ≤ Mg, then we write g � f . Using the result of
the preceding paragraph, one can show that � is a transitive relation.

Let U be a non-uniform ultrafilter on X , and let f ∈ M∞ be a non-
negative function such that coz (f) ∈ U . (So, f /∈ PU ). We now use f
and U to define two subsets of M∞ that each contain PU .

PU ,f =: {g ∈ M∞ | |g| � f}.
P f
U =: {g ∈ M∞ | ∃ n > 0, M > 0 in N with |g|n ≤ Mf}.

Observe that, if g ∈ PU (so, Z(g) ∈ U), then g � f . (The point is that
V := coz (f) ∩ Z(g) ∈ U and fn(z) > Mg(z) for any positive integers
n and M and all z ∈ V .) In view of Proposition 2.8, the upshot is that
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PU ⊆ PU ,f . On the other hand, it is easy to check that PU ,f ⊆ P f
U and

that f ∈ P f
U \ PU ,f . In summary,

PU ⊆ PU ,f ⊂ P f
U ⊆ M∞.

Theorem 2.11. Let U be a non-uniform ultrafilter on X, and let
f ∈ M∞ be a non-negative function such that coz (f) ∈ U . Then both

PU ,f and P f
U are prime ideals of R.

Proof. We consider PU ,f first. To show that PU ,f is closed under
sums, we let g, h ∈ PU ,f and will show that g + h ∈ PU ,f . We have
that |g| � f and |h| � f and must show that |g + h| � f . Without
loss of generality, |g| ≤ |h|. If f ≤ |g + h|, then f ≤ |g| + |h| ≤ 2|h|,
which contradicts the fact that |h| � f . Thus, |g + h| ≤ f . Hence, to
show that |g + h| � f , it will suffice to prove that there do not exist
integers n,M > 0 such that fn ≤ M |g + h|. If such n,M exist, then
fn ≤ 2M |h|, another contradiction to the fact that h � f . Therefore,
PU ,f is closed under sums.

Next, to show that PU ,f is closed under multiplication by elements
of R, we let g ∈ PU ,f and r ∈ R and will show that rg ∈ PU ,f . We
have that |g| � f . Pick a positive integer N such that |r(i)| ≤ N
for all i ∈ Y . (Such an N exists because each element of R is
a bounded function.) Then |r| ≤ N , where “N” here denotes the
constant function that takes only the value N . If f ≤ |rg|, then
f ≤ N |g|, which contradicts the fact that |g| � f . Thus, |rg| ≤ f .
Hence, to show that |rg| � f , it will suffice to prove that there do
not exist integers n,M > 0 such that fn ≤ M |rg|. If such n,M exist,
then fn ≤ M |rg| ≤ MN |g|, a contradiction to the fact that g � f .
Therefore, PU ,f is closed under scalar multiplication by R, and so PU ,f

is an ideal of R. Of course, it is a proper ideal because it is contained
in M∞.

Finally, we show that PU ,f ∈ Spec (R). Suppose r, s,∈ R satisfy
rs ∈ PU ,f . If there exist positive integers n1,M1, n2,M2 such that
fn1 ≤ M1|r| and fn2 ≤ M2|s|, then fn1+n2 ≤ M1M2|rs|, which
contradicts the fact that |rs| � f . So, without loss of generality, there
do not exist integers n,M > 0 such that fn ≤ M |r|. Since |r| and f
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are comparable (mod U), we must have |r| ≤ f . Therefore |r| � f ,
proving that r ∈ PU ,f , and so PU ,f ∈ Spec (R).

Next, we show that P f
U ∈ Spec (R). Of course, P f

U �= R since

P f
U ⊆ M∞. Let g, h ∈ P f

U . There exist positive integers n1, n2,M1 and
M2 such that |g|n1 ≤ M1f pointwise on some V1 ∈ U and |h|n1 ≤ M2f

pointwise on some V2 ∈ U . Note that g, h ∈ P f
U ⊆ M∞. In particular,

g(∞) = 0 = h(∞). So, by continuity (and the fact that U is an
ultrafilter), there exists an element of U on which g and h each take
values in the interval [0, 1), whence |h|n ≤ |h|ni if n ≥ ni. Thus,
there is no harm in assuming that n1 = n = n2. Also, without loss of
generality, |h| ≤ |g|, and so |h|j ≤ |g|j for all j = 1, . . . , n. Then on
V1 ∩ V2 ∈ U , we have

|g + h|n ≤
n∑

i=0

(
n
i

)
|g|n−i|h|i ≤ (n+ 1)S|g|n ≤ (n+ 1)SM1f,

where S is the maximum of the above binomial coefficients. Thus
g+ h ∈ P f

U , which shows that P f
U is closed under sums. Next, to prove

that P f
U is closed under scalar multiplication from R, observe that, if

|g|n ≤ Mf and |r| ≤ N , then |rg|n ≤ NnMf .

Finally, we must show that, if r, s ∈ R such that rs ∈ P f
U , then either

r or s is in P f
U . Suppose |rs|n ≤ Mf pointwise on V ∈ U . Let

W1 = {i ∈ V : |r(i)|n ≤
√
Mf}

and

W2 = {i ∈ V : |s(i)|n ≤
√
Mf}.

If W1 ∈ U , then |r|2n ≤ Mf pointwise on W1 and so r ∈ P f
U ; similarly,

if W2 ∈ U , then s ∈ P f
U . In the remaining case, both X \ W1 and

X \W2 are elements of U . In this case, Z1 := (X \W1)∩ (X \W2) ∈ U .
Clearly |rs|n > Mf pointwise on Z1. But this contradicts the fact that
U is a filter, since the set Z2 := {i ∈ V : |r(i)s(i)|n ≤ Mf(i)} is also
an element of U and Z1 ∩ Z2 = ∅. The proof is complete.

