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BIFURCATION AND CHAOS IN A PULSED PLANKTON
MODEL WITH INSTANTANEOUS NUTRIENT RECYCLING

SANLING YUAN, YU ZHAO, ANFENG XIAO AND TONGHUA ZHANG

ABSTRACT. This paper deals with a pulsed plankton-
nutrient interaction model consisting of phytoplankton, her-
bivorous zooplankton and dissolved limiting nutrient with
general nutrient uptake functions and instantaneous nutrient
recycling. We investigate the subsystem with nutrient and
phytoplankton and study the stability of the periodic solu-
tions, which are the boundary periodic solutions of the system.
Stability analysis of the boundary periodic solution yields the
invasion threshold of zooplankton. By use of standard tech-
niques of bifurcation theory, we prove that, above this thresh-
old, there are periodic oscillations in substrate: phytoplank-
ton and zooplankton. Simple cycles may give way to chaos
in a cascade of period-doubling bifurcations. Furthermore,
by comparing bifurcation diagrams with different bifurcation
parameters, we can see that the impulsive system shows two
kinds of bifurcations, which are period-doubling and period-
halving.

1. Introduction. Plankton blooms are a widespread phenomenon
present in rivers, lakes and oceans all over the world. When large
numbers of plankton are concentrated in one area, the color of the water
surface changes. For example, in May 2007, a blue-green algae bloomed
in Taihu Lake. Analysis of tremendous variations in an abundance of
many planktonic communities is very important in aquatic ecosystems.
Numerous plankton models have been constructed and studied by
researchers in this area [9, 11, 15].

The chemostat is an interesting model frequently used for simulating
a simple lake, with the input of limiting nutrients such as silica and
phosphate from streams draining the surrounding watershed. See [3,
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8, 12, 19, 20, 23] for a detailed description of a chemostat and for
various mathematical methods for analyzing chemostat models. As the
seasons change, stream drainage patterns change causing variations in
the supply of nutrient and washout of lake.

In aquatic ecosystems, the term plankton refers to the freely floating
and weakly swimming organisms. There are two types of plankton. The
plant species, commonly known as phytoplankton, are unicellular and
microscopic in size. The animal species, namely zooplankton, live on
these phytoplankton [3]. The changes of population of plankton have
been attributed to several factors, such as seasonal factors, variation of
dissolved limiting nutrients or a combination of these. One important
observation attracting our attention is that of nutrient recycling by the
production of bacterial decomposition of the dead biomass, and thus
influence of seasonal succession. The effect of nutrient recycling on
aquatic ecosystem has been extensively studied by [4, 13, 16 18, 20,
27]. The mathematical analysis of plankton models goes back to Ruan
[17, 18] who considered persistence and coexistence in plankton models
with instantaneous nutrient recycling. Beretta et al. [3] considered an
open system with a single species feeding on a limiting nutrient which is
partially recycled after the death of the organisms. Numerous plankton
models with nutrient recycling have been proposed [4, 16, 22].

To simulate day/night, seasonal cycles, or other variations in open
systems, models described by impulsive differential equations have been
studied by many authors, see, for example, Funasaki and Kor [7], Xiang
and Song [26], Wang et al. [24], Smith and Wolkowicz [21], Fan and
Wolkowicz [6], Wang et al. [25] and the references therein for recent
studies on this subject. Recently, impulsive differential equations have
been introduced in almost every domain of applied sciences. Numerous
examples are given in Bainov’s and his collaborators’ books [1, 2]. In
this paper, we focus on a pulsed chemostat type plankton model with
instantaneous nutrient recycling. We suppose that zooplankton does
not ingest nutrient directly, and all dead zooplankton and phytoplank-
ton are recycled back into nutrient (see Figure 1). This model might be
more suitable in chemostat or lakes than in oceanic regions. Assuming
that the specific growth rates of the organisms take the general mono-
tone form, we want to explore whether some new dynamical behaviors
could occur in impulsive perturbations and under what conditions phy-
toplankton and zooplankton can survive in the chemostat.
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FIGURE 1. The Z-P-N model with pulsed input and washout. Arrows indicate

nutrient flow pathways between phytoplankton (P), zooplankton (Z) and nutrient

(N).

The organization of this paper is as follows. In the next section,
we present the model under periodic pulsed chemostat conditions. In
Section 3, we investigate existence and stability of periodic solutions
of the impulsive subsystem with nutrient and phytoplankton. In
Section 4, we study local stability of the boundary periodic solution of
the system and obtain the threshold of the invasion of the zooplankton.
Using standard techniques of bifurcation theory, we prove that above
this threshold there are periodic oscillations in nutrient and plankton.
In Section 5, numerical simulations are carried out to illustrate our
results and prognosticate the complexity of the system. Finally, a brief
discussion is presented in Section 6.

