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PRIME FACTOR RINGS OF
SKEW POLYNOMIAL RINGS OVER

A COMMUTATIVE DEDEKIND DOMAIN

Y. WANG, A.K. AMIR AND H. MARUBAYASHI

ABSTRACT. This paper is concerned with prime factor
rings of a skew polynomial ring over a commutative Dedekind
domain. Let P be a non-zero prime ideal of a skew polynomial
ring R = D[x;σ], where D is a commutative Dedekind domain
and σ is an automorphism of D. If P is not a minimal prime
ideal of R, then R/P is a simple Artinian ring. If P is a
minimal prime ideal of R, then there are two different types
of P , namely, either P = p[x;σ] or P = P ′ ∩ R, where p is
a σ-prime ideal of D, P ′ is a prime ideal of K[x;σ] and K is
the quotient field of D. In the first case R/P is a hereditary
prime ring and in the second case, it is shown that R/P is a

hereditary prime ring if and only if M2 � P for any maximal
ideal M of R. We give some examples of minimal prime ideals
such that the factor rings are not hereditary or hereditary or
Dedekind, respectively.

1. Introduction. Let D be a commutative Dedekind domain with
its quotient field K, and let σ be an automorphism of D. We denote
by R = D[x;σ] the skew polynomial ring over D in an indeterminate
x.

The aim of the paper is to study the structure of the prime factor ring
R/P for any prime ideal P of R, which is one of the ways to investigate
the structure of rings. If P is not a minimal prime ideal of R, then the
Krull dimension of R/P is zero ([15]), that is, it is a simple Artinian
ring. So we can restrict to the case P is a minimal prime ideal of R.

There are two types of minimal prime ideals P of R, that is, either
P = p[x;σ] or P = P ′ ∩ R, where p is a non-zero σ-prime ideal of D
and P ′ is a non-zero prime ideal of K[x;σ].
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In the first case R/P is always a hereditary prime ring. In the second
case R/P is a hereditary prime ring if and only if P � M2 for any
maximal idealM of R, which is motivated by [9] and he only considered
in the case where P is principal generated by a monic polynomial and
σ = 1 (note that in this case, P is a minimal prime ideal and see [16]
and [13] for related papers). We give some examples of minimal prime
ideals P such that R/P is not hereditary or hereditary or Dedekind,
respectively, by using Gauss’s integers D = Z⊕Zi, where Z is the ring
of integers.

We refer the readers to [14, 15] for some known terminologies not
defined in this paper.

1. Notes on hereditary prime PI rings. Throughout this
section, let R be a hereditary prime PI ring with the center C, and
let Q be the quotient ring of R, which is a simple Artinian ring. It is
well known that R is a classical C-order in Q and that C is a Dedekind
domain (see [15, (13.9.16)]).

In this section, we will shortly discuss some relations between the
maximal ideals of R and C, which are used in latter sections. For any
R-ideal A, we use the following notation:

(R : A)l = {q ∈ Q | qA ⊆ R}, (R : A)r = {q ∈ Q | Aq ⊆ R},
(A : A)l = {q ∈ Q | qA ⊆ A} = Ol(A), the left order of A,

(A : A)r = {q ∈ Q | Aq ⊆ A} = Or(A), the right order ofA,

and

Av =
(
R : (R : A)l

)
r
, vA =

(
R : (R : A)r

)
l
,

which are both R-ideals containing A. Note that Av = A = vA,
because R is a hereditary prime ring. A finite set of distinct idempotent
maximal ideals M1, . . . ,Mm of R such that Or(M1) = Ol(M2), . . . ,
Or(Mm) = Ol(M1) is called a cycle. We will also consider an invertible
maximal ideal to be a trivial case of a cycle.

It is well known that an ideal P is a maximal invertible ideal if
and only if P = M1 ∩ · · · ∩ Mm, where M1, . . . ,Mm is a cycle (see
[5, (2.5) and (2.6)]). Let P be a maximal invertible ideal. Then
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C(P ) = {c ∈ R | c is regular modP} is a regular Ore set, and we
denote by RP the localization of R at P (see [11, Proposition 2.7]).
We denote by Spec (R) and Max-in (R) the set of all prime ideals and
the set of all maximal invertible ideals, respectively. For any ring S,
J(S) stands for Jacobson radical of S.

Lemma 1.1 (1) Let P ∈ Max-in (R), and let p = P ∩ C. Then
p ∈ Spec (C).

(2) C is a discrete rank one valuation ring if and only if J(R) of R
is the intersection of a cycle.

Proof. (1) Let P = M1 ∩ · · · ∩ Mm ∈ Max-in (R). If m = 1, then
p = P ∩ C ∈ Spec (C). If m ≥ 2, then Mi are all idempotents. Set
p = M1 ∩ C, then M1 ⊇ pR, an invertible ideal. So

(R : M2)l = Ol(M2) = Or(M1) = (R : M1)r ⊆ (R : pR)r = (R : pR)l

imply

M2 = (M2)v = (R : (R : M2)l)r ⊇ (R : (R : pR)l)r = pR.

Thus M2 ∩C = p follows. Continuing this process, we have P ∩C = p.