We show next that the proper inclusion of prime ideals of the form
P f
U can be characterized in terms of �. Proposition 2.12 will be used

significantly in the next two sections.
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Proposition 2.12. Let U be a non-uniform ultrafilter on X, and let
f, g ∈ M∞ \ PU be such that f and g are each non-negative functions
and g � f . Then:

(a) If g ≤ f (mod U), then P g
U ⊆ P f

U .

(b) g � f if and only if P g
U ⊂ P f

U .

Proof. Since (a) is clear, we turn to (b). Suppose first that g � f .

As g ≤ f , (a) gives that P g
U ⊆ P f

U . Moreover, g � f forces f /∈ P g
U , and

so f ∈ P f
U \ P g

U , thus proving the “only if” assertion. For the converse,

suppose that P g
U ⊂ P f

U . By (a), it cannot be the case that f ≤ g, and
so g ≤ f . It remains to show that g � f , namely, that there cannot
exist n,M ∈ N such that fn ≤ Mg. We will show that, if this fails
and h ∈ P f

U , then h ∈ P g
U (which would contradict the hypothesis that

P g
U ⊂ P f

U ). Pick n′,M ′ ∈ N such that |h|n′ ≤ M ′f . Then

|h|n′n = (|h|n′
)n ≤ (M ′f)n = M ′nfn ≤ M ′nMg,

whence h ∈ P g
U , and we have the desired contradiction.

The key to showing that dim (R) = ∞ is contained in the following
lemma.

Lemma 2.13. Let V be a denumerable subset of X ; for convenience,
identify V with N. Let {ai} and {bi} each be sequences of positive real
numbers that converge to ∞. As in the discussion prior to Proposi-
tion 2.8, consider the function f (respectively, g) from Y to R obtained
by “assigning” the sequence {1/2ai} (respectively, {1/2bi}) to V . (This
means that f (respectively, g) sends the nth element of V to 1/2an

(respectively, 1/2bn) and each element of Y \ V to limi→∞ 1/2ai = 0
(respectively, to limi→∞ 1/2bi = 0).) Then:

(a) f, g in R. In fact, f, g ∈ M∞.

(b) If, in addition, bi ≤ ai for all i and the sequence {ai/bi} converges
to ∞, then f � g relative to any non-uniform ultrafilter U on X such
that V ∈ U .

Proof. (a) It is enough to consider f . As limn→∞ 1/2an = 0, the
assertions follow from the discussion prior to Proposition 2.8.
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(b) Note that f ≤ g (in fact, pointwise on Y ). Suppose that gn ≤ Mf
for some n > 0 and M > 0. Since V ∈ U and U is an ultrafilter, we infer
that 1/(2bi)n ≤ M/2ai for infinitely many i ∈ N. Hence, 2ai−nbi ≤ M
for infinitely many i ∈ N, and so ai ≤ log2 M + nbi for infinitely many
i ∈ N. Since log2 M is a constant and {bi} converges to ∞, we then
have ai ≤ bi + nbi = (1 + n)bi for infinitely many i ∈ N. But this
contradicts the assumption that limi→∞ ai/bi = ∞. Thus, f � g.

Theorem 2.14. Fix a denumerable subset V of X. Let U be any
non-uniform ultrafilter U on X such that V ∈ U . For each positive
real number r, let ar be the sequence of real numbers whose ith term is
(ar)i := ir, and let fr ∈ M∞ be constructed from ar and V just as f

was constructed from {ai} and V in Lemma 2.13. Then P
fr1
U ⊂ P

fr2
U

whenever 0 < r2 < r1 in R. Hence, there is a chain C of prime ideals
in R such that the cardinality of C is c (the cardinality of R) and each
P ∈ C contains the minimal prime PU of R and is contained in the
maximal ideal M∞ of R. In particular, dim (R) = ∞.

Proof. For any positive real number r, consider the sequence of
positive real numbers whose ith term is (ar)i := ir. Note that
limi→∞ ir = ∞. Hence, by Lemma 2.13 (a), fr ∈ M∞ ⊂ R. Also, the
above comments show that fr /∈ PU . Moreover, since coz (fr) = V ∈ U ,
Theorem 2.11 shows that both PU ,fr and P fr

U are prime ideals of R
containing PU and contained in M∞.

Note also that, if r1 > r2 > 0 in R, then ir2 < ir1 for each i ∈ N
and limi→∞ ir1/ir2 = limi→∞ ir1−r2 = ∞. Hence, by Lemma 2.13 (b),

fr1 � fr2 . Therefore, by Proposition 2.12 (b), P
fr1
U ⊂ P

fr2
U . Thus, one

way to build the desired chain is to let C := {P fr
U | r > 0 in R}.

We can now prove a particularly striking property of ring R.

Corollary 2.15. The ring extension R ⊂ T does not satisfy LO, and
so R is neither a ULO-ring nor a UQLO-ring.

Proof. The discussion following Corollary 2.10 showed, in particular,
that the image of the canonical map Spec (T ) → Spec (R) is Max (R)∪
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Min (R). Thus, to prove that R ⊂ T does not satisfy LO, it is enough
to show that dim (R) ≥ 2. Theorem 2.14 showed even more, namely,
that dim (R) = ∞. This proves the first assertion. The second
assertion then follows from the definition of a ULO-ring. As for the
final assertion, combine the second assertion with Propositions 2.7 (c)
and 2.1 (b).

Combining Theorem 2.14, Proposition 2.7 (c) and Corollary 2.15,
we see that R is an infinite-dimensional US-ring which is not a ULO-
ring (or even a UQLO-ring). To close the section (and to provide a
counterpoint to the example given in Corollary 2.4 for n = ∞), we show
next that R is not of the form A + B. The proof of Proposition 2.16
uses nothing that was given after Proposition 2.7 (a).