2. The model. Let N(t) be the dissolved limiting nutrient at time t,
P (t) the phytoplankton at time t and Z(t) the herbivorous zooplankton
at time t. The plankton model with instantaneous nutrient recycling
and pulsed input and washout can be described by the following
impulsive differential equations:
(2.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN/dt = −aPU(N) + (1− δ)cZω(P ) + γ1P + η1Z,
dP/dt = aPU(N)− cZω(P )− γP,

dZ/dt = δcω(P )Z − ηZ,

⎫⎬
⎭ t �= nτ,

ΔN(t) = D(N0 −N(t))
ΔP (t) = −DP (t),
ΔZ(t) = −DZ(t),

⎫⎬
⎭ t = nτ,

N(0+) = N0 > 0, P (0+) = P0 > 0, Z(0+) = Z0 > 0,
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where all parameters are positive and are interpreted as follows: a
is the maximal nutrient uptake rate of the phytoplankton, c is the
maximal zooplankton ingestion rate, N0 is the input concentration
of the nutrient, D is the rate of input and washout flow, γ is the
phytoplankton mortality rate, η is the zooplankton death rate, γ1 is
the nutrient recycle rate after the death of the phytoplankton, γ1 ≤ γ,
η1 is the nutrient recycle rate after the death of the zooplankton, η1 ≤ η;
a mathematical simplification arises if we assume that γ = γ1, η = η1.
δ is the fraction of zooplankton nutrient conversion, 0 < δ ≤ 1. The
function U(N) describes the nutrient uptake rate of phytoplankton.
U(N) is a continuous function defined on [0,∞) and satisfies

(2.2) U(N) = 0,
dU

dN
> 0, lim

N→∞
U(N) = 1.

This kind of function includes Holling’s II type, that is,

(2.3) U(N) =
N

k +N
,

where k is the half saturation constant.

The function ω(P ) represents the response function describing herbi-
vore grazing. It is also assumed that ω(P ) is continuous on [0,∞) and
satisfies

(2.4) ω(0) = 0,
dω

dP
> 0, lim

P→∞
ω(P ) = 1.

Usually, Ivlev’s [10] functional response formulation

(2.5) ω(P ) = 1− e−λP

is used to describe the zooplankton grazing, where λ is the rate at which
saturation is achieved with increasing phytoplankton levels (per unit
concentration). Alternatively, Mayzaud and Poulet formulation [14],

(2.6) ω(P ) = λP (1 − e−λP )

is also used to describe the food-acclimatized herbivore grazing.
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In the following, we assume that γ = γ1, η = η1. Then system (2.1)
becomes
(2.7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN/dt = −aPU(N) + (1 − δ)cZω(P ) + γP + ηZ,
dP/dt = aPU(N)− cZω(P )− γP,

dZ/dt = δcω(P )Z − ηZ,

⎫⎬
⎭ t �= nτ,

ΔN(t) = D(N0 −N(t))
ΔP (t) = −DP (t),
ΔZ(t) = −DZ(t),

⎫⎬
⎭ t = nτ,

N(0+) = N0 > 0, P (0+) = P0 > 0, Z(0+) = Z0 > 0.

From the point of biology, we need only consider system (2.7) in the
biological meaning region R3

+ = {(N,P, Z) | N,P, Z ≥ 0}. The
form of the equations in system (2.7) implies the global existence and
uniqueness of its solutions.

3. Dynamical behaviors of the nutrient and phytoplankton
subsystem. In the absence of the herbivorous zooplankton, system
(2.7) reduces to

(3.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dN/dt = −aPU(N) + γP,
dP (t)/dt = aPU(N)− γP,

}
t �= nτ,

ΔN(t) = D(N0 −N(t))
ΔP (t) = −DP (t),

}
t = nτ,

N(0+) = S0 > 0, P (0+) = P0 > 0.

This nonlinear system has simple periodic solutions. If we add the first
and second equations in system (3.1), we have d(N(t) + P (t))/dt = 0.
Let Σ(t) = N(t) + P (t); then system (3.1) can be written as:

(3.2)

⎧⎨
⎩

dΣ(t)/dt = 0, t �= nτ ,

Σ(nτ+) = D + (1−D)Σ(nτ), t = nτ ,

Σ(0+) = Σ0 > 0.

For system (3.2), we have the following lemma.

Lemma 3.1. System (3.2) has a positive solution Σ̃(t) and, for

every solution Σ(t) of (3.2), we have |Σ(t) − Σ̃(t)| → 0 as t → ∞,

where Σ̃(t) = N0, t ∈ (nτ, (n+ 1)τ ], n ∈ N .
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By Lemma 3.1, the following lemma is obvious.