(2) Suppose that C is a discrete rank one valuation ring with J(C) =
p, the unique maximal ideal. Then J(R) ⊇ pR (see [18, (6.15)]). So
J(R) is invertible by [5, (4.13)]. Let J(R) = P1 ∩ · · · ∩ Pk, where Pi ∈
Max-in (R). It suffices to prove that k = 1. We assume that k ≥ 2.
Then RP1 ⊃ R and Z(RP1) ⊇ Z(R) = C, where Z(RP1) is the center of
RP1 , so that Z(RP1) = C. Since RP1 is a finitely generated C-module
(see [15, (13.9.16)]), there is a c ∈ C(P1) with RP1 = cRP1 ⊆ R, a
contradiction. Hence, k = 1 and so J(R) is the intersection of a cycle.

Suppose that J(R) is the intersection of a cycle. Then p = J(R)∩C ∈
Spec (C) by (1). Let p1 ∈ Spec (C). Then p1R = J(R)l for some l ≥ 1
by [5, (2.1)] and the assumption. It follows that p1 ⊆ J(R) ∩ C = p
and so p1 = p, that is, C is a discrete rank one valuation ring.

The following proposition is just a generalization of a Dedekind C-
order to a hereditary prime PI ring (see, [18, (22.4)]).
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Proposition 1.2. Suppose that R is a hereditary prime PI ring.
Then there is a one-to-one correspondence between Max-in (R) and
Spec (C), which is given by: P → p = P ∩ C, where P ∈ Max-in (R).

Proof. Let P ∈ Max-in (R). Then p = P ∩ C ∈ Spec (C) by
Lemma 1.1. Conversely, let p ∈ Spec (C). Then there is a maximal
ideal M of R containing pR, an invertible ideal. So there is a P ∈
Max-in (R) with P ⊇ pR by [5, (2.4)]. This shows that P ∩ C = p
by Lemma 1.1. To prove the correspondence is one-to-one, let P, P1 ∈
Max-in (R) with P ∩C = p = P1 ∩C. Then Pp, P1p ∈ Max-in (Rp) and
Z(RP ) = Cp, a discrete rank one valuation ring. Thus Pp = J(Rp) =
P1p by Lemma 1.1 and so P = Pp ∩ R = P1p ∩ R = P1. Hence, the
correspondence is one-to-one.

2. Prime factor rings of skew polynomial rings. Throughout
this section, let D be a commutative Dedekind domain with its quotient
field K, and let σ be an automorphism of D. We always assume that
D 
= K to avoid the trivial case. Let R = D[x;σ] be a skew polynomial
ring over D.

The aim of this section is to study the structure of the factor
rings of R by minimal prime ideals. It is well known that R is a
Noetherian maximal order in K(x;σ), the quotient ring of K[x;σ] and
gl.dimR = 2 (see [2, Proposition 3.3] and [15, (7.5.3)]). We denote by
Spec0(R) = {P ∈ Spec(R) | P ∩D = (0)}. It is well known that there
is a one-to-one correspondence between Spec0(R) and Spec(K[x;σ]),
which is given by P → P ′ = PK[x;σ] and P ′ → P ′ ∩ R, where
P ∈ Spec0(R) and P ′ ∈ Spec(K[x;σ]) (see [7, (9.22)]).

We start with the following easy proposition.

Proposition 2.1. (1) {p[x;σ], P | p is a σ-prime ideal of D and
P ∈ Spec0(R) with P 
= (0)} is the set of all minimal prime ideals of
R.

(2) Let P ∈ Spec (R) with P 
= (0). Then P is invertible if and only
if it is a minimal prime ideal of R.

Proof. (1) Let P be a minimal prime ideal of R, and let p = P ∩D.
If p = (0), then P ∈ Spec0(R). If p 
= (0), then there are two
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cases; namely, either x ∈ P or x /∈ P . Suppose that x ∈ P . Then
P = p + xR ⊃ xR, a prime ideal, which is a contradiction. So x /∈ P .
Then p is a σ-prime ideal of D and p[x;σ] is a prime ideal of R. Hence
P = p[x;σ] follows.

Conversely, let P ∈ Spec0(R). Then P is a minimal prime ideal of R,
because P ′ = PK[x;σ] is a maximal ideal as well as a minimal prime
ideal of K[x;σ]. Let P = p[x;σ], where p is a σ-prime ideal. Then P
is invertible, because p is invertible and so P is a v-ideal. Hence P is a
minimal prime ideal of R (see [15, (5.1.9)]).

(2) Let P be a prime and invertible ideal. Then it is a v-ideal and so
it is a minimal prime ideal (see [15,(5.1.9)]).

Conversely, let P be a minimal prime ideal. If P = p[x;σ], where p
is a σ-prime ideal of D, then P is invertible. If P ∈ Spec0(R), with
P 
= (0) and PP = PK[x;σ], then since any ideal of K[x;σ] is a v-ideal
and R is Noetherian, we have

P ′ = P ′
v =

(
K[x;σ] : (K[x;σ] : P ′)l

)
r
=

(
K[x;σ] : K[x;σ](R : P )l

)
r

=
(
R : (R : P )l

)
r
K[x;σ] = PvK[x;σ].