Proposition 2.16. R cannot be built via the A+B construction.

Proof. Suppose, on the contrary, that R has the form A+B. It will
be convenient in this proof to say that a prime ideal of a ring E is a
minimax prime ideal of E if it is both a maximal ideal and a minimal
prime ideal of E. Recall from the discussion following Corollary 2.10
that {Ma | a ∈ X} is an uncountably infinite set of minimax prime
ideals of R. Next, it follows easily from Lemma 2.3 (fortified by the
proof of [10, Theorem 26.2]) that the minimax prime ideals of A + B
are of two kinds, as follows. Each P ∈ Max (D) ∩ P gives rise to
denumerably many minimax prime ideals of A+B which do not contain
B, and this is how all the minimax prime ideals of A + B which do
not contain B arise. On the other hand, if I denotes the intersection
of the elements of P , the minimax prime ideals of A + B which do
contain B are in bijection with those maximal ideals P of D which
are minimal with respect to containing I. Moreover, A ∼= D/I, by
the first isomorphism theorem. Thus, if we could show that Max (A)
is finite, it would follow that A + B has at most denumerably many
minimax prime ideals (contradicting the above information about the
number of minimax prime ideals of R). We will show, in fact, that A
is quasilocal. As R/B = (A + B)/B ∼= A, it will suffice to prove that
the only maximal ideal of R that contains B is M∞.

Let K be the ideal of R that is generated by the set of primitive
idempotents of R. (Recall that an idempotent element e of a ring E
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is called a primitive idempotent (of E) if e is not a nontrivial sum
of orthogonal idempotents of E, equivalently, if the ring Ee has no
nontrivial idempotents.) We claim thatK ⊆ B, i.e., that each primitive
idempotent of R is contained in B.

One consequence of the A+B construction is that each element s of
A+B is of the form s = a+ b, where a ∈ A, b ∈ B, either a = 0 or a is
nonzero in infinitely many coordinates, and b is nonzero in only finitely
many coordinates. Consider an arbitrary element of R = A + B, say
s = a+b, where a, b are as in the preceding sentence. Recall that A+B
is constructed as a subring of a certain product,

∏
Di. Of course, s

is idempotent if and only if each of its coordinates is idempotent. To
prove the above claim, it suffices to show that, if s is idempotent and
a �= 0, then s is not a primitive idempotent. Note that infinitely many
coordinates of a are nonzero idempotents. Therefore, since b has only
finitely many nonzero coordinates, we can find a coordinate j such that
aj is a nonzero idempotent and bj = 0. Define c ∈ Dj ⊆ B ⊆ A + B
to be the element of

∏
Di whose only nonzero coordinate is cj := aj .

Observe that (a − c) + b and c are nonzero orthogonal idempotents of
R. (Perhaps the key calculation is that, at any coordinate i �= j, we
have that (ai − ci) + bi = ai + bi is the ith coordinate of s and hence is
idempotent.) Since the sum of (a− c) + b and c is a+ b = s, it follows
that s is not a primitive idempotent of R. This proves the above claim.

Recall that it suffices to prove that the only maximal ideal of R that
contains B is M∞. As K ⊆ B, it therefore suffices to prove that
the only maximal ideal of R that contains K is M∞. By Proposition
2.7 (b), we need only show that, if a ∈ X , there exists a g ∈ K \Ma.
To that end, consider the function f : Y → R defined by f(a) := 1
and f(y) := 0 for all y ∈ Y \ {a}. By our earlier criteria characterizing
continuity, it is easy to see that f ∈ R. Of course, f2 = f . Moreover, f
is a primitive idempotent of R, for it is clear that the ring of functions
Y → R that vanish on Y \ {a} has no nontrivial idempotents. Finally,
it is clear that f /∈ Ma, and so taking g := f completes the proof.

3. Factor domains of C(Y ). We begin the section by showing
that, modulo any prime ideal, the ring R satisfies a certain divisibility
property.
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Proposition 3.1. Let P ∈ Spec (R) and D := R/P . Then any two
elements of D may be labeled d and e such that, if d does not divide e
(in D), then d | e2 and e | d3.

Proof. If Q ⊆ P in Spec (R) and R/Q has the asserted property, then
so does R/P , since R/P is (isomorphic to) a factor domain of R/Q.
So, without loss of generality, P ∈ Min (R).

Either P = Ma for some a ∈ X or P = PU for some non-uniform
ultrafilter U on X . (Compare with Proposition 2.8.) In the first
case, P ∈ Max (R), and so D = R/P is a field and the assertion
is obvious. Hence, without loss of generality, P = PU for some non-
uniform ultrafilter U on X . Note that, modulo P , each element of
R \M∞ is a unit, since (R/P,M∞/P ) is quasilocal by Proposition 2.8.

Let d, e ∈ D. Then d = f + P and e = g + P for some f, g ∈ R. The
assertion is clear if d or e is either 0 or a unit of D. Hence, without loss
of generality, f and g are elements of M∞ \P . As P = PU and U is an
ultrafilter, we have coz (f), coz (g) ∈ U , and so coz (f) ∩ coz (g) ∈ U .
Moreover, it follows via continuity that f and g each converge to 0 on
coz (f) ∩ coz (g). It follows from the definition of an ultrafilter that we
can find an element U ′ (respectively, U ′′) of U such that f (respectively,
g) is either pointwise strictly positive or pointwise strictly negative on
U ′ (respectively, on U ′′). Therefore, by possibly replacing f and/or g
with its negative (which has the harmless effect of replacing d or e with
its negative) and considering U ′ ∩U ′′, we can assume that both f and
g are strictly positive on some U ∈ U . Also, as noted earlier, we may
assume (possibly by interchanging f and g) that 0 < g(i) ≤ f(i) for all
i ∈ U . (Note that this is the only point in the proof that the original
labels d and e may be switched.) Thus, the real-valued function g/f is
defined and bounded on U .