Lemma 3.2. Let (N(t), P (t)) be any solution of system (3.1) with
initial conditions N(0) > 0, P (0) > 0. Then limt→∞ |N(t) + P (t) −
N0| = 0.

Lemma 3.2 says that the periodic solution Σ̃(t) = N0 is a unique
invariant manifold of the system (3.1). Denote

(3.3) a∗ =
− ln(1−D) + γτ

U(N0)τ
.

Theorem 3.1. For system (3.1), we have

(1) If a < a∗, then system (3.1) has a unique globally asymptotically
stable boundary τ-periodic solution (Ne(t), Pe(t)), where Ne(t) = N0,
Pe(t) = 0.

(2) If a > a∗, then system (3.1) has a unique globally asymptotically
stable positive τ-periodic solution (Ns(t), Ps(t)), and the τ-periodic so-
lution (Ne(t), Pe(t)) is unstable. The τ-periodic solution Ps(t) satisfies

(3.4)
1

1−D
= exp

(∫ τ

0

(aU(N0 − P (l, P0))− γ) dl

)
.

Proof. By Lemma 3.2, we can consider system (3.1) in its stable

invariant manifold Σ̃(t) = N0. That is,

(3.5)

⎧⎨
⎩

dP/dt = aPU(N0 − P )− γP, t �= nτ ,

ΔP = −DP, t = nτ ,

0 ≤ P0 ≤ N0.

Suppose P (t, P0) is a solution of equation (3.5); with initial condition
P0 ∈ [0, N0], we have

(3.6)

P (t, P0) = P (nτ+) exp

(∫ t

nτ

(aU(N0 − P (l, P0))− γ) dl

)
,

t ∈ (nτ, (n+ 1)τ ],

P (nτ+) = (1 −D)P (nτ), P (0+) = P0, t = nτ.

For (3.6), we have the following properties:
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(i) For P0 ∈ (0, N0], 0 < P (t, P0) ≤ N0, t ∈ (0,∞) is a piecewise
continuous function;

(ii) the function F (P0) = P (t, P0), P0 ∈ (0, N0] is an increasing
function;

(iii) P (t, 0) = 0, t ∈ (0,∞) is a solution.

Periodic solutions of (3.5) satisfy the following equation:

(3.7) P0 = (1−D)P0 exp

(∫ τ

0

(aU(N0 − P (l, P0))− γ) dl

)
.

By (i) and (ii), we know that if 1 < [1/(1−D)] < exp(aU(N0) − γ)τ ,
that is, a > a∗, then equation (3.7) has a unique solution P ∗

0 in (0, N0);
otherwise, it has no solution in (0, N0].

If a < a∗, then equation (3.5) has a periodic solution Pe(t) = 0. By

Lemma 3.2, we have limt→∞ |N(t)− Σ̃(t)| = 0. We have proved (1).

If a > a∗, then equation (3.5) has a unique positive periodic solution
Ps(t) = P (t, P ∗

0 ). The multiplier μ1 of Ps(t) is

(3.8)

μ1 = (1−D) exp

(∫ τ

0

(aU(Ns)− aP
∂N(Ns)

∂P
− γ) dl

)

= exp

(∫ τ

0

−aP
∂N(Ns)

∂P
dl

)
< 1,

where Ns(t) = 1 − Ps(t), (2.2) and (3.7) have been used. Thus, the
periodic solution Ps(t) of (3.5) is locally stable.

To prove the global attractivity of periodic solution Ps(t), we define
a function G(P0) : P0 ∈ (0, N0) as follows:

(3.9) G(P0) = (1−D) exp

(∫ τ

0

(aU(N0 − P (l, P0))− γ) dl

)
.

Noticing equation (3.6), we have

G(P0) =
P (τ, P0)

P0
, P0 ∈ (0, N0).

It is obvious that G(P ∗
0 ) = 1.
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Furthermore, [∂P (t, P0)]/∂P0 ≥ 0, t ∈ (0, τ) (otherwise, there exist

t0 > 0 and 0 < P
(1)
0 < P

(2)
0 < 1 such that P (t0, P

(1)
0 ) = P (t0, P

(2)
0 ),

a contradiction, since different flows of system (3.5) do not intersect).
Thus, the function G(P0) has the following properties:

(3.10)

G(P0) < 1, if P ∗
0 < P0 < 1,

G(P0) = 1, if P0 = P ∗
0 ,

G(P0) > 1, if 0 < P0 < P ∗
0 .

Furthermore, we obtain the following inequalities:
(3.11)

P0 > P (τ, P0) > · · · > P (nτ, P0) > · · · > P ∗
0 , if P ∗

0 < P0 ≤ 1,

P10 < P (τ, P0) < · · · < P (nτ, P0) < · · · < P ∗
0 , if 0 < P0 < P ∗

0 .