Thus, P = P ′ ∩ R = Pv follows and similarly P = vP . Hence, P is
invertible by [4, page 324].

Proposition 2.2. (1) Let P be a minimal prime ideal of R with
P = p[x;σ], where p is a σ-prime ideal of D. Then R/P is a hereditary
prime ring. In particular, R/P is a Dedekind prime ring if and only if
p ∈ Spec (D).

(2) Suppose that σ is of infinite order. Then P = xR is the only
minimal prime ideal of R in Spec0(R) and R/P is a Dedekind prime
ring.

Proof. (1) The first statement follows from [15, (7.5.3)]. If p ∈
Spec (D), then (R/P ) ∼= (D/p)[x;σ] is a principal ideal ring so that
R/P is a Dedekind prime ring. If p /∈ Spec (D), then there is a maximal
ideal m of D with m ⊃ p and p = m ∩ σ(m) ∩ · · · ∩ σn(m) for some
natural number n ≥ 1. Set M = m+ xR, a maximal ideal of R. Then
M = M2 + P , because m2 + p = m. Thus, M/P is idempotent and
R/P is not Dedekind.
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(2) Let P = xR. Then P is the only minimal prime ideal of R
in Spec0(R) by [10, Theorem 2] and R/P is a Dedekind prime ring
because (R/P ) ∼= D.

Because of Propositions 2.1 and 2.2, we may assume that σ is of finite
order to study the hereditariness of R/P . So in the remainder of this
section, we may assume that σ is of finite order, say, n.

It is well known that K is separable over Kσ = {k ∈ K | σ(k) = k}
and [K : Kσ] = n (see [1, Theorems 14 and 15]). Furthermore,
Dσ = {d ∈ D | σ(d) = d} is also Dedekind domain by [6, (36.1)
and (37.2)] and D is a finitely generated Dσ-module by [20, Corollary
1, page 265]. Since the center Z(R) of R is Dσ[x

n], it follows that
R is a finitely generated C-module, where C = Dσ[x

n]. Thus R
is a classical C-order in K(x;σ) and so R is a prime PI ring with
K(R) = dim (R) = 2 (see [15, (6.4.8) and (6.5.4.)]), where K(R) is the
Krull dimension of R and dim (R) is the classical Krull dimension of
R.

The following lemma is due to [19, (1.6.27)].

Lemma 2.3. Let σ be an automorphism of K with order n. Then:

(1) there is a one-to-one correspondence between Spec (K[x;σ]) and
Spec (Kσ[x

n]), which is given by P ′ → p′ = P ′ ∩ Kσ[x
n], where

P ′ ∈ Spec (K[x;σ]).

(2) If P ′ = xK[x;σ], then p′ = xnKσ[x
n] and p′K[x;σ] = P ′n. If

P ′ 
= xK[x;σ], then p′ = f(xn)Kσ[x
n] for some irreducible polynomial

f(xn) in Kσ[x
n] different from xn and p′K[x;σ] = P ′.

Lemma 2.4. Let σ be an automorphism of D with order n. Then:

(1) there is a one-to-one correspondence between Spec0(R) and
Spec0(C), which is given by P → p = P ∩ C, where P ∈ Spec0(R).

(2) If P = xR, then Pn = pR, where p = P ∩ C. If P 
= xR, then
P = pR, where p = P ∩ C.

Proof. (1) Let P ∈ Spec0(R). Then it is clear that p = P ∩
C ∈ Spec0(C). Conversely, let p ∈ Spec0(C). If p 
= xnC, then
P = pK[x;σ] ∩ R ∈ Spec0(R) by Lemma 2.3 and [7, (9.22)], and
so p ⊆ p1 = P ∩ C ∈ Spec0(C). Hence p = p1 by Proposition 2.1.
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If p = xnC, then P = xR ∈ Spec0(R) with p = P ∩ C. Hence the
correspondence is onto.

To prove the correspondence is one to one, let P and P1 ∈ Spec0(R)
with P ∩ C = p = P1 ∩ C. We may assume that P 
= xR and
P1 
= xR. Then PK[x;σ] and P1K[x;σ] both contain pK[x;σ] ∈
Spec (K[x;σ]) and so PK[x;σ] = pK[x;σ] = P1K[x;σ] follows. Hence,
P = PK[x;σ] ∩R = P1.

(2) P ∈ Spec0(R) with p = P ∩ C. If P = xR, then Pn = pR where
p = xnC. Suppose that P 
= xR. Let P1 be an invertible prime ideal
containing pR. By Proposition 2.1, P1 is a minimal prime ideal of R. So
either P1 = p1[x;σ], where p1 is a σ-prime ideal of D or P1 ∈ Spec0(R)
by Proposition 2.1. If P1 = p1[x;σ], then P1 ∩ C = (p1)σ[x

n], a
minimal prime ideal of C[xn], where (p1)σ = p1 ∩ Dσ, containing p
so that p = (p1)σ[x

n], a contradiction, because P ∈ Spec0(R). Hence,
P1 ∈ Spec0(R). It follows that p1 = P1 ∩ C ⊇ p and so p1 = p. Hence,
P = P1 by (1). Since the invertible ideal pR is a finite product of
invertible prime ideals (see [4, Theorem 1.6 and Proposition 2.3]), we
have pR = P e for some e ≥ 1. Then pK[x;σ] = P eK[x;σ] = P ′e

implies e = 1. Hence, P = pR follows.