There are two cases to consider. Suppose first that g � f . Then it
cannot happen that f2 ≤ g, and so g ≤ f2 (without loss of generality,
pointwise on U). By replacing U with U ∩W where W is a countable
element of the non-uniform ultrafilter U , we can also assume that U is
denumerable. Note that g/f2 is bounded on U . Thus, g/f = (g/f2)f
is the product of a bounded function with a function that converges
to 0 (on U), and so g/f converges (to 0 on U). Let h : Y → R be
the function defined by h(i) := g(i)/f(i) for i ∈ U and h(j) := 0 if
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i ∈ Y \U . Then h ∈ R. (Note that we get the continuity of h by using
the criterion from the preceding section, and that is why we needed U
to be countable.) Moreover, g − fh is 0 pointwise on U . In particular,
g − fh ∈ MU ∩ R = PU = P . In other words, f divides g modulo P ,
i.e., d | e (in D). We will soon use the above technique again.

In the remaining case, (g ≤ f but) g �� f . As above, we can assume
that U is countable and g/f is bounded on U . Hence, g2/f = (g/f)g
is the product of a bounded function with a function that converges to
0 on an element of U . Therefore, g2/f converges to 0. Then, arguing
as before, there exists h′ ∈ R such that g2 − h′f ∈ P . In other words,
f divides g2 modulo P , i.e., d | e2.
There are now two subcases. Modulo the ultrafilter U , either g ≤ f2

or f2 ≤ g. In the first of these subcases, g/f2 is bounded and then
we see as above that g/f converges to 0 on a countable element of
U , in which case f in fact divides g modulo P , that is, d | e. We
turn to the final subcase, where we have that f2/g is bounded. Then
f3/g = (f2/g)f converges to 0 on a countable element of U , which
implies as above that g divides f3 modulo P , that is, that e | d3.

A ring A is called divided if, for each P ∈ Spec (A) and a ∈ A, either
a ∈ P or P ⊆ Aa. Note that a domain A is a divided ring if and only if
A is a divided domain in the sense of [4], i.e., if and only if P = PAP

for all P ∈ Spec (A). Recall from [2, Proposition 2] that a ring A is
a divided ring if and only if, for any elements a, b ∈ A, either a | b or
there exists an n = n(a, b) ∈ N such that b | an. Combing these facts
with Proposition 3.1 immediately yields the following corollary.

Corollary 3.2. R/P is a divided domain for each prime ideal P
of R.

Corollary 3.3. Let U be a non-uniform ultrafilter on X. Then the
set of prime ideals of R that are contained between PU and M∞ is
linearly ordered by inclusion.

Proof. By Corollary 3.2, R/PU is a divided domain. But it is easy
to see that, in any divided domain, the set of prime ideals is linearly
ordered by inclusion. Therefore, the assertion follows from a standard
homomorphism theorem.
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We will use Corollary 3.3 in Section 4 to give two descriptions of the
prime ideals contained between PU and M∞ in terms of prime ideals
of the form PU ,f and P f

U .

We next pursue some consequences of the method of proof of Propo-
sition 3.1.

Remark 3.4. Let U be a non-uniform ultrafilter on X . Consider
(typically non-negative) f, g ∈ M∞ \ PU .

(a) It follows from the proof of Proposition 3.1 that, if g ∈ P f
U , then

modulo PU , f divides some power of g. Moreover, in that proof where
g ≤ f2 but g �� f , we saw that modulo PU , f in fact divides g.
However, we also know that, in that case, there exist n,M > 0 such
that fn ≤ Mg. Then it would follow as in the above proof that modulo
PU , g divides some power of f . Therefore, if g ≤ f but g �� f , then a
prime ideal P that contains PU will contain f if and only if P contains
g. On the other hand, if g � f , then every prime ideal of R that
contains PU and f must contain g.

(b) If g ∈ P f
U , then f �� g. Thus, if g ∈ P f

U \ PU ,f (and we have seen
that such g exist), then g �� f and f �� g.

Proposition 3.5. Let U be a non-uniform ultrafilter on X, and let
f ∈ M∞ \ PU be a non-negative function. Then there are no prime

ideals of R contained strictly between PU ,f and P f
U .

Proof. Suppose g, h ∈ P f
U \ PU ,f . Since U is an ultrafilter, we may

assume that g and h are non-negative modulo U (for either g or h could
be replaced by its negative). We claim that g �� h and h �� g.

If the claim fails, we can suppose, without loss of generality, that
g � h. As h ∈ P f

U , there exist (integers) n,M > 0 such that
|h|n ≤ Mf . Since g � h, there cannot exist t,M ′ > 0 such that
|h|nt ≤ M ′g. Hence, g � |h|n. Note that, if f ≤ g (modulo U),
then |h|n ≤ Mf ≤ Mg, whence |h|n ≤ Mg, contradicting g � |h|n.
Therefore, g ≤ f . Now, as g /∈ PU ,f , it is not the case that g � f , and
so there exist m,K > 0 such that fm = |f |m ≤ Kg. Thus,

|h|nm = (|h|n)m ≤ (Mf)m = Mmfm ≤ MmKg,

contradicting g � h. This proves the above claim.
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Without loss of generality, g ≤ h. Thus, by Remark 3.4 (a), any prime
ideal of R that contains PU will contain h if and only if it contains
g. The assertion follows, for if there is a prime ideal Q of R such
that PU ,f ⊂ Q ⊂ P f

U , then you could have taken g ∈ Q \ PU ,f and

h ∈ P f
U \Q.