Let P0 ∈ (0, N0). According to (3.11), we suppose that limn→∞ P (nτ,
P0) = α. We shall prove that solution P (t, α) is τ -periodic. We note
that the functions Pn(t) = P (t + nτ, P0), due to the τ -periodicity of
equation (3.5), are also its solutions and Pn(τ) → α, as n → ∞. By
the continuous dependence of solutions on the initial values, we have
that P (τ, α) = limn→∞ Pn(τ) = α. Hence, the solution P (t, α) is τ -
periodic. Since the periodic solution P (t, P ∗

0 ) is unique, thus we have
α = P ∗

0 .

Let ε > 0 be given. By Theorem 2.9 [2] on the continuous dependence
of solutions on the initial values, there exists a δ > 0 such that if
|P0 − P ∗

0 | < δ and 0 ≤ t ≤ τ , then

|P (t, P0)− P (t, P ∗
0 )| < ε.

Choose n1 > 0 such that |P (nτ, P0) − P ∗
0 | < δ for n > n1. Then

|P (t, P0)− P (t, P ∗
0 )| < ε for t > nτ , which implies that

lim
t→∞ |P (t, P0)− P (t, P ∗

0 )| = 0.

By Lemma 3.2, for any solution (N(t), P (t)) of system (3.1) with initial
conditions N(0) > 0, P (0) > 0, we have that

lim
t→∞ |P (t)− Ps(t)| = 0, lim

t→∞ |N(t)−Ns(t)| = 0.

The proof of Theorem 3.1 (2) is thus completed.
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4. Existence of the positive τ-periodic solution. In this section
we investigate the invasion of the herbivorous zooplankton of system
(2.7). Denote Σ(t) = N(t) + P (t) + Z(t). It follows from system (2.7)
that

(4.1)

⎧⎨
⎩

dΣ(t)/dt = 0, t �= nτ ,

Σ(nτ+) = DN0 + (1−D)Σ(nτ), t = nτ ,

Σ(0+) > 0.

By Lemma 3.1, the following lemma is obvious.

Lemma 4.1. Let (N(t), P (t), Z(t)) be any solution of system (2.3)
with initial values N(0) > 0, P (0) > 0 and Z(0) > 0. Then

(4.2) lim
t→∞ |N(t) + P (t) + Z(t)−N0| = 0.

Lemma 4.1 says that the periodic solution Σ̃(t) = N0 of (4.1) is an
invariant manifold of system (2.3).

By Theorem 3.1, we know that system (2.7) has two nonnegative
boundary τ -periodic solutions

(Ne(t), Pe(t), Ze(t)) = (N0, 0, 0), (Ns(t), Ps(t), 0)(if a > a∗).

4.1. Stability of the boundary periodic solutions. For
convenience, in the following discussion, if a > a∗, we denote

(4.3) c∗ =
− ln(1−D) + ητ∫ τ

0
δω(P )dl

.

Theorem 4.1. For system (2.7), we have

(1) If a < a∗, then system (2.7) has a unique globally asymptotically
stable boundary τ-periodic solution (N0, 0, 0).

(2) If a > a∗ and c < c∗, then system (2.7) has a unique globally
asymptotically stable boundary τ-periodic solution (Ns(t), Ps(t), 0).
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(3) If a > a∗ and c > c∗, then the periodic boundary solution
(Ns(t), Ps(t), 0) of system (2.7) is unstable.

Proof. The proof of (1) is easy, so we want to prove (2) and (3). The
local stability of periodic solution (Ns(t), Ps(t), 0) may be determined
by considering the behavior of small amplitude perturbations of the
solution. Define

N(t) = u(t) +Ns(t), P (t) = v(t) + Ps(t), Z(t) = w(t).

Then we have ⎛
⎝ u(t)

v(t)
w(t)

⎞
⎠ = Φ(t)

⎛
⎝ u(0)

v(0)
w(0)

⎞
⎠ , 0 ≤ t < τ,

where Φ(t) satisfies

dΦ(t)

dt
=

⎛
⎝−aP [∂U(N)/∂N ] −aU(N) + γ (1− δ)cω(P ) + η

aP [∂U(N)/∂N ] aU(N)− γ −cω(P )
0 0 δcω(P )− η

⎞
⎠Φ(t)

and Φ(0) = I, the identity matrix. Hence, the fundamental solution
matrix is

(4.4) Φ(τ) =

⎛
⎝φ11(τ) φ12(τ) ∗

φ21(τ) φ22(τ) ∗∗
0 0 exp(

∫ τ

0 (δcω(P )− η) dl)

⎞
⎠ .