Lemma 2.5. Let P ∈ Spec0(R) with P 
= xR. Then Pn is principal
generated by a central polynomial in Cn for any n ∈ Spec (Dσ).

Proof. Let p = P ∩ C. Then pn is principal by [12, (3.1)], because
Cn = (Dσ)n[x

n] and (Dσ)n is a discrete rank one valuation ring. Hence,
Pn is principal generated by a central element in Cn by Lemma 2.4.

Lemma 2.6. Let P ∈ Spec0(R) with P 
= xR. Then the following
are equivalent:

(1) P � M2 for any maximal ideal M of R.

(2) Pn � (Mn)
2 for any n ∈ Spec (Dσ) and for any maximal ideal M

of R with M ∩ (Dσ \ n) = ∅.

Proof. (1) ⇒ (2). Suppose that there is an n ∈ Spec (Dσ) and a
maximal ideal M of R with M ∩ (Dσ \ n) = ∅ satisfying Pn ⊆ (Mn)

2.
Then there is a c ∈ Dσ \ n with cP ⊆ M2 ⊆ M , which implies P ⊆ M
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and cR + M = R. Hence, P = (cR + M)P ⊆ M2, a contradiction.
Hence, for any n ∈ Spec (Dσ) and any maximal ideal M of R with
M ∩ (Dσ \ n) = ∅, Pn � (Mn)

2.

(2) ⇒ (1). Suppose that there is a maximal ideal M of R with P ⊆
M2. Then M ∩D 
= (0) by Proposition 2.1 and so n = M ∩Dσ 
= (0),
which is a prime ideal of Dσ with M∩(Dσ\n) = ∅. By the assumption,
Pn � (M2)n = M2

n , a contradiction. Hence, P � M2 for any maximal
ideal M of R.

Lemma 2.7. Let P ∈ Spec0(R) with P 
= xR and p = P ∩C. Then
Z(R/P ) = (C/p).

Proof. Since Z(R/P ) = Z(K[x;σ]/P ′) ∩ (R/P ), it suffices to prove
that Z(K[x;σ]/P ′) = (Kσ[x

n]/p′), where p′ = Kσ[x
n] ∩ P ′. We set

K[x;σ] = K[x;σ]/P ′. It is clear that Z(K[x;σ]) ⊇ (Kσ[x
n]/p′). To

prove the converse inclusion, let f(xn) ∈ Kσ[x
n] be a monic polynomial

with P ′ = f(xn)K[x;σ] and deg f(xn) = nl. Write

f(xn) = xnl + al−1x
n(l−1) + · · ·+ a1x

n + a0, where ai ∈ Kσ.

Suppose that a0 = 0. Then f(xn) = h(xn)xn, where h(xn) =
xn(l−1) + · · · + a1, shows that P ′ ⊆ xK[x;σ] and so P ′ = xK[x;σ],
a contradiction. So we may assume that a0 
= 0. Note that

K[x;σ] ∼= K ⊕Kx⊕ · · · ⊕Kxnl−1,

as a ring and that

xnl = −(
al−1x

n(l−1) + · · ·+ a1x
n + a0

)
.

Let g(x) = bnl−1x
nl−1 + · · · + b1x + b0 be any element in Z(K[x;σ]),

where bi ∈ K. Then, for any k ∈ K, kg(x) = g(x)k implies
biσ

i(k) = bik for any i, 0 ≤ i ≤ nl − 1. Suppose that there is an i
with bi 
= 0 and i = nj + s (1 ≤ s < n). Then biσ

s(k) = bik and so
σs(k) = k for all k ∈ K, a contradiction. Thus, if bi 
= 0, then i = nj,
0 ≤ j ≤ l − 1. Next,

g(x)x = b0x+ b1x
2 + · · ·+ bnl−2x

nl−1

+ bnl−1

(− al−1x
n(l−1) − · · · − a1x

n − a0
)
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and

xg(x) = σ(b0)x+ σ(b1)x
2 + · · ·+ σ(bnl−2)x

nl−1

+ σ(bnl−1)
(− al−1x

n(l−1) − · · · − a1x
n − a0

)
.

Since xg(x) = g(x)x, comparing the coefficients, we have σ(bnl−1) =
bnl−1, that is, bnl−1 ∈ Kσ and so σ(bi) = bi for all 0 ≤ i ≤ nl − 2.
Thus, we have

g(x) = b0 + bnx
n + · · ·+ bn(l−1)x

n(l−1) and bi ∈ Kσ.

Hence, g(x) ∈ (Kσ[x
n]/p′).

Let P ∈ Spec0(R) with P 
= xR. Since Z(R/P ) = (C/p) ⊇ Dσ

naturally, it follows from [18, (3.24)] that R/P is a hereditary prime
ring if and only if (R/P )n(∼= Rn/Pn) is a hereditary prime ring for any
n ∈ Spec (Dσ).