Corollary 3.6. Let U be a non-uniform ultrafilter on X, and let
f, g ∈ M∞ \ PU be such that f and g are each non-negative functions
and g � f . Then P g

U ⊆ PU ,f .

Proof. By Proposition 2.12 (b), P g
U ⊂ P f

U . By Corollary 3.3 (and
Theorem 2.11), the prime ideals P g

U and PU ,f are comparable. In view
of Proposition 3.5, the assertion follows.

We have seen that each factor domain R/P of R is a divided domain.
It is reasonable to wonder if these rings are, in fact, valuation domains.
We will show in Corollary 3.9 that, in general, they are not, even if
P ∈ Min (R). We will show, moreover, that the answer to the question
“Can R/P be a valuation domain for some P ∈ Min (R) \Max (R)” is
axiom dependent. First, we need to collect some facts about ultrafilters.

Remark 3.7. (a) Let C be a fixed denumerable set and U a free
ultrafilter on C. Recall that a function f :C → R is said to converge
on U if there is a real number L such that, for each ε > 0, there exists
U ∈ U such that |f(n) − L| < ε for all n ∈ U . Let us say that f
converges strongly on U if there exists a U ∈ U such that f converges
to some a on U (essentially as defined in Section 2, where the domain
of f was Y ). It is known that, if f :C → R is any bounded function,
then f converges on U . If every bounded function converges strongly
on U , then U is said to be a P -point (this is also known as U being
“weakly selective”).

Without any set-theoretic assumptions, there are free ultrafilters that
are not P -points. (See, for example, [9, 13]). Rudin [16] proved that, if
the continuum hypothesis holds, then in fact there are P -points. Some
other set-theoretic hypotheses are also known to imply the existence
of P -points. However, Shelah (cf. [17]) has proved that it is consistent
with ZFC that there are no P -points.
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Thus, it is true in ZFC that there are free ultrafilters U on C such that
every bounded function f :C → R converges on U , but some bounded
functions from C to R do not converge strongly on U . On the other
hand, it is independent of the axioms of ZFC that there exists an
ultrafilter U such that every bounded function f :C → R converges
strongly on U . Finally, we note that, if D is a set of cardinality ℵ1 and
V is a non-uniform ultrafilter on D, then the previous comments may
be applied to any denumerable set C ∈ V .
(b) We need to examine more closely the question of when, given

two elements f, g ∈ R, one divides the other modulo a minimal prime
ideal of the form PU . Note that the canonical image of f in R/PU
divides the canonical image of g if and only if there exists an h ∈ R
such that g − fh ∈ PU . Now, suppose that f divides g modulo PU
and that g /∈ PU . Therefore, on some U ∈ U , g = fh. Thus, g, and
hence f , are each pointwise nonzero on this element of the ultrafilter U .
Hence, for the restriction of h to U , we have h = g/f . Since h ∈ R, h
converges on U . (In detail, since f, g ∈ R, we know that f (respectively,
g) converges on any subset W of X to f(∞) (respectively, to g(∞)),
and so g/f converges on U to g(∞)/f(∞).) Thus, in the language
of part (a), we can say that g/f converges strongly on U . The above
argument is reversible. Therefore, the canonical image of f divides the
canonical image of g in R/PU if and only if g/f converges strongly on
U .
(c) Let U be a non-uniform free ultrafilter on X . Then U is a P -point

if the restriction of U to some (and hence every) countable U ∈ U is a
P -point.

For a proof, suppose first that U is a P -point. Let f be a bounded
continuous real-valued function on X . Fix a denumerable set U ∈ U .
Note that f converges on some W ∈ U . Then the restriction of f to
W converges on U ∩W , and so ultrafilter obtained by restricting U to
U is a P -point. Conversely, suppose that the restriction of U to U is a
P -point for each denumerable U ∈ U , and pick one such U . Let g be a
bounded continuous real-valued function on X . Then the restriction of
g to U is bounded on U . Since the restriction of U to U is a P -point,
there exists a V in this ultrafilter such that the restriction of g to U
converges on V . As V must also be in the original ultrafilter, U is a
P -point.
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Proposition 3.8. Let U be a non-uniform ultrafilter on X. Then
R/PU is a valuation domain if and only if U is a P -point.

Proof. Suppose first that U is a P -point. Let f, g ∈ R. To show that
R/PU is a valuation domain, it is enough to show that, possibly after
interchanging f and g, there exists an h ∈ R such that g − fh ∈ PU .
As in the proof of Proposition 3.1, we can reduce to the case that
f, g ∈ M∞ \ PU and, possibly after interchanging f and g, we can pick
U ∈ U such that 0 < g(i) ≤ f(i) for all i ∈ U . Then the restriction of
g/f to U is a well-defined bounded function. Since U is a P-point, g/f
converges strongly on U , and so there exists a denumerable set W ⊆ U
such that W ∈ U and g/f converges on W to, say, a. Define a function
h : Y → R via h(i) := g(i)/f(i) for all i ∈ W and h(j) := a for all
j ∈ Y \ W . Then h ∈ R by the criterion for continuity in Section 2.
Moreover, g − fh is zero on W , whence g − fh ∈ MU ∩ R = PU , as
required.