The linearization of impulsive subsystem (2.3) can be written as⎛
⎝ u(nτ+)

v(nτ+)
w(nτ+)

⎞
⎠ =

⎛
⎝ 1−D 0 0

0 1−D 0
0 0 1−D

⎞
⎠

⎛
⎝ u(nτ)

v(nτ)
w(nτ)

⎞
⎠ .

The stability of the periodic solution (Ns(t), Ps(t), 0) is determined by
the eigenvalues of

M =

⎛
⎝ 1−D 0 0

0 1−D 0
0 0 1−D

⎞
⎠Φ(τ),
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which are μ3 = (1 − D) exp(
∫ τ

0
(δcω(P ) − η) dl) and the eigenvalues

μ1, μ2 of the following matrix:

(1−D)

(
φ11(τ) φ12(τ)
φ21(τ) φ22(τ)

)
.

μ1, μ2 are also the multipliers of the locally linearization system of sys-
tem (3.1) provided with D ∈ (0, D0) at the asymptotically stable peri-
odic solution (Ns(t), Ps(t)), whereD0 = 1−[1/(exp((a∗U(N0)− γ)τ))].
According to Theorem 3.1, we have that μ1 < 1, μ2 < 1.

If c < c∗, then μ3 = (1−D) exp(
∫ τ

0
(δcω(P )−η) dl) < 1, the boundary

periodic solution (Ns(t), Ps(t), 0) of system (2.7) is locally stable. We
obtain that
(4.5)

Z(t) = Z(0)(1−D)n exp

(∫ t

0

(δcω(P )− η) dl

)
, t ∈ (nτ, (n+ 1)τ ].

Hence, we obtain that, for any solution (N(t), P (t), Z(t)) of sys-
tem (2.7) with initial value N(0) > 0, P (0) > 0, Z(0) > 0, Z(t) → 0 as
t → ∞. By Lemma 4.1, we have limt→∞ |N(t) + P (t) − N0| = 0.
Now, using Theorem 3.1, we have limt→∞ |N(t) − Ns(t)| = 0 and
limt→∞ |P (t)− Ps(t)| = 0.

If c > c∗, then μ3 > 1, the boundary periodic solution (Ns(t), Ps(t), 0)
of system (2.7) is unstable. The proof of Theorem 4.1 is completed.

4.2. Bifurcation analysis of the boundary periodic solution
(Ns(t), Ps(t), 0). Let B denote the Banach space of piecewise contin-
uous, τ -periodic function N : [0, τ ] → R2 and have points of discon-
tinuity τ , where they are continuous from the left. In the set B, we
introduce the norm ‖N‖0 = sup0≤t≤τ ‖N(t)‖, with which B becomes
a Banach space with uniform convergence topology.

For convenience, we introduce the following Lemmas 4.2 and 4.3 from
Cushing [5] with small modifications.

Lemma 4.2. Suppose aij ∈ B and 0 ≤ di < 1 (i = 1, 2).

(a) If (1 − d2) exp(
∫ τ

0
a22(s) ds) �= 1, (1 − d1) exp(

∫ τ

0
a11(s) ds) �= 1,
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then the linear impulsive homogenous system

(4.6)

⎧⎪⎪⎨
⎪⎪⎩

dy1/dt = a11y1 + a12y2,
dy2/dt = a22y2,

}
t �= nτ,


y1 = −d1y1,

y2 = −d2y2,

}
t = nτ

has no nontrivial solution in B×B. In this case the nonhomogeneous
system

(4.7)

⎧⎪⎪⎨
⎪⎪⎩

dx1/dt = a11x1 + a12x2 + f1,
dx2/dt = a22x2 + f2,

}
t �= nτ,


x1 = −d1x1,

x2 = −d2x2,

}
t = nτ

has, for every (f1, f2) ∈ B × B, a unique solution (x1, x2) ∈ B × B
and the operator L : B × B → B × B defined by (x1, x2) = L(f1, f2)
is linear and compact.

(b) If (1 − d2) exp(
∫ τ

0
a22(s) ds) = 1, (1 − d1) exp(

∫ τ

0
a11(s) ds) �= 1,

then (4.6) has exactly one independent solution in B × B.

Remark 4.1. In fact, under the conditions of Lemma 4.1 (a),

(4.8)

{
dx2/dt = a22x2 + f2, t �= nτ ,


x2 = −d2x2, t = nτ

has a unique solution x2 ∈ B, and the operator L2 : B → B defined
by x2 = L2f2 is linear and compact. Furthermore, the equation

(4.9)

{
dx1/dt = a11x1 + f3, t �= nτ ,


x1 = −d1x1, t = nτ

for f3 ∈ B has a unique solution (since (1 − d1) exp(
∫ τ

0 a11(s) ds) �= 1)
in B, and x1 = L1f3 defines a linear, compact operator L1 : B → B.
Then we have

L(f1, f2) = (L1(a12L2f2 + f1), L2f2).