Let m be any maximal ideal of C with m ⊃ p. By lying over
and going up theorems (see [15, (10.2.9) and (10.2.10)]), there is
a maximal ideal M of R with M ∩ C = m and M ⊃ P . Set
J = ∩{M | M is a maximal ideal of R with m = M ∩ C}. Since
dim (R/J) = K(R/J) < K(R) = 2, M/J is a minimal prime ideal of
R/J and J is a finite intersection of thoseM ’s, that is, J = M1∩· · ·∩Mk

(see [15, (3.2.2)]). Thus, we have the following lemma.

Lemma 2.8. With the notation above, the following hold:

(1) P � M2
i if and only if Pm � M2

im.

(2) Mi ⊃ M2
i for any i (1 ≤ i ≤ k).

(3) gl.dimRm = 2 and J(Rm) = M1m ∩ · · · ∩Mkm.

Proof. (1) This is proved in the same way as in [13, Lemma 2].

(2) Set M = Mi and m0 = M ∩D 
= (0), because M ⊃ P . If x ∈ M ,
then M = m0 + xR and m0 is a maximal ideal of D with m0 ⊃ m2

0.
Thus, M2 ⊆ m2

0+xR ⊂ m0+xR = M . If x /∈ M , then m0 is a σ-prime
ideal and D/m0 is a semi-simple Artinian ring. Since M ⊇ m0[x;σ], we
have

M̃ =
(
M/m0[x;σ]

) ⊂ R̃ =
(
R/m0[x;σ]

) ∼= (D/m0)[x; σ̃],
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which is hereditary by [15, (7.5.3)]. Since x̃ /∈ M̃ , M̃ is principal by [3,

Lemma 2.6]. So (M̃)2 ⊂ M̃ , and thus M2 ⊂ M follows.

(3) It follows that 2 = gl.dimR ≥ gl.dimRm. If gl.dimRm ≤ 1, then
Rm is hereditary, which is implies Mm = Pm. Hence, M = Mm ∩ R =
Pm ∩ R = P , a contradiction. Hence, gl.dimRm = 2. Since Rm

is a PI ring with the maximal ideals M1m, . . . ,Mkm, it is clear that
J(Rm) = M1m ∩ · · · ∩Mkm.

Proposition 2.9. Let σ be an automorphism of D with order n, and
let P ∈ Spec0(R) with P 
= xR. Then, R = R/P is a hereditary prime
ring if and only if P � M2 for any maximal ideal M of R.

Proof. First note that Z(R) = C = (C/p) by Lemma 2.7, where
p = P ∩ C. Suppose that R is a hereditary prime ring. Then C is a
Dedekind domain (see [15, (13.9.16)]. Let M be a maximal ideal of R.
If P � M , then P � M2. So we may assume that P ⊆ M . In order
to prove P � M2, we may assume that P is a principal generated
by a central element by Lemmas 2.5 and 2.6, and let m = M ∩ C,
a maximal ideal of C properly containing p. Then there are a finite
number of maximal ideals M1, . . . ,Mk of R lying over m such that
J(Rm) = (M1)m ∩· · ·∩ (Mk)m and Cm is a discrete rank one valuation
ring, where M = M1, Mi = Mi/P and m = (m/p). If k = 1, then
Rm is a local Dedekind prime ring so that it is a principal ideal ring.
So Mm = aRm for some a ∈ Mm and Mm = aRm + Pm. Suppose
that P ⊆ M2. Then Mm = aRm + Pm ⊆ aRm + MmJ(Rm) ⊆ Mm.
Hence Mm = aRm by Nakayama’s lemma, which is invertible. It
follows from [8, Proposition 1.3] that Rm is a principal ideal ring. So
gl.dimRm ≤ 1, which contradicts Lemma 2.8. Hence P � M2. If k ≥ 2,
then M1m, . . . ,Mkm is a cycle by Lemma 1.1, because Cm is a discrete

rank one valuation ring. Suppose that P ⊆ M2. Then Mm = M
2

m

implies
Mm = (Mm)

2 + Pm = (Mm)
2 = M2

m.

Let mi be another maximal ideal of C. Then Mmi = Rmi and so
Rmi = (Mmi)

2 = (M2)mi . Hence, M = ∩Mmj = ∩(M2)mj = M2,
which contradicts Lemma 2.8, where mj runs over all maximal ideals
of C. Hence, P � M2.

Conversely, suppose that P � M2 for any maximal ideal M of R. Let
m be a maximal ideal of C with m ⊃ p and n = m∩Dσ, a maximal ideal
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of Dσ. Since (Rn)mn = Rm and (Pn)mn = Pm, we may suppose that
P is principal by Lemmas 2.5 and 2.6. It follows from Lemma 2.8 and
[13, Lemma 3] that Rm = Rm/Pm is a hereditary prime ring. Hence R
is a hereditary prime ring by [18, (3.24)].