We next prove the contrapositive of the “only if” assertion. Suppose
that U is not a P -point. Since U is not a P -point, there exists a bounded
real-valued function f on X such that the restriction of f to any subset
of X that is in U does not converge. Fix a denumerable set U ∈ U .
View the restriction of f to U as a sequence “on U .” By the choice of
f , this bounded sequence on U , call it {an}, does not converge on any
subset of U that is in U . We may assume that {an} is a strictly positive
sequence that is bounded away from 0 on U . (In detail, choose M > 0
such that f(x) > −M for all x ∈ X and replace f with f + M + 1,
thus replacing {an} with the sequence {an +M + 1} which is strictly
positive, bounded away from 0 on U and does not converge on any
subset of U that is in U .) Then {1/an} is also a well-defined bounded
sequence on U that does not converge on any element of U .
Next, we will construct two elements of R such that neither of their

canonical images divides the other in R/PU (thus showing that R/PU
is not a valuation domain). Define functions g, f : Y → R as follows.
Take g to be (1/n)an on U (i.e., at the nth element of U) and 0
elsewhere on Y ; and take f to be 1/n on U and 0 elsewhere on Y .
Since an is bounded on U , it is easy to see that g and f each converge
to 0 on U , and so the criterion for continuity from Section 2 yields that
g, f ∈ R. However, on U , g/f is given by an, which does not converge
on any subset of U that is in U .
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Suppose that g = rf +h, where r ∈ R and h ∈ PU . As h ∈ MU , there
exists a W ∈ U such that h is pointwise identically 0 on W . On the
other hand, since r ∈ R, r converges to r(∞) on W . It follows that, on
U ∩W ∈ U , g/f converges to r(∞), a contradiction. Thus, the image
of f cannot divide the image of g. Similarly, since f/g is given on U
by 1/an, which does not converge on any element of U , we see that the
canonical image of g does not divide that of f , as required.

Corollary 3.9. Not every factor domain of R is a valuation domain.
Moreover, it is consistent with ZFC that there does not exist any non-
uniform ultrafilter U on X such that R/PU is a valuation domain.

Proof. As noted in Remark 3.7, there exist non-uniform free ultra-
filters on X that are not P -points, and so the first assertion follows
from Proposition 3.8. To prove the second assertion, combine Proposi-
tion 3.8 with the result of Shelah that was noted in Remark 3.7, namely,
that it is consistent with ZFC that there are no P -points.

Corollary 3.10. If one assumes the continuum hypothesis, then
there exists a non-uniform ultrafilter U on X such that R/PU is a
valuation domain.

Proof. As noted in Remark 3.7, if the continuum hypothesis holds,
then there exist non-uniform ultrafilters onX that are P -points. Hence,
the assertion follows from Proposition 3.8.

4. Describing the prime ideals of C(Y ). In any ring, the union or
intersection of any chain of prime ideals is a prime ideal [11, Theorem
9]. While the precise nature of Spec (R) remains unknown, we will
show, in the converse direction, that each prime ideal of R is both a
union and an intersection of prime ideals of the types constructed in
Section 2. We begin the section by showing that RP is a domain for
all prime ideals P �= M∞.

Lemma 4.1. If U1 and U2 are distinct non-uniform ultrafilters on
X, then PU1 + PU2 = M∞.



848 DAVID E. DOBBS, RONALD LEVY AND JAY SHAPIRO

Proof. By Proposition 2.8, it suffices to prove that, if f ∈ M∞, then
f ∈ PU1 + PU2 . If Z(f) is in U1 (respectively, U2), then f ∈ PU1

(respectively, f ∈ PU2); in either of these cases, f ∈ PU1 + PU2 .
Hence, without loss of generality, Z(f) is in neither U1 nor U2. Thus,
V := coz (f) ∈ U1 ∩ U2. Since f ∈ M∞, V is countable and the
restriction of f to V converges to f(∞) = 0. As U1 �= U2, there exists
a set W ⊂ X such that W ∈ U1 \U2. Therefore, Z := X \W ∈ U2 \U1.
Then V1 := V ∩W ∈ U1, V2 := V ∩Z ∈ U2, V1∪V2 = V , and V1∩V2 = ∅.
So, V2 /∈ U1 and V1 /∈ U2. Define two real-valued functions f1 and f2 on
X by taking f1 to be f on V2 and 0 elsewhere, while f2 is taken to be f
on V1 and 0 elsewhere. Observe that f1, f2 ∈ R. Clearly, f1 + f2 = f .
Since Z(f1) = X \V2 ∈ U1 and, similarly, Z(f2) ∈ U2, we have f1 ∈ PU1

and f2 ∈ PU2 , which proves the result.

Corollary 4.2. If P ∈ Spec (R) \ {M∞}, then {Q ∈ Spec (R) | Q ⊆
P} is linearly ordered by inclusion, and so RP is a domain.

Proof. If P = Ma for some a ∈ X , then P is both a maximal and
a minimal prime ideal of R, and so the first assertion is clear. As
for the second assertion, note that RP is then a reduced ring (since
R is reduced) with a unique prime ideal, that is, a field (and hence
a domain). Thus, we may assume henceforth that P is not of the
form Ma, a ∈ X . By Lemma 4.1, P contains exactly one minimal
prime ideal P0 of R, and P0 is necessarily of the form PU for some
non-uniform ultrafilter U . Therefore, the first assertion follows from
Corollary 3.3. For the second assertion, note that RP is a reduced ring
with a unique minimal prime ideal.

Note that Corollary 4.2 is best-possible. Indeed, RM∞ is not a
domain, in view of Proposition 2.8 and the fact that there is more
than one non-uniform ultrafilter on X .

As noted in Corollary 4.2, if U is a non-uniform ultrafilter on X ,
the prime ideals contained between PU and M∞ are linearly ordered
(by inclusion). We use this fact to describe these prime ideals in
Theorem 4.4. First, we need the following lemma.

Lemma 4.3. Let U be a non-uniform ultrafilter on X, and let
f ∈ M∞ \PU . Then there exists a non-negative function h ∈ M∞ \PU
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such that, for any prime ideal P of R which contains PU , f ∈ P if and
only if h ∈ P .