Lemma 4.3. Suppose that a ∈ B, 0 ≤ d < 1, (1− d) exp(
∫ τ

0
a(s) ds)

= 1 and f ∈ B. Then the impulsive equation

(4.10)

{
dx/dt = ax+ f, t �= nτ ,


x = −dx, t = nτ

has a solution x ∈ B if and only if
∫ τ

0
f(l) exp(− ∫ l

0
a(s) ds) dl = 0.
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By Lemma 4.1, in its invariant manifold Σ̃(t) = N(t)+P (t)+Z(t) =
N0, system (2.7) reduces to an equivalently nonautonomous system as
follows:

(4.11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dP/dt = aPU(N0 − P − Z)− cZω(P )− γP,
dZ/dt = δcω(P )Z − ηZ,

}
t �= nτ,


P = −DP,

Z = −DZ,

}
t = nτ,

P0 > 0, Z0 > 0, P0 + Z0 ≤ N0.

If a > a∗, for system (4.11), by Theorem 4.1, the boundary periodic
solution (Ns(t), 0) is locally asymptotically stable provided that c < c∗;
hence, the value c∗ plays an important role as a bifurcation threshold.

For system (4.11), we have the following results.

Theorem 4.2. For system (4.11), assume that a > a∗ holds. Then a
constant λ0 > 0 exists such that, for each c ∈ (c∗, c∗ + λ0), there exists
a solution (P,Z) ∈ B × B of (4.11) satisfying 0 < P < Ps, Z > 0 and
N = N0 − P − Z > 0 for all t > 0. Hence, system (2.7) has a positive
τ-periodic solution (N,P, Z).

Proof. Let y1 = P − Ps, y2 = Z in (4.11). Then
(4.12)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy1/dt = F11(Ns, Ps)y1 + F12(c,Ns, Ps)y2 + g1(y1, y2),
dy2/dt = F22(c, Ps)y2 + g2(y1, y2),

}
t �= nτ,


y1 = −Dy1,

y2 = −Dy2

}
t = nτ,

P0 > 0, Z0 > 0, P0 + Z0 ≤ N0,

where

F11(Ns, Ps) = aU(N0 − Ps)− aP
∂U(Ns)

∂N
− r,

F12(c,Ns, Ps) = −aP
U(Ns)

∂N
− cω(Ps),

F22(c, Ps) = δcω(Ps)− η.

Since (1 −D) exp(
∫ τ

0
(δcω(P ) − η) dl) �= 1, by Lemma 4.2, using L we

can equivalently write the system (4.12) as the operator equation

(4.13) (y1, y2) = L∗(y1, y2) +G(y1, y2),
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where

G(y1, y2) = (L1(F12(c,Ns, Ps)L2g2(y1, y2) + g1(y1, y2)), L2g2(y1, y2)).

Here L∗ : B × B → B × B is linear and compact (since L1 and L2

are compact) and satisfies G = o(|(y1, y2)|0) near (0, 0). A nontrivial
solution (y1, y2) �= (0, 0) for some c > c∗ yields a solution (P,Z) =
(Ps + y1, y2) of system (4.11). Solution (P,Z) �= (Ps, 0) is called a
nontrivial solution of system (4.11).

We apply the well-known local bifurcation techniques to (4.13). As
is well known, bifurcation can occur only at the nontrivial solution of
the linearized problem

(4.14) (y1, y2) = L∗(y1, y2).

If (y1, y2) ∈ B × B is a solution of (4.14) for some c > 0, then by the
very manner in which L∗ was defined, (y1, y2) solves the system

(4.15)

⎧⎪⎪⎨
⎪⎪⎩

dy1/dt = F11(Ns, Ps)y1 + F12(c,Ns, Ps)y2,
dy2/dt = F22(c, Ps)y2,

}
t �= nτ,


y1 = −Dy1,

y2 = −Dy2,

}
t = nτ,

and conversely. Using Lemma 4.2 (b), we see that (4.15), and hence
(4.14), has one nontrivial solution in B×B if and only if c = c∗. Hence,
a continuum C = (c; y1, y2) ⊆ (0,∞)×B×B of nontrivial solutions of
(4.14) exists such that the closure C contains (c∗; 0, 0). This continuum
gives rise to a continuum C1 = (c;P,Z) ⊆ (0,∞)×B×B of solutions
of (4.11) whose closure C1 contains the bifurcation point (c∗;Ps, 0).