Summarizing Propositions 2.1, 2.2, and 2.9, we have the following
theorem:

Theorem 2.10. Let R = D[x;σ] be a skew polynomial ring over a
commutative Dedekind domain, where σ is an automorphism of D, and
let P be a prime ideal of R. Then:

(1) P is a minimal prime ideal of R if and only if either P = p[x;σ],
where p is either a non-zero σ-prime ideal of D or P ∈ Spec0(R) with
P 
= (0).

(2) If P = p[x;σ], where p is a non-zero σ-prime ideal of D, then R/P
is a hereditary prime ring. In particular, R/P is a Dedekind prime ring
if and only if p ∈ Spec (D).

(3) If P ∈ Spec0(R) with P = xR, then R/P is a Dedekind prime
ring. In particular, if the order of σ is infinite, then P = xR is the
only minimal prime ideal belonging to Spec0(R).

(4) If P ∈ Spec0(R) with P 
= xR and P 
= (0), then R/P is a
hereditary prime ring if and only if P � M2 for any maximal ideal M
of R.

3. Examples. Let D = Z⊕Zi be the Gauss integers, where i2 = −1,
and let σ be the automorphism of D with σ(a + bi) = a − bi, where
a, b ∈ Z, the ring of integers.

In this section, we will give some examples of minimal prime ideals of
a skew polynomial ring over D, in order to display some of the various
phenomena in Section 2.

Let p be a prime number. Then the following properties are well
known in the elementary number theory:

(1) If p = 2, then 2D = (1 + i)2D and (1 + i)D is a prime ideal.

(2) If p = 4n+ 1, then pD = πσ(π)D for some prime element π with
πD + σ(π)D = D.

(3) If p = 4n+ 3, then pD is a prime ideal of R.
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We let R = D[x;σ] be the skew polynomial ring, P = (x2 + p)R ∈
Spec0(R) and R = R/P .

Lemma 3.1. If p = 2, then R is not a hereditary prime ring.

Proof. Let M = (1 + i)D + xR be a maximal ideal of R. Then
M2 = 2D ⊕ (1 + i)Dx ⊕ x2R and so M2 � x2 + 2. Hence R is not a
hereditary prime ring by Theorem 2.10.

In what follows, we suppose that p 
= 2 unless otherwise stated. Let
M be maximal ideal containing x2 + p. First we will study in the case
where M � x. Then M = πD+xR for some prime element π of D with
either pD = πσ(π)D and πD + σ(π)D = D if p = 4n+ 1 or pD = πD
if p = 4n+ 3.

Lemma 3.2. Let M = πD + xR be a maximal ideal of R with
M ⊃ P . Then:

(1) If p = 4n+ 1, then M2 
� x2 + p and M = M2 + P , that is, M is
idempotent.

(2) If p = 4n+ 3, then M2 
� x2 + p and M ⊃ M2 + P , that is, M is
not idempotent.

Proof. (1) It follows that M2 = π2D+xR, because D = πD+σ(π)D.
Suppose that x2 + p ∈ M2. Then p ∈ π2D and so σ(π)D = πD
follows, a contradiction. Hence M2 
� x2 + p. Since πD = M ∩ D ⊇
(M2 + P ) ∩D ⊇ M2 ∩D = π2D, we have either (M2 + P ) ∩D = πD
or (M2 + P ) ∩ D = π2D. If (M2 + P ) ∩ D = π2D, then M2 + P �
π2 + x2 − (x2 + p) = π2 − p, which implies p ∈ π2D, a contradiction as
above. So (M2 + P ) ∩ D = πD, and thus M2 + P ⊇ πD + xR = M .
Hence, M = M2 + P follows.

(2) It is easy to see that M2 
� x2 + p since M2 = p2D+ pxR+ x2R.
Suppose that M = M2 + P . Then x ∈ M2 + P and write x =
p2d + pxf(x) + x2g(x) + (x2 + p)h(x), where d ∈ D, f(x) =

∑
fix

i,
g(x) =

∑
gix

i and h(x) =
∑

hix
i, where fi, gi, hi ∈ D. Then

1 = pσ(f0) + ph1, a contradiction. Hence, M ⊃ M2 + P .

Next, we will study a maximal ideal M with M 
� x.
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Lemma 3.3. Let M be a maximal ideal of R with M � x2 + p and
M 
� x. Then:

(1) There is a prime number q (
= p) and a monic polynomial
f(x) ∈ M with M = f(x)R + qR.

(2) If deg f(x) ≥ 2, then M = P + qR, M2 
� x2 + p and M is not
idempotent.

(3) If deg f(x) = 1, then q = 2 and either M = (x + 1)R + 2R or
M = (x+ i)R + 2R.

Proof. (1) Since M ∩D is a non-zero σ-prime ideal, there is a prime

number q with M ∩ D = qD. Set R̃ = R/qD[x;σ] = D̃[x; σ̃], where

D̃ = D/qD = (Z/qZ) ⊕ (Z/qZ)i, a semi-simple Artinian ring. Since

M̃ = M/qD[x;σ] 
� x̃, it follows from [3, Lemma 2.6] that M̃ = f̃(x)R̃

for some monic polynomial f̃(x), where f(x) ∈ M . SoM = f(x)R+qR,
and we may suppose that f(x) is monic. It is clear that q 
= p, because
x /∈ M and x2 + p ∈ M .