Proof. Consider U := coz (f). Since f ∈ M∞, f converges to 0 on
U . Moreover, U ∈ U since f /∈ PU . Let U1 := {u ∈ U | f(u) > 0} and
U2 := {u ∈ U | f(u) < 0} = U \ U1. As either U1 or U2 is an element
of U , while f and −f are members of exactly the same prime ideals,
we can assume (possibly by replacing f with −f) that U1 ∈ U . Define
a function g : Y → R via g(i) := f(i) if i ∈ U2 and g(j) = 0 otherwise.
Using the criterion from Section 2, we see that g is continuous, i.e.,
g ∈ R. As U1 ⊆ Z(g) and U1 ∈ U , we have g ∈ PU . Then h := f − g
has the asserted property (since g is in each relevant P ).

Theorem 4.4. Let U be a non-uniform ultrafilter on X, and let P
be any prime ideal contained strictly between PU and M∞. Then

P =
⋃
f∈P

P f
U =

⋂
g∈M∞\P

PU ,g,

where the items f ∈ P and g ∈ M∞ \ P are assumed also to be non-
negative.

Proof. For the first equality, it is enough to consider elements
f ∈ P \ PU . Without loss of generality (i.e., by Lemma 4.3), f is

non-negative. Since f ∈ P f
U for any such f , we see that P is contained

in the union. For the reverse containment, we need only show that if
g ∈ P f

U , then g ∈ P . Without loss of generality, g is non-negative. It
was noted in Remark 3.4 (a) that, modulo PU , f divides some power

of every element of P f
U . Thus, some power of g is in P . Since P is a

prime ideal, it follows that g ∈ P , thus proving the first equality.

Next, we show that P is equal to the stated intersection. Let Q denote
that intersection. Suppose that g ∈ M∞\P and that g is non-negative.
Then, since the prime ideals of R contained between PU and M∞ are
linearly ordered (by Corollary 3.3), we have P ⊂ P g

U . (The inclusion is
strict since g ∈ P g

U \P .) Combining Corollary 3.3 with Proposition 3.5,
we can now infer that P ⊆ PU ,g. Therefore, P ⊆ Q.

If the assertion fails, there exists h ∈ Q\P . Without loss of generality,
h is non-negative. As h ∈ M∞ \ P , the definition of Q gives Q ⊆ PU ,h,
whence h ∈ PU ,h, the desired contradiction.
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Let U be a non-uniform ultrafilter on X . We do not know if there
are any prime ideals between PU and M∞ other than those of the form
PU ,f and P f

U . However, we are able to show in Proposition 4.6 and
Corollary 4.7 that the union of any strictly ascending countable chain
of prime ideals of the form P f

U must be of the form Ph for some h ∈ M∞.
First, we need the following proposition.

Lemma 4.5. Let U be a non-uniform ultrafilter on X. Consider
any sequence {fk}k=1,2,... of non-negative functions contained in M∞.
Then there exists an f ∈ M∞ such that fk ≤ f (mod U) for all k.

Proof. Pick a countable element U of U , and suppose that we have
enumerated the elements of U so that we can write U = {1, 2, 3, . . .}.
Since each fk is continuous and sends ∞ to 0, we can inductively
construct a strictly increasing (hence unbounded) sequence of positive
integers n2 < n3 < n4 < · · · such that n > nk implies f1(n) <
1/k, f2(n) < 1/k, . . . , fk(n) < 1/k. (In other words, each of the first k
functions fi is less than 1/k at all arguments after nk.) Now define a
function f : X → R via

f(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i /∈ U ,

f1(i) for i = 1, 2, . . . , n2,

max{f1(i), f2(i)} for i = n2 + 1, n2 + 1, . . . , n3,

max{f1(i), f2(i), f3(i)} for i = n3 + 1, n3 + 2, . . . , n4,

...

If i > nk, then f(i) < 1/k. (To see this, we can suppose nj + 1 ≤ i ≤
nj+1; note that f(i) = max{ft(i) | 1 ≤ t ≤ j}.) It follows that f is
continuous, and so f ∈ R. As f(∞) = 0, we have f ∈ M∞. Also, for
i ∈ U and for a given k, we have f(i) ≥ fk(i) except for finitely many
i’s. More precisely, if i > nk, then f(i) ≥ fk(i). Thus for all k, fk ≤ f
(mod U).

Recall the definition of the ring T . It is the ring of continuous real-
valued functions onX , a set of cardinality ℵ1 with the discrete topology.
For the moment, we want to consider the ordered field T := T/M and
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its subring R := R/PU , where M = MU is the maximal ideal of T
determined by some free ultrafilter U on X . A natural ordering on T
(modulo U) can be obtained just as it was on R and, in fact, extends
that earlier order. Then the ordering on T is derived from the ordering
on T modulo U . (More precisely, we can well-define an ordering on T as
follows: if f, g ∈ T , then f+M ≤ g+M if and only if f ≤ g (mod U).)
Similarly, the notion of strong inequality (i.e, �) also carries over to T .
If A and B be subsets of T , we say that A < B (respectively, A � B)
if, for each a ∈ A and b ∈ B, a < b (respectively, a � b).

It was shown by Erdös, Gillman, and Henriksen [8, Theorem 3.4] that
T is an η1-set. This means that, for any countable subsets A and B
of T such that A < B, there exists a h ∈ T such that A < h < B.
Moreover, as noted in [8], the construction of h is independent of B.