To see that solutions in C1 correspond to solutions (P,Z) of (4.11),
we investigate the nature of continuum C near the bifurcation point
(c∗; 0, 0) by expending c and (y1, y2) in a Lyapunov-Schmidt series:

c = c∗ + λε+ · · · ,
y1 = y11ε+ y12ε

2 + · · · ,
y2 = y21ε+ y22ε

2 + · · · ,
for yij ∈ B where ε is a small parameter. If we substitute these series
into differential system (4.11) and equate coefficients of ε and ε2, we
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find that

(4.16)

⎧⎪⎪⎨
⎪⎪⎩

dy11/dt = F11(Ns, Ps)y11 + F12(c
∗, Ns, Ps)y21,

dy21/dt = F22(c
∗, Ps)y21,

}
t �= nτ,


y11 = −Dy11,

y21 = −Dy21,

}
t = nτ

and
(4.17)⎧⎪⎪⎨
⎪⎪⎩

dy12

dt =F11(Ns, Ps)y12+F12(c
∗, Ns, Ps)y22+G12(y11, y12, λ),

dy22

dt = F22(c
∗, Ps)y22 + δλω(P )y21 + δc∗ ∂ω(P )

∂P y11y21,

}
t �= nτ,


y21 = −Dy21,

y22 = −Dy22,

}
t = nτ,

respectively. Thus, (y11, y21) ∈ B × B must be a solution of (4.13).
We choose the specific solution satisfying initial conditions y21(0) = 1.
Then

y21 = exp

(∫ t

nτ

(δc∗ω(P )− η) dl

)
> 0, nτ < t ≤ (n+ 1)τ,

y21(0) = 1.

Moreover, y11 < 0 for all t (since a > a∗ and (3.8), hence

∫ τ

0

−aP [∂N(Ns)/∂P ] dl < 0,

which implies that Green’s function for the first equation in (4.14) is
positive). Using Lemma 4.3, we find that

λ = −
∫ τ

0 δc∗[∂ω(P )/∂P ]y11y21 exp(−
∫ l

0(δc
∗ω(P )− η) dl) dt∫ τ

0
δω(P )y21 exp(−

∫ l

0
(δc∗ω(P )− η) dl) dt

> 0.

Thus, we see that near the bifurcation point (c∗, 0, 0) the continuum C
has two branches corresponding to ε < 0, ε > 0, respectively,

C+ = (c;P,Z) : c∗ < c < c∗ + λ0, P < 0, Z > 0,

C− = (c;P,Z) : c∗ − λ0 < c < c∗, P > 0, Z < 0.
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FIGURE 2. Time series of system (2.7) with initial value (1, 0.5, 0.5) and a = 1,
c = 3, k = 0.2, λ = 0.7, γ = 0.08, η = 0.05, D = 0.9, δ = 0.9, N0 = 1 and τ = 3.
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FIGURE 3. Time series of system (2.7) with initial value (1, 0.5, 0.5) and a = 1.3,
c = 3, k = 0.2, λ = 0.7, γ = 0.08, η = 0.05, D = 0.9, δ = 0.9, N0 = 1 and τ = 3.

The solution is on C+ which proves the theorem since λ > 0 is
equivalent to c > c∗. We only have left to show that P = y1 + Ps

for all t. This is easy for, if λ0 is small, then P is near Ps in the sup
norm of B; thus, since Ps is bounded away from zero, so is P . At the
same time, by Theorem 4.1, for system (2.7), Z is near Zs means that
P is near Ps; thus, N = N0 − P − Z > 0. We notice that the periodic
solution (P,Z) is τ -periodic. So N = N0 − P − Z > 0 is piecewise
continuous and τ -periodic. The proof is thus completed.

5. Numerical simulations. To study the dynamic complexity
of plankton models in a pulsed chemostat with instantaneous nutrient
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FIGURE 4. (a c) Time series of N,P,Z, (d) phase portrait of system (2.7) with
initial value (1, 0.5, 0.5) and a = 1.3, c = 4, k = 0.2, λ = 0.7, γ = 0.08, η = 0.05,
D = 0.9, δ = 0.9, N0 = 1 and τ = 3.

recycling, the solution of system (2.7) with initial conditions in the
first quadrant is obtained numerically for a biologically feasible range
of parametric values, and the bifurcation diagram provides a summary
of essential dynamical behavior of the system. To justify the theoretic
results we obtained in Section 4, we give two examples which concern
the results in Theorem 4.1 and Theorem 4.2, respectively. Here
we assume in system (2.7) that U(N) = N/(k +N) and ω(P ) =
(1− e−λP ).
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FIGURE 5. Periodic-doubling bifurcation. (a,b) Phase portraits of 2τ and 4τ -
period solution for τ = 6 and τ = 6.4, respectively.