(2) If deg f(x) ≥ 2, then x̃2 + p̃ = f̃(x)d̃ for some d ∈ D, and so

d̃ = 1̃. Hence, M̃ = (x̃2+ p̃)R̃, and thus M = (x2+p)R+qR = P +qR.

Suppose that x2 + p ∈ M2. Then M̃ = M̃2, a contradiction, because
M̃ is principal. Hence, x2 + p /∈ M2. Since M2 + P = q2R + P , it

follows that M = qR ⊃ M
2
= q2R and so M is not idempotent.

(3) Suppose that deg f(x) = 1. Then f̃(x) = x̃+ α̃ for some nonzero

α̃ ∈ D̃. Since M̃ = (x̃+ α̃)R̃ is an ideal, we have ĩ(x̃+ α̃) = (x̃+ α̃)β̃ for

some β = a+ bi ∈ D with β̃ 
= 0̃, and so ĩ = σ̃(β̃) and ĩα̃ = α̃β̃. Thus,

ã = 0̃ and 2b̃ = 0̃. Hence q = 2 follows. Then note that D̃[x; σ̃] = D̃[x],

the polynomial ring over D̃.

Since D̃ = {0̃, 1̃, ĩ, ĩ+ 1}, f(x) is one of {x + 1, x + i, x + i + 1}.
Let M = (x + i + 1)R + 2R. Then M̃ � ˜(x+ i+ 1) ˜(x− i− 1) = x̃2,
and so M � x. Hence, we do not need to consider the maximal ideal
(x + i + 1)R + 2R. If M = (x + 1)R + 2R, then it is easy to see

that M 
� x, because M̃ = (x + 1̃)R̃. Let p = 2l + 1 (note p 
= 2).
Then M � (x + 1)2 + 2(l − x) = x2 + p. Similarly, we can prove that
(x+ i)R+ 2R 
� x and (x + i)R+ 2R � x2 + p.

From the proof of Lemma 3.3, we have:



2068 Y. WANG, A.K. AMIR AND H. MARUBAYASHI

Remark. M = (x+1)R+2R and N = (x+i)R+2R are both maximal
ideals of R containing x2 + p.

Lemma 3.4. If p = 4n+ 3, then R is not a hereditary prime ring.

Proof. Let M = (x + 1)R + 2R be a maximal ideal of R. Then
M2 � (x + 1)2 − 2(x + 1) + 4(n + 1) = x2 + p. Hence, R is not a
hereditary prime ring by Theorem 2.10.

Lemma 3.5. If p = 4n + 1, then R is a hereditary prime ring, but
not a Dedekind prime ring.

Proof. Let M = (x+1)R+2R and N = (x+i)R+2R be the maximal
ideals of R. By Lemmas 3.2, 3.3 and Theorem 2.10, it suffices to prove
that M2 
� x2 + p and N2 
� x2 + p.

First we will prove that M2 
� x2 + p. Suppose, on the contrary, that
M2 � x2+p. Then, since M2 = (x+1)2R+2(x+1)R+4R, considering
R/4R, and using the same notation in R, we may suppose that

x2 + 1 = (x2 + 2x+ 1)f(x) + 2(x+ 1)g(x)

for some f(x) = fnx
n+ · · ·+f1x+f0 and g(x) = gn+1x

n+1+ · · ·+g1x+
g0, where fi, gj ∈ D. Comparing the coefficients of xj (0 ≤ j ≤ n+ 2),
we have

1 = f0 + 2g0,

0 = 2σ(f0) + f1 + 2σ(g0) + 2g1,

1 = f0 + 2σ(f1) + f2 + 2σ(g1) + 2g2,

0 = fj−2 + 2σ(fj−1) + fj + 2σ(gj−1) + 2gj (2 ≤ j ≤ n),

0 = fn−1 + 2σ(fn) + 2σ(gn) + 2gn+1,

0 = fn + 2σ(gn+1).

Here, if deg f(x) = 0, then f1 = f2 = g2 = 0, and if deg f(x) = 1, then
f2 = 0. Adding the coefficients of x2j and x2j+1, respectively, we have
the following equations:
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Case 1. n is an even number, say, n = 2l.

2 = 2

( l∑
j=0

f2j +

l∑
j=1

σ(f2j−1)

)
(1)

+ 2

( l∑
j=0

g2j +

l+1∑
j=1

σ(g2j−1)

)

and

0 = 2

( l∑
j=0

σ(f2j) +

l∑
j=1

f2j−1

)
(2)

+ 2

( l∑
j=0

σ(g2j) +

l+1∑
j=1

g2j−1

)
.

Set α =
∑l

j=0 f2j , β =
∑l

j=1 f2j−1, γ =
∑l

j=0 g2j and δ =
∑l+1

j=1 g2j−1.
Then, adding (1) to (2), we have 2 = 2(α+σ(α)+β+σ(β)+γ+σ(γ)+
δ + σ(δ)) = 4c for some c ∈ Z, a contradiction. Hence, M2 
� x2 + p.

Case 2. n = 2l+ 1.