In particular, if B
′
is another countable subset of T such that A < B

′
,

then for the same h, we have A < h < B
′
. This construction also

works for strong inequalities in T . Specifically, suppose that A and
B are subsets of T , with A = {f1 � f2 � · · · � f i � · · · } and
B = {· · · � gi � · · · g2 � g1} such that A � B. By [8, Theorem 3.4],
choose h ∈ T satisfying A < h < B. Then f i � f i+1 < h < gj+1 � gj ,

and so A � h � B. Now if A and B are subsets of R with A � B
(mod U), then by passing to R ⊂ T , we can find h ∈ T between the
two sets. We can then pull this element back to some h ∈ T with
A � h � B. It is not clear whether h is also in R. However, under
the circumstances that we need, it will be. We are now ready to show
our next result.

Proposition 4.6. Let U be a non-uniform ultrafilter on X. Let A =
{fi}i∈N be a denumerable subset of M∞, where 0 < fi � fi+1 (mod U)
for each i. Then there exists an h ∈ M∞ such that ∪P fi

U = PU ,h.

Proof. We will suppress the ultrafilter U when writing inequalities
or prime ideals. Consider the prime ideal P := ∪P fi ⊆ M∞, and let
f be as in Lemma 4.5. Then fk ≤ f for all k. As fk � fk+1, we
conclude from the construction of f that fk � f for all k. (Indeed,
if there exist n,M > 0 such that fn ≤ Mfk, then (fk+1)

n ≤ Mfk,
a contradiction.) Let A := {fk}k=1,2,... and B := {fk}k=1,2,.... Since
f ∈ M∞, coz (z) is countable and f converges to 0 on coz (f). Thus
modU , fk+1 ≤ f = f1 for all k. Moreover A < B (since modU ,
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fk � f implies that fk ≤ f ≤ fn for all k and n). Then, using [8,
Theorem 3.4] applied to T , we can find h ∈ T such that A � h ≤ B.

Viewing the elements fk, h and f j in T , we see that modulo U (in
the obvious sense), we have 0 < fk ≤ h ≤ f j. Since f ∈ M∞, we can
conclude that the set of inputs where h is nonzero is an element of U ,
and that on this set, h converges to 0. Hence, h ∈ M∞. (Note that
we are abusing notation, as M∞ ⊆ R, but the meaning is clear here,
namely, that h ∈ T and h(∞) = 0.) As fi � h for all i, Corollary 3.6
gives us that P fi ⊂ Ph for all i, whence P ⊆ Ph. If the assertion fails,
choose g ∈ Ph \ P . By Lemma 4.3, g can be assumed non-negative.
Since g /∈ P fk , we conclude that fk � g. (In detail, if there exist
n,K > 0 such that gn ≤ Kfk, note that K is a unit of R, so that
(1/K)gn ≤ fk, whence (1/K)gn ∈ P fk and g ∈ P fk , a contradiction.)
Therefore, A � g, and so A � {gn}n=1,2,.... But, as noted prior to the
statement of the proposition, it follows from the construction of h in
[8, Theorem 3.4] that A � h � {gn}n=1,2,.... This gives the desired
contradiction, for g ∈ Ph implies that h �� |g| = g.

We return to the ring R for the next result.

Corollary 4.7. Let U be a non-uniform ultrafilter on X. Let

P f1
U ⊂ P f2

U ⊂ P f3
U ⊂ · · ·

be a strictly ascending denumerable chain of prime ideals of R. Then
there exists h ∈ M∞ such that ∪P fi

U = Ph.

Proof. By Proposition 2.12 (b), f1 � f2 � · · · , and so an application
of Proposition 4.6 completes the proof.

We close with some observations and questions. In Section 2, we
showed that R is not a ULO ring by showing that R ⊆ T does not
satisfy LO, where T is the ring of real-valued functions on the discrete
space of cardinality ℵ1. Note that T is, in fact, the complete ring of
quotients of R. To see this, observe that T is a direct product of fields
and that the ideal of T consisting of those functions with finite support
is contained in R (for if f is such a function, then one can extend its
domain to Y by defining f(∞) to be 0). Moreover, this is the unique
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ideal of R that is minimal with respect to being dense in R (“dense”
in the sense that its annihilator is zero). In [6, Remark 2.18 (b)], we
suggested that it might be possible to show that a ring A is a ULO-ring
if (and only if) the canonical embedding of A into its complete ring of
quotients satisfies LO. The example given by R ⊆ T represents one
more (small) piece of evidence in that direction.

By Proposition 2.16, R is not of the form A + B. However, the
referee pointed out the following. Consider the more general C + D
construction for rings (as opposed to the specific A + B construction
from [10] that was examined in Section 2). Namely, if S is an arbitrary
ring, C a subring of S and D an ideal of S, then the additive group
C+D is also a subring of S. Now let R and T be as usual. Let C be the
diagonal in T , that is, the subring consisting of constant functions, and
let D ⊂ T again be the ideal of functions which have finite support.
Then C + D is a (von Neumann regular) subring of R. Moreover,
it follows from the Stone-Weierstrass theorem that C + D is in fact
dense in R when R is supplied with the sup norm. Since R = C(Y ) is
complete with the sup norm, R is the norm-completion of C +D.

Finally, note that, if U is a non-uniform ultrafilter on X , we have
described each of the prime ideals of R contained between PU and M∞
as being either a union of prime ideals of the form P f

U or an intersection
of prime ideals of the form PU ,f . However, we do not know whether the

prime ideals of the form P f
U or PU ,f are the only prime ideals between

PU and M∞. In particular, we would ask the following, given a chain
C of functions in M∞, ordered by �: does C have a co-final countable
subchain? A positive answer to this question, when combined with
Theorem 4.4 and Corollary 4.7, would imply that R has no prime ideals
other than those of the form PU , PU ,f , P

f
U and Ma, a ∈ Y .

Acknowledgments. We want to thank the referee for helpful
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