Example 1. In system (2.7), set c = 3, k = 0.2, λ = 0.7,
γ = 0.08, η = 0.05, D = 0.9, δ = 0.9, N0 = 1, τ = 3, a∗ ≈ 1.05.
By Theorem 4.1, we know that, if a < a∗, the periodic solution
(1, 0, 0) is globally asymptotically stable; if a > a∗, the phytoplankton
begins to invade the system and the periodic solution (Ns(t), Ps(t), 0)
is globally asymptotically stable. Our simulations support these results
(see Figures 2 and 3, where a = 1 and a = 1.3, respectively).

Example 2. In system (2.7), set a = 1.3 (> a∗) and k, λ, γ, η,D, δ,
N0, τ have similar values as in Example 1. We can estimate numerically
that c∗ .

= 3.5 (since we cannot compute the exact value from the
expression of c∗ in (4.3)). By Theorem 4.2, we know that, if c > c∗, the
zooplankton begins to invade the system and, in this case, system (2.7)
has a positive periodic solution (N(t), P (t), Z(t)). Our simulations
support this result (see Figure 4, where c = 4).

The following example describes the influence of impulsive period τ
in system (2.7).

Example 3. Set a = 1.3, c = 4, k = 0.2, λ = 0.7, γ = 0.08, η = 0.05,
D = 0.9, δ = 0.9 and N0 = 1. When τ < τ1 ≈ 3.2, the solution
(N(t), P (t), Z(t)) is stable (see Figure 4). When τ = 4 > τ1, stability
of the τ -periodic solution is destroyed, the 2τ -periodic solution occurs
(see Figure 5 (a)) and it is stable. If τ > τ2 ≈ 6.4, then the 2τ -periodic
solution is destroyed and the 4τ -periodic solution occurs (see Figure
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FIGURE 6. A strange attractor: (a c) Time series of N,P,Z, (d) phase portrait of
system (2.7) with initial values (1, 0.5, 0.5) and τ = 8.

5 (b)). Continuously increasing τ , it follows a cascade of periodic-
doubling bifurcations (see Figure 6) leading to chaos (see Figure 8),
as τ continuously increases, producing periodic-halving bifurcation
(see Figure 7). System (2.7) experiences a process of cycles → of
periodic-doubling cascade → chaos → periodic-halving cascade, which
is characterized by (1) periodic-doubling, (2) periodic-halving.

6. Discussion. The phenomenon of plankton bloom has received
much attention among experimental ecologists as well as mathematical
ecologists. Though the process by which these population outbursts
occur are not clearly understood, researchers are attempting to explain
bloom phenomenon by different approaches. There is a large body of
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FIGURE 7. Periodic-halving bifurcation. (a,b) Phase portraits of 4τ and 2τ -period
solution for τ = 16.6 and τ = 16.8, respectively.
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FIGURE 8. Bifurcation diagrams of system (2.7) with initial value (1, 0.5, 0.5) and
a = 1.3, c = 4, k = 0.2, λ = 0.7, γ = 0.08, η = 0.05, D = 0.9, δ = 0.9, N0 = 1 and
4 < τ < 17.

literature where plankton blooms have been modelled using different
modifications of classical food chain models by introducing nonlinear
functional responses of the plankton populations or using environmen-
tal forcing [4].

Unlike the existing literature on plankton models with nutrient
recycling, in this paper, we investigate a nutrient-phytoplankton-
zooplankton model in a chemostat with instantaneous nutrient re-
cycling and impulsive perturbation. Firstly, we obtain the invasion
threshold of the phytoplankton, which is a∗. If a < a∗, the periodic so-
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lution (N0, 0, 0) is globally asymptotically stable (see Figure 2), and, if
a > a∗, zooplankton begin to invade the system. c∗ plays an important
role as the invasion threshold of the zooplankton. If c < c∗, the periodic
solution (Ns, Ps, 0) is globally stable (see Figure 3). If c > c∗, by using
standard techniques of local bifurcation theory, we prove that there are
periodic oscillations in nutrient, phytoplankton and zooplankton (see
Figure 4).

Choosing different values of the pulsed period τ as bifurcation pa-
rameters, and using numerical simulation, we obtain bifurcation dia-
grams (Figure 8). Bifurcation diagrams indicate that the system has
complexity, including periodic-doubling cascade, periodic windows and
periodic-halving cascade. All these results show that the dynamical
behavior of system (2.7) becomes more complex under impulsive per-
turbation.

For the situation when we assume nutrient recycling is not instan-
taneous, that is, if we consider the affect of the time delay involved
in nutrient recycling on resilience, what new dynamical behaviors will
occur? We leave this for future work.
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