2 = 2

( l∑
j=0

f2j +
l+1∑
j=1

σ(f2j−1)

)
(3)

+ 2

( l+1∑
j=0

g2j +

l+1∑
j=1

σ(g2j−1)

)

and

0 = 2

( l∑
j=0

σ(f2j) +

l+1∑
j=1

f2j−1

)
(4)

+ 2

( l+1∑
j=0

σ(g2j) +

l+1∑
j=1

g2j−1

)
.

Adding (3) to (4), we have 2 = 4d for some d ∈ Z, a contradiction.
Hence, M2 
� x2 + p.
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Next, suppose thatN2 � x2+p. SinceN2 = (x2−1)R+2(x+i)R+4R,
as before, we may suppose that

x2 + 1 = (x2 − 1)h(x) + 2(x+ i)k(x)

for some h(x) = hnx
n+· · ·+h1x+h0 and k(x) = kn+1x

n+1+· · ·+k1x+
k0, where hi, kj ∈ D. Comparing the coefficients of xj (0 ≤ j ≤ n+2),
we have

1 = −h0 + 2k0i,

0 = −h1 + 2σ(k0) + 2k1i,

1 = (h0 − h2) + 2σ(k1) + 2k2i,

0 = hj−2 − hj + 2σ(kj−1) + 2kji (3 ≤ j ≤ n),

0 = hn−1 + 2σ(kn) + 2kn+1i,

0 = hn + 2σ(kn+1).

Here, if n = 0, then h1 = h2 = k2 = 0 and, if n = 1, then
h2 = h3 = k3 = 0. Adding the coefficients of x2j and x2j+1,
respectively, we have the following equations:

Case 1. n = 2l.

2 = 2i

( l∑
j=0

k2j

)
+ 2

( l∑
j=0

σ(k2j+1)

)
(5)

0 = 2

( l∑
j=0

σ(k2j)

)
+ 2i

( l∑
j=0

k2j+1

)
.(6)

Operating σ to (6) and multiplying it by i,

(7) 0 = 2i

( l∑
j=0

k2j

)
+ 2

( l∑
j=0

σ(k2j+1)

)

Adding (5) to (7), we have 2 = 4i(
∑l

j=0 k2j) + 4σ(
∑l

j=0 k2j+1), a
contradiction.

Case 2. n = 2l+ 1.

2 = 2i

( l+1∑
j=0

k2j

)
+ 2

( l∑
j=0

σ(k2j+1)

)
(8)

0 = 2

( l+1∑
j=0

σ(k2j)

)
+ 2i

( l∑
j=0

k2j+1

)
(9)
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Thus, by the same method as in the case n = 2l, 2 = 4i(
∑l+1

j=0 k2j) +

4σ(
∑l

j=0 k2j+1), a contradiction. Hence N2 
� x2 + p, which completes
the proof.

Lemma 3.6. Let S = {2i | i = 0, 1, 2, . . .} be the central multiplica-
tive set in R, and let M be a maximal ideal of R with M ∩ S = ∅ and
M ⊃ P . Then:

(1) M2 ⊇ P if and only if M2
S ⊇ PS .

(2) M2 + P = M if and only if (M2 + P )S = MS.

Proof. (1) If M2 ⊇ P , then it is clear that (M2)S ⊇ PS . Conversely,
suppose M2

S ⊇ PS . Then there is an s ∈ S with sP ⊆ M2. Since
sR+M = R, we have P = (sR+M)P ⊆ M2.

(2) This is proved in the same way as in (1).

Summarizing Lemmas 3.1 3.6, we have:

Proposition 3.7. Let p be a prime number and P = (x2 + p)R.
Then:

(1) If p = 2, then R is not a hereditary prime ring.

(2) If p = 4n + 3, then R is not a hereditary prime ring and
RS = RS/PS is a Dedekind prime ring, where S = {2i | i = 0, 1, 2, . . .}.
(3) If p = 4n+1, then R is a hereditary prime ring but not a Dedekind

prime ring.

Proof. (1) This follows from Lemma 3.1.

(2) By Lemma 3.4, R is not a hereditary prime ring. Let M be a
maximal ideal of R with M ⊃ P and M ∩ S = ∅. Then, by Lemmas
3.2, 3.3 and 3.6, (M2)S � PS andMS ⊃ M2

S . Hence, RS is a Dedekind
prime ring by [15, (5.6.3)].

(3) R is a hereditary prime ring but not Dedekind by Lemma 3.5.

We will end the paper with two remarks.

(1) Let P = p[x;σ] be a minimal prime ideal of R, where p is a
non-zero σ-prime ideal of D. Then there is a prime number p with
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p = pD. If p = 4n+ 1, then R = R/P is a hereditary prime ring but
not Dedekind. If p = 4n+ 3, then R = R/P is a Dedekind prime ring.

(2) Let P ′ = (x2 + 1/2)K[x;σ] ∈ Spec0(K[x;σ]), where K = Q⊕Qi
and Q is the field of rational numbers. Then P = P ′∩R = (2x2+1)R ∈
Spec0(R) and 2x2 + 1 is not a monic polynomial (as was mentioned in
the introduction, Hillman only considered monic polynomials).